
Intelligent Automation And Soft Computing,
2020 Vol. 26, no. 3, 631–639
DOI: 10.32604/iasc.2020.012549

wangling@hit.edu.cn CONTACT Ling Wang

A Progressive Output Strategy for Real-time Feedback Control Systems

Qiming Zou1, Ling Wang1, *, Jie Liu1 and Yingtao Jiang2

1Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
2Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, 89154, USA,

KEYWORDS: Real-time feedback control; online optimization; adaptive sampling.

1 INTRODUCTION
A system employs a feedback control loop is able

to tightly integrate sensing, computing, and actuating

components to handle uncertainties and dynamically

adapt its behavior (Lindberg M. et al 2010), (Jacob R.

et al 2016). In a feedback loop, as physical processes

evolve over time, the computation time is tightly

linked to the timing in the physical domain, giving rise

to the real-time requirement (Jacob R. et al 2016). Up

to date, a great deal of research has been focusing on

how to speed up the computation in the feedback

control loop. These works have centered around four

themes: (1) making the system model numerically

easy to compute (Shu L. et al 2012), (2) decomposing

the optimization into sub-problems and solving them

in a distributive manner (Boyd S. et al 2011), (3)

generating solution close to optimal at each control

step until the final solution is reached (Wang Y. et al

2010), (Bak S. et al 2017), (Li H. et al 2018), and (4)

producing an explicit control law (e.g. Explicit

Model Predictive Control (EMPC)) (Bemporad A. et

al 2002), (Oberdieck R. et al 2017).

With all these advances in speeding up the

computation for fast feedback loop control, it is still

hard for a control system to meet the real-time

requirement by focusing only on the feedback loop

itself. Rather the workload unbalancing problem that

was ignored in previous works needs to be carefully

addressed. This problem can be particularly important

when all the data have finally arrived and multiple

high priority tasks yet to be launched altogether,

pressuring the system to output its results as soon as

possible, as explained in a motivating example shown

in Fig. 1. Here a traffic control system is put in place

to help alleviate traffic congestion by optimizing the

traffic signal operation strategy. Observed traffic

states are utilized as the feedback information, and the

controller needs to adjust the traffic signals in

response to the changes in traffic flow. The traffic

information is received every one or several control

cycles that can last as long as a few minutes; during

the time, the controller has to sit idle, waiting for the

ABSTRACT
The real-time requirements imposed on a feedback control system are often hard to be met,
as the controller spends a disproportionately large amount of time waiting for a control cycle
to reach its final state. When such a final state is established, multiple tasks have to be
prioritized and launched altogether simultaneously, and the system is given an extremely
short time window to generate its output. This huge gap between the wait and action times,
perceived as a load unbalancing problem, hinders a control decision to be made in real time.
To address this challenging problem, in this paper, we present a progressive output strategy
that divides a control cycle into a few fine-grained control intervals, and the entire workload
is scheduled across these control intervals. Dubbed as Progressive Output Strategy (PROS),
this approach actively requests intermediate states be created between adjacent control
cycles in an adaptive manner. Specifically, as the sensing information is arriving, a system
that adopts PROS can generate a series of intermediate solutions that eventually converge
to the final optimal control signal. This way, the controller will no longer waste its time idling
while waiting for the arrival of all the data for one-shot decision-making. Rather the system
actually cuts down the waiting time and is able to act on the intermediate data/states
throughout the entire control cycle. Experimental results have confirmed that adopting the
PROS in a feedback control loop can evenly distribute the workload over a control cycle, and
thus, the time delay is reduced by as much as two orders of magnitude, which is essential to
meet the most stringent timing requirements.

632 Zou, Wang, Liu, and Jiang

arrival of traffic data. However, when traffic data

finally come, the controller is expected to generate the

optimal signal strategy within just a few milliseconds.

This huge gap between wait and action times,

perceived as a load unbalancing problem that prevents

the control system from achieving its real time goals,

is addressed in this paper.

