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1 INTRODUCTION 
A system employs a feedback control loop is able 

to tightly integrate sensing, computing, and actuating 

components to handle uncertainties and dynamically 

adapt its behavior (Lindberg M. et al 2010), (Jacob R. 

et al 2016). In a feedback loop, as physical processes 

evolve over time, the computation time is tightly 

linked to the timing in the physical domain, giving rise 

to the real-time requirement (Jacob R. et al 2016). Up 

to date, a great deal of research has been focusing on 

how to speed up the computation in the feedback 

control loop. These works have centered around four 

themes: (1) making the system model numerically 

easy to compute (Shu L. et al 2012), (2) decomposing  

the optimization into sub-problems and solving them 

in a distributive manner (Boyd S. et al 2011), (3) 

generating solution close to optimal at each control 

step until the final solution is reached (Wang Y. et al 

2010), (Bak S. et al 2017), (Li H. et al 2018), and (4) 

producing an explicit control law ( e.g.  Explicit 

Model Predictive Control (EMPC)) (Bemporad A. et 

al 2002), (Oberdieck R. et al 2017). 

With all these advances in speeding up the 

computation for fast feedback loop control, it is still 

hard for a control system to meet the real-time 

requirement by focusing only on the feedback loop 

itself. Rather the workload unbalancing problem that 

was ignored in previous works needs to be carefully 

addressed. This problem can be particularly important 

when all the data have finally arrived and multiple 

high priority tasks yet to be launched altogether, 

pressuring the system to output its results as soon as 

possible, as explained in a motivating example shown 

in Fig. 1. Here a traffic control system is put in place 

to help alleviate traffic congestion by optimizing the 

traffic signal operation strategy. Observed traffic 

states are utilized as the feedback information, and the 

controller needs to adjust the traffic signals in 

response to the changes in traffic flow. The traffic 

information is received every one or several control 

cycles that can last as long as a few minutes; during 

the time, the controller has to sit idle, waiting for the 
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arrival of traffic data. However, when traffic data 

finally come, the controller is expected to generate the 

optimal signal strategy within just a few milliseconds. 

This huge gap between wait and action times, 

perceived as a load unbalancing problem that prevents 

the control system from achieving its real time goals, 

is addressed in this paper. 

Figure 1: An illustration of the load unbalancing problem. The 
computation of control signal for actuation (act.) has to wait 
for a long period of time (referred as wait.time), until the 
sensors (sen.) sample the current state of the physical system. 
This mechanism forces the workload to be completed over an 
extremely short time (referred as comp. time). 

A straightforward approach to solve this load 

unbalancing problem is to get the workload spread 

over the entire control interval. To be more specific, 

instead of having the controller waste its time idling 

while waiting for the arrival of all the data to make a 

control decision, the system actually cuts down the 

waiting time and acts on the intermediate data/states 

that are available at some specific intervals. Along this 

process, the controller continues to generate sub-

optimal solutions and continues to refine them in the 

next control interval. By the time when all the data 

needed for making a decision in a control cycle are 

finally available, the controller can have a “warm-

start”. As a result, the controller, based on the sub-

optimal solution thus far obtained, is now able to 

quickly complete its computation to generate the 

actual control signal, as shown in Fig. 2. The sampling 

rate, which relates to the number of sampling intervals 

in a control cycle, needs to be carefully selected, as it 

has serious implications on sampling complexity and 

control performance (Haimovich H. et al 2013), 

(Miskowicz M. et al 2014), (Sahoo A. et al 2015), 

(Wu L. et al 2017), (Tzoumas V. et al 2018). To our 

best knowledge, there is no open literature that deals 

with the sampling issues pertaining to workload 

balancing. 

Figure 2: An illustration of the load spreading strategy.  The 
computing component quickly adapts to the change of the 
sampled state and outputs sub-optimal solutions (sub.opt.). In 
this way, the workload to be performed over computing 
periods (red blocks) is distributed to several sample intervals 
(green blocks) in waiting periods (yellow blocks). 