Figure 1: An illustration of the load unbalancing problem. The
computation of control signal for actuation (act.) has to wait
for a long period of time (referred as wait.time), until the
sensors (sen.) sample the current state of the physical system.
This mechanism forces the workload to be completed over an
extremely short time (referred as comp. time).

A straightforward approach to solve this load

unbalancing problem is to get the workload spread

over the entire control interval. To be more specific,

instead of having the controller waste its time idling

while waiting for the arrival of all the data to make a

control decision, the system actually cuts down the

waiting time and acts on the intermediate data/states

that are available at some specific intervals. Along this

process, the controller continues to generate sub-

optimal solutions and continues to refine them in the

next control interval. By the time when all the data

needed for making a decision in a control cycle are

finally available, the controller can have a “warm-

start”. As a result, the controller, based on the sub-

optimal solution thus far obtained, is now able to

quickly complete its computation to generate the

actual control signal, as shown in Fig. 2. The sampling

rate, which relates to the number of sampling intervals

in a control cycle, needs to be carefully selected, as it

has serious implications on sampling complexity and

control performance (Haimovich H. et al 2013),

(Miskowicz M. et al 2014), (Sahoo A. et al 2015),

(Wu L. et al 2017), (Tzoumas V. et al 2018). To our

best knowledge, there is no open literature that deals

with the sampling issues pertaining to workload

balancing.

Figure 2: An illustration of the load spreading strategy. The
computing component quickly adapts to the change of the
sampled state and outputs sub-optimal solutions (sub.opt.). In
this way, the workload to be performed over computing
periods (red blocks) is distributed to several sample intervals
(green blocks) in waiting periods (yellow blocks).

Based on the idea to use the idle time within a

control cycle to generate sub-optimal output solutions,

we present the Progressive Output Strategy (PROS)

(see Fig. 3). PROS has two components: the sampling

and the computing components. In each control cycle,

the sampling component adaptively samples the state

of the plant, after which it triggers computation based

on the partial information it has already received. The

computing component updates the estimation of the

optimal solution and outputs an optimal solution at the

end of a current control cycle. During the wait time,

an intermediate solution can be generated along with

the state changes in the physical processes. In this way,

instead of completely staying idle, the sampling

component requests sensing information and activates

the computing process. By spreading the workload

throughout the entire control cycle, the amount of time

needs to be spent on computation at each sampling

time tends to be small. As a result, one may use a low-

end microcontroller, as opposed to a more expensive

high-end machine, to achieve the same real-time

performance. Although there are works dedicated to

consider both sampling and computing at the same

time (Tarbouriech S. et al 2016), (Pan Y V. et al 2015),

(Hans J F. et al 2014), as far as we know, this paper is

the first attempt to reduce time delay by adopting a

strategy to spread the workload.

Figure 3: The framework of PROS. At every sample interval,
the sampling component contacts the sensors to collect
measured data. The length of the sample interval is
determined by the load estimation provided by the computing
component. The computing component exploits the
relationship between the previous state and the current state
to figure out how to warm-start a computation.

Our specific contributions are summarized as

follows:

 A novel problem on how to add load balancing

into real-time feedback control is formulated.

 We present the PROS strategy that can

progressively obtain the optimal control signal in a

control cycle.

 Empirical experiments show that our approach can

reduce the time delay by two orders of magnitude

on average with a low sampling complexity.

2 PROBLEM FORMULATION

INTELLIGENT AUTOMATION AND SOFT COMPUTING 633

A physical process can be mathematically

represented as a seven-tuple

P=(X,U,ρ,X_0,X_g,T,T_c), where

X is the set of states, X∈R^n.

 U is the set of feasible control signals, U∈R^m.

ρ:X×U→X is the transition function (or dynamic

function) of the physical system. ρ can be

approximated by a linear model; that is,

x_(t+1)=Ax_t+Bu_t for state vector x_t and input u_t

at the t^th control cycle.

 X_0 is the set of initial states, and X_0⊂X.

 X_g is the set of target states, and X_g⊂X.

 T is the control horizon defined as the total

number of control cycles.

 T_c is the time span of one control cycle.

The goal is to determine the best feedback loop

based on the following criteria:

 Minimize the performance loss J_P, where the

performance is defined as a weighted distance

between the target state x_g∈X_g and the current

state x_t∈X. That is,

 (1)

where is the penalizing matrix of the state

deviation from the reference trajectory, and
 is the cost matrix for the control signals.

 Minimize the total time delay measured as the

total computation time needed to obtain all the

control signals. That is,

 (2)

where t
 is time delay of the control signal during

the control cycle.

According to the classic control theory, a controller

can be expressed as a quadratic programming if the

physical system can be approximated by a linear

model and the cost function is quadratic (g). The

controller needs to minimize the performance loss,

taking into account of some constraints (g , safety)

applicable to the control signals. That is, the controller

can be expressed as:

 (3a)

 (3b)

where is the optimization

vector; g , ; and 0,

 0 (positive definite) and they are obtained by

incorporating into in Eq. (1).

As indicated in Eq. (3), the controller needs to

receive the measured state of the system at the end

of each control cycle. An approximate linear model

will be applied to predict future states

based on , and the controller will minimize the cost

function that accounts for both the current and

predicted states. The controller’s output is an optimal

control sequence over the time span of t t .
Only the optimal strategy within the interval of

 t t will be implemented in the system. At

time step t , the states will be measured again and

the data collected will be used to calculate the optimal

solution for the next interval, t t
 , in a rolling horizon fashion.

Although the rolling horizon style introduced

above makes the controller more robust against

external disturbances, it also leads to a load

unbalancing problem. According to the formulation of

the feedback loop, the state is measured at the end of

control cycle , and the control signal is also

expected to be obtained at the same time, which

imposes a heavy workload to the control system.

3 PROS: PROGRESSIVE OUTPUT STRATEGY
The PROS framework controls the sampling

interval, warm-starts the computation, and imposes a

low workload for the computation of the control signal.

As shown in Fig. 3, PROS is composed of a

computing component and a sampling component.

The computing component outputs intermediate and

final solutions (the control signal) based on the current

sampled state. In PROS, computing component needs

to meet three requirements, namely real-time,

robustness to interruption, and capability of providing

workload information to the sampling component.

Robustness for interruption is imperative because

there is a possibility that computing may be

interrupted by the sampling process.

The sampling component of PROS adaptively sets

an interval for collecting sensing information from the

sensors. This component shall be responsible for

distributing the load during the wait time with a

minimum number of sampling intervals. To achieve

this goal, this paper proposes an urgency-triggered

sampling strategy. Here urgency is defined based on

the load information provided by the computing

component and the remaining time in the current

control cycle.

3.1 State-oriented Computing Strategy
The main idea of PROS is to adjust the controller’s

sampling interval and the computing component’s

needs to quickly adapt itself to the state changes. In

light of the parametric active-set algorithm presented

in qpOASES (Hans J F. et al 2014), which is an

effective method to solve QP sequentially by

exploiting the geometrical property (Hans J F. et al

2014), we herein present the State-Oriented

Computing Strategy (SOCS).

To obtain QP(x_t) at current instance x_t, SOCS

iteratively searches a straight line within the state

space from its preceding value given as QP(x_(t-1)).

Since the state of the physical system is viewed as one

parameter of Eq. (3), the state space shall be treated

the same as the parameter space. Fig. 4 shows the

parameter space of a two-dimensional example.

According to (Hans J F. et al 2014), the parameter

634 Zou, Wang, Liu, and Jiang

space can be divided into multiple regions. In each

region, the optimal solution to Eq. (3) has an identical

active set, which is a set of indices of the active

constraints. It also means that if both the previous

state and the current state fall into the same region,

their corresponding optimal solutions have the same

active set, and thus, no iteration is needed. On the

other hand, if the two states are located in different

state regions, several active set changes (iterations) are

necessary to move from the previous solution to the

current one. As shown in Fig. 4, we use a trajectory to

indicate the dynamic change of states. Note that once

the trajectory crosses the boundary of the state regions,

it means the active set has been updated, which

corresponds to one iteration.

Note that SOCS generates sub-optimal control

signals along with the change of states (in a straight

line originated from x_(t-1)), and only the latest

solution (the path reaches the state x_t) is applied to

the real physical system.

 (4a)

 (4b)

 (4c)

 (4d)

 (4e)

The state and constraint vectors are given as follows:

 (5a)

 (5b)

 (5c)

where the parameter τ is the step length along the

parameter change direction, which is determined by

Eq. (10). We assume that the starting point is a known

optimal solution U_0^* and λ_0^* (and their

corresponding optimal active set is A_0^*) of the last

QP(x_0) and we intend to obtain QP(x_0^new). The

basic idea of qpOASES is to move from x_0 towards

x_0^new, and thus from (U_0^*,λ_0^*) towards

(U_new^*,λ_new^*), while keeping primal and dual

feasibility, i.e. optimality, for all the intermediate

points.

Figure 4: Paths from one QP to the next across multiple state
regions: the solid line is the path created by the controller.
Sub-optimal solutions are generated along the path, where x_t

denotes the sampled state within the t^th control cycle.

Theorem 1: Assume the active set stays unchanged

during the state transition from to , i
 0 . Let be the primal step direction
and be the dual step direction; that is,

 0 (6a)

 0 (6b)

Then we shall have

(

 0
) (

) (

) (7a)

Proof: At every intermediate point, the primal variable

 and the dual variable have to satisfy the

 optimality conditions, KKT condition; therefore,

(

 0
) (

) (

) (7b)

 0This condition is met at , as the solution starts

from the previous optimal solution. Hence, we have

(

 0
) (

 0

 0
) (

g 0 g
 0

) (7c)

That is,

(

 0
) (

) (

 g

) (7d)

The active set stays unchanged as long as no

previously inactive constraint becomes active. That is,

 (8)

 for some , and no previously active constraint

 becomes inactive for some . That is,

 0 (9)

Correspondingly, the maximum possible step length

 is determined as follows:

(10a)

 (10b)

 (10c)

In the case that τ_max equals one, the new state

x_0^new has been reached, and at the same, the

solution of the new quadratic program QP(x_0^new)

has been found. In other cases, a constraint needs to be

relaxed or added to active set A, which limits τ_max

from reaching 1. Once the active set is updated, the

procedure repeats, and a new step direction and size

are obtained. This iteration stops until τ_max is equal

to one, indicating the solution of QP (x_0^new) has

been found.

The detailed algorithm is summarized in Algorithm

1. The input is the optimal solution (U_(i-1)^*,λ_(i-

1)^*) of the problem at previous control cycle

QP(x_(i-1)), and x_(i-1) is the system state (i.e.

problem parameter). According to the optimal solution,

we can obtain the corresponding optimal active set

A_(i-1)^* which is a set of the indexes of active

constraints (constraints that are satisfied with equality).

The output of the algorithm is the optimal solution and

the corresponding active set of current control cycle.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 635

As SOCS produces a sequence of optimal solutions for

QPs along the path, it is possible to break from this

sequence any time and initiate a new path from the

current iteration towards the next QP.

3.2 Urgency-triggered Sampling Strategy

This framework allows the workload of a control

cycle to distributed to several sampling intervals, and

it contains the following aspects:

1) The system samples the system and collects the

data.

2) The system then breaks the cycle time into a

number of sampling cycles (intervals) that each lasts

for wait.time.

3) During each sampling cycle (interval),

computing work can be performed, and the

intermediate solution, as an approximation of the final

output, shall be generated at the end of every interval.

This framework allows the workload of a control

cycle to distributed to several sampling intervals.

Let the execution time of the computing component

be less than or equal to the sample interval length,

i.e.,exec.time≤wait.time. The intermediate solution

would keep to be primal and it maintains dual

feasibility, as τ_max converges to 1. According to Eq.

(10), the primal feasibility is given as:

 (11)

and the dual feasibility is given as:

 (12)

 0

As a result, the most important part of this

framework is to choose the sample interval length

wait.time. One simple approach to determine wait.time

would be directly dividing T_c into a fixed number of

intervals. To spread the most of the workload across

the idle time, one idea is to make wait.time as short as

possible, and avoid a collision between the operations

of sampling and computing. Actually, by setting

wait.time to be

 (13)

any potential conflict can be avoided. A coordinated

sampling and control scheme is summarized in

Algorithm 2. We first initialize the current active set

 with the working set
 obtained from the

previous control cycle. Then we run iterations of

the proposed sampling and computing cooperation

strategy times. Here , the number of

iterations, is a constant determined offline, ,

(14)

At every iteration, the sensors do not need to

continuously measure the system, or during every

control cycle; instead they measure states x_(i|t-1) for

every wait.time (seconds). After the sensor

information x_(i|t-1) is obtained, the suboptimal

control signal U_(i|t-1)^* is derived by running SOCS

as explained in the previous section.

In the fixed sampling strategy algorithm, the length

of wait.time is determined off-line. A two-dimensional

example is illustrated in Fig. 5. In the applications

where frequent sampling is allowed, the fixed

sampling strategy is expected to significantly reduce

the number of iterations to generate the optimal

control signal, and thus help improve the real-time

performance. However, in some cases, sampling, like

perception-based sampling, can be expensive or time-

consuming. In these applications, the design objective

is two-fold: minimizing the sampling times, and

spreading most of the workload across the idle time.

As shown in Fig. 4, the regions on a state space are

636 Zou, Wang, Liu, and Jiang

geometrically irregular, indicating the active set

changes may happen regularly. A fixed wait.time, a

control cycle is divided into equal intervals, would fail

to achieve both objectives. Rather, an adaptive

sampling strategy is proposed that the sample interval

is determined by

 (15)

where f is a strictly monotonically decreasing function

of est.load, and T_r is the remaining time of the

current control cycle. One can see from Algorithm 1

that in the path from current sampled state x_(i-1|t) to

next one x_(i|t), SOCS will generate a step length

sequence

 (16)

where τ_k,k=1,2, ,K, is the step size from one state

region to the next. Since the number of iterations K

can be considered as a workload estimation, a

reasonable choice of function f would be

(17)

where α is the weight of .

 According to Eq. (15), if remaining time is

 short and the estimated value of future load, , is

high, it means there is an urgency to complete the

 computation and cut down the to be short.

It is this reason that this strategy is named as urgency-

triggered sampling strategy, as illustrated in Fig. 6,

and the algorithm is detailed in Algorithm 3. Different

 from Algorithm 2, is adjusted online.

 is the cumulative spending time, which is

 the accumulated sum of the and the

 execution time of SOCS. If the remaining time is

 less than a predetermined threshold of , the sampling

 interval would be set to be .

Figure 5: Paths from one QP to the next across multiple state
regions. The dashed line is the path created by SOCS combined

 with the fixed sampling strategy, where denotes the

 sampled state within the control cycle. The sample interval

is fixed to be .

Figure 6: Paths from one QP to the next across multiple state
regions. The dashed line shows the path created by applying
SOCS combined with the urgency-triggered sampling strategy.
Here denotes the sampled state within the control

cycle.

4 SIMULATION
4.1 Experimental Setup
To evaluate our methodology on an industrial control

application, we apply it to a DC servomechanism as

reported in (Bemporad A. et al 1998). Details of the

experimental setup are provided in Tab. 1.

Table 1. Experiment parameters

Paramete

 rs
 Physical meanings Values

 Cycle time 0.1 s

 Simulative control horizon
4 s

 (40 cycles)

 Prediction horizon
0.3 s

(3 cycles)

 Simulation time step 0.01 s

The SOCS algorithm is implemented in Matlab

using a qpOASS toolbox (Hans J F. et al 2014).

Several tests are conducted to investigate the

behavior of three alternative computing strategies.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 637

C1: traditional QP solver with an active set

strategy.

C2: traditional QP solver initialized with the

previous solution.

C3: state-oriented computing strategy presented in

Section 3.

Next, we further combine the above computing

strategies with different sampling strategies:

S1: fixed sampling strategy that all the sampling

intervals are set to be the same.

S2 : urgency-triggered sampling strategy,

sampling interval is adaptively determined by the

estimation of the future load situation and the

remaining time of the control cycle, as presented in

Section 3.

For S1, the time of one control cycle is divided into

equal intervals, and the duration of an interval is

determined by the number of samples. According to

Eq. (13), the sampling interval of S1 should be set to

the maximum execution time in the tests marked as

C1-3, which in this case is determined to be 0.01

(seconds). Accordingly, the fixed sampling interval is

0.01 (seconds), which also means that the fixed

sampling times of S1 is 10 (times). Since S2 requires

the load information be provided in test C3, S2 can

only be combined with C3.

4.2 Simulation Results
The optimization algorithm solving the

fundamental QP problems of C1, C2, C3 is active-set

method which can be easily warm-started. It is

reasonable to use the number of iterations to profile

the workload at different times. Since the real-time

constraint applies at the end of each cycle (forced to

output control signal), the focus is placed on the

workload in the last sample interval. Fig. 7 depicts the

number of iterations at each time step for different

strategies within three randomly selected control

cycles.

load unbalancing problem: Strategies C1, C2 and

C3 only have one computing component, and their

sampling interval spans the entire control cycle. As

shown in Fig. 7, all the iterations complete in one time

step, leading to a load unbalancing problem that may

cause a large time delay. Although in the cases of C2

and C3, warm-start from the previous solution is

possible, their performance improvement is not

obvious.

Figure 7: Number of iterations (y-axis) at each time step (x-
axis) during three control cycles following different strategies.

The dashed lines correspond to the last time step of each
control cycle.

Figure 8: Number of samples and the amount of time delay
(milliseconds) at each control cycle following different
strategies.

load spreading: The load unbalancing problem is

addressed by load spreading. To do this, computing

components C2 and C3 are combined with different

sampling strategies S1 and S2. Different from simple

combinations C2+S1 and C3+S1, C3+S2 (PROS)

proposed in this paper makes sampling and computing

components cooperate, and adaptively control the

sampling interval and computing complexity. As

shown in Fig. 7, C2+S1 cannot deliver load spreading,

because its warm-start strategy is based on the

previous solution which does not take advantage of

the sampling strategies. In addition, due to the state-

oriented warm-start strategy in C3, C3+S1 and C3+S2

are capable to spread the partial load to be completed

during otherwise considered idle time. However,

C3+S1 relies on the frequent sampling, which may

cause a large communication delay or add sampling

complexity. This problem is further investigated in the

following.

Table 2: Experiment results

 Strategies
Avg. Time

 Delay (ms)

Avg. #

 Iteration

Avg. #

 Sampling

C1 8.76 61.92 1

C2 5.43 31.18 1

C3 0.54 28.31 1

C2+S1 5.23 21.43 10

C3+S1 0.07 2.11 10

C3+S2
(PROS)

0.19 3.87 2.78

Fig. 8 plots the time delay and the number of

samplings obtained from applying different strategies

over 40 control cycles. Here both C3+S1 and C3+S2

significantly outperform other baseline cases. Also,

the performance gap between C3+S1 and C3+S2 is

reasonably small, around 0.12 milliseconds on average.

However, sampling times of C3+S2 is much less than

that of C3+S1, 72.25% less on average. This result

confirms the proposed PROS may achieve near-

638 Zou, Wang, Liu, and Jiang

optimal performance with rather low sampling

complexity.

The summary of experiment results over 40 control

cycles are shown in Tab. 2. For Avg. Time Delay and

Avg. # Iteration, we only evaluated the last sampling

period of each control cycle. As one can see, C3

clearly outperforms other competing control

algorithms in the term of average time delay. By

combining with the S2, we further reduce the numbers

of iterations and samplings. Therefore, C3+S2 (PROS)

achieves small time delay with a reasonable sampling

complexity.

5 CONCLUSION
Observing the impacts of the load unbalancing

problem on the feedback control loop, we developed a

cooperative framework, PROS, which coordinates the

sampling and computing components of a controller to

spread the load to the entire control cycle. The

sampling component requests future load condition be

estimated from the computing component, and it

determines the sampling interval during one control

cycle that is used to activate computation of an

intermediate solution. In this way, the intermediate

solution progressively approaches to the optimal

control signal along with changes of the sampled state

within a control cycle. Experimental results showed

PROS outperformed the competing strategies by a

wide margin. The proposed PROS can be extended to

apply to the feedback control of nonlinear systems.

6 REFERENCES
A. Bemporad, M. Morari, V. Dua and E. N.

Pistikopoulos, The explicit linear quadratic

regulator for constrained systems. Automatica,

2002, 38(1): 3-20.

A. Sahoo, H. Xu and S. Jagannathan, Neural network-

based event-triggered state feedback control of

nonlinear continuous-time systems. IEEE

Transactions on Neural Networks and Learning

Systems, 2015, 27(3): 497-509.

A. Bemporad and E. Mosca, Fulfilling hard

constraints in uncertain linear systems by

reference managing. Automatica, 1998, 34(4):

451-461.

H. Li, J. Peng, J. He, R. Zhou and Z. Huang et al., A

cooperative charging protocol for onboard

supercapacitors of catenary-free trams. IEEE

Transactions on Control Systems Technology,

2018, 26(4): 1219-1232.

H. Haimovich and E. N. Osella, On controller-driven

varying-sampling-rate stabilization via lie-

algebraic solvability. Nonlinear Analysis: Hybrid

Systems, 2013, 7(1): 28-38.

J. F. Hans, K. Christian, P. Andreas, G. B. Hans and D.

Moritz, Qpoases: a parametric active-set algorithm

for quadratic programming. Mathematical

Programming Computation, 2014, 6(4): 327-363.

L. Shu, B. D. Schutter, Y. G. Xi and H. Hellendoorn,

Efficient network-wide model-based predictive

control for urban traffic networks. Transportation

Research Part C: Emerging Technologies,

2012(24): 122-140.

L. Wu, Y. Gao, J. Liu and H. Li, Event-triggered

sliding mode control of stochastic systems via

output feedback. Automatica, 2017(82): 79-92.

M. Miskowicz, Event-based sampling strategies in

networked control systems. in Proc. WFCS, 2014:

1-10.

M. Lindberg and K. E. Arzén, Feedback control of

cyber-physical systems with multi resource

dependencies and model uncertainties. in Proc.

RTSS, San Diego, USA, 2010: 85-94,.

R. Jacob, M. Zimmerling, P. Huang, J. Beutel and L.

Thiele, End-to-end real-time guarantees in

wireless cyber-physical systems. in Proc. RTSS,

Porto, Portugal, 2016: 167-178.

R. Oberdieck, N. A. Diangelakis and E. N.

Pistikopoulos. Explicit model predictive control: A

connected-graph approach, Automatica, 2017(76):

103-112.

R. A. Borges, R. Oliveira, C. T. Abdallah and P. L. D

Peres, Robust h∞ networked control for systems

with uncertain sampling rates. IET Control Theory

and Applications, 2010, 4(1): 50-60.

S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,

Distributed optimization and statistical learning

via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning,

2011, 3(1): 1-122.

S. Bak and P. S. D. Hylaa, A tool for computing

simulation equivalent reachability for linear

systems. in Proc. HSCC, 2017: 173-178.

S. Tarbouriech, A. Seuret, J. M. G. da Silva Jr and D.

Sbarbaro, Observer-based event-triggered control

co-design for linear systems. IET Control Theory

and Applications, 2016, 10(18): 2466-2473.

V. Tzoumas, L. Carlone, G. J. Pappas and A.

Jadbabaie, Control and sensing co-design. ArXiv

e-prints: 1802.08376, 2018.

Y. Wang and S. Boyd, Fast model predictive control

using online optimization. IEEE Transactions on

Control Systems Technology, 2010, 18(2): 267-

278.

Y. V. Pant, K. Mohta, H. Abbas, T. X. Nghiem and J.

Deveitti et al., Co-design of anytime computation

and robust control. in Proc. RTSS, 2015: 43-52.

7 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 639

8 NOTES ON CONTRIBUTORS

Q. M. Zou received the B.S.

degree in Information

Management and

Information System, Anhui

University of Technology,

Maanshan, AH, China in

July 2017, the M.S. degree

in Computer Science,

Harbin Institute of

Technology, Harbin, HL,

China in July 2019. Currently, he is a Ph.D. candidate

in System Life Science, Kyushu University, Fukuoka,

Japan. His research interest is optimal control and

deep reinforcement learning.

 L. Wang received the B.S.

degree in Mathematics and

the M.S. degree in Control

Engineering from the

Heilongjiang University,

Harbin, HL, China, in 1992

and 1995, respectively, and

the Ph.D. degree in Electrical

Engineering from the

University of Nevada, Las

Vegas, NV, USA, in 2003. Currently, she is a Full

Professor at Harbin Institute of Technology, Harbin,

HL, China. Her research interests include AIoT, VLSI

design, various aspects of computer-aided design,

hardware-software codesign, high-level synthesis, and

low-power system design.

Jie Liu is a Chair Professor

at Harbin Institute of

Technology (Shenzhen),

China and the Dean of its AI

Research Institute. Before

that, he spent 18 years at

Xerox PARC, Microsoft

Research and Microsoft

product teams. His research

interests root in

understanding and managing the physical properties of

computing, such as energy, time, perception, and

adaptation. He has published more than 120 peer-

reviewed papers and has received 6 Best Paper

Awards from top academic conferences (h-index = 62)

in AI of Things, cyber-physical systems, mobile

computing, and energy-efficient computing. He has

filed more than 100 patents, with 60+ awarded. He has

chaired a number of top-tier conferences in sensing

and pervasive computing. Currently, he is the Steering

Committee Chair for Cyber-Physical Systems and

Internet of Things Week (CPS-IoT Week), Steering

Committee Chair for ACM/IEEE International

Conference on Information Processing in Sensor

Networks (IPSN). He was an Associate Editor for

IEEE Transactions on Mobile Computing and ACM

Transactions on Sensor Networks. He is an IEEE

Fellow and an ACM Distinguished Scientist.

Yingtao Jiang received the

Ph.D. degree in Computer

Science from University of

Texas at Dallas, Richardson,

TX, USA, in 2001. He

joined the Department of

Electrical and Computer

Engineering, University of

Nevada, Las Vegas, NV,

USA, in August 2001. He

has been a Full Professor since July 2013 at the same

university. He was ECE Department Chair between

2015 and 2018, and now he is associate dean of the

college of Engineering. His current research interests

include VLSI circuits, wireless networks, computer

architectures, machine learning, cloud computing, and

nanotechnologies.