Based on the idea to use the idle time within a 

control cycle to generate sub-optimal output solutions, 

we present the Progressive Output Strategy (PROS) 

(see Fig. 3). PROS has two components: the sampling 

and the computing components. In each control cycle, 

the sampling component adaptively samples the state 

of the plant, after which it triggers computation based 

on the partial information it has already received. The 

computing component updates the estimation of the 

optimal solution and outputs an optimal solution at the 

end of a current control cycle. During the wait time, 

an intermediate solution can be generated along with 

the state changes in the physical processes. In this way, 

instead of completely staying idle, the sampling 

component requests sensing information and activates 

the computing process. By spreading the workload 

throughout the entire control cycle, the amount of time 

needs to be spent on computation at each sampling 

time tends to be small. As a result, one may use a low-

end microcontroller, as opposed to a more expensive 

high-end machine, to achieve the same real-time 

performance. Although there are works dedicated to 

consider both sampling and computing at the same 

time (Tarbouriech S. et al 2016), (Pan Y V. et al 2015), 

(Hans J F. et al 2014), as far as we know, this paper is 

the first attempt to reduce time delay by adopting a 

strategy to spread the workload. 

Figure 3: The framework of PROS. At every sample interval, 
the sampling component contacts the sensors to collect 
measured data. The length of the sample interval is 
determined by the load estimation provided by the computing 
component. The computing component exploits the 
relationship between the previous state and the current state 
to figure out how to warm-start a computation. 

Our specific contributions are summarized as 

follows: 

 A novel problem on how to add load balancing

into real-time feedback control is formulated.

 We present the PROS strategy that can

progressively obtain the optimal control signal in a

control cycle.

 Empirical experiments show that our approach can

reduce the time delay by two orders of magnitude

on average with a low sampling complexity.

2 PROBLEM FORMULATION 



INTELLIGENT AUTOMATION AND SOFT COMPUTING      633 

A physical process can be mathematically 

represented as a seven-tuple 

P=(X,U,ρ,X_0,X_g,T,T_c), where 

X is the set of states, X∈R^n. 

     U is the set of feasible control signals, U∈R^m.  

ρ:X×U→X is the transition function (or dynamic 

function) of the physical system. ρ  can be 

approximated by a linear model; that is, 

x_(t+1)=Ax_t+Bu_t for state vector x_t and input u_t 

at the t^th control cycle. 

 X_0 is the set of initial states, and X_0⊂X.

 X_g is the set of target states, and X_g⊂X.

 T is the control horizon defined as the total

number of control cycles.

 T_c is the time span of one control cycle.

The goal is to determine the best feedback loop

based on the following criteria:

 Minimize the performance loss J_P, where the

performance is defined as a weighted distance

between the target state x_g∈X_g and the current

state x_t∈X. That is,

     
    

 
   

 

                   
     (1) 

where        is the penalizing matrix of the state 

deviation from the reference trajectory, and   
     is the cost matrix for the control signals. 

 Minimize the total time delay    measured as the

total computation time needed to obtain all the

control signals. That is,

     
    

 
   

 

   
    (2) 

where  t 
    is time delay of the control signal during 

the           control cycle.  

According to the classic control theory, a controller 

can be expressed as a quadratic programming if the 

physical system can be approximated by a linear 

model and the cost function is quadratic (  g     ). The 

controller needs to minimize the performance loss, 

taking into account of some constraints (  g , safety) 

applicable to the control signals. That is, the controller 

can be expressed as:  
         

 

 

 
             (3a) 

          (3b) 

where                      is the optimization 

vector; g         ,            ; and   0, 

  0 (positive definite) and they are obtained by 

incorporating              into    in Eq. (1). 

As indicated in Eq. (3), the controller needs to 

receive the measured state    of the system at the end 

of each control cycle. An approximate linear model 

will be applied to predict future states            

based on   , and the controller will minimize the cost 

function that accounts for both the current and 

predicted states. The controller’s output is an optimal 

control sequence over the time span of  t    t       . 
Only the optimal strategy within the interval of 

 t    t        will be implemented in the system. At 

time step t   , the states will be measured again and 

the data collected will be used to calculate the optimal 

solution for the next interval,   t        t    
     , in a rolling horizon fashion. 

Although the rolling horizon style introduced 

above makes the controller more robust against 

external disturbances, it also leads to a load 

unbalancing problem. According to the formulation of 

the feedback loop, the state is measured at the end of 

control cycle    , and the control signal is also 

expected to be obtained at the same time, which 

imposes a heavy workload to the control system. 

3 PROS: PROGRESSIVE OUTPUT STRATEGY 
The PROS framework controls the sampling 

interval, warm-starts the computation, and imposes a 

low workload for the computation of the control signal. 

As shown in Fig. 3, PROS is composed of a 

computing component and a sampling component. 

The computing component outputs intermediate and 

final solutions (the control signal) based on the current 

sampled state. In PROS, computing component needs 

to meet three requirements, namely real-time, 

robustness to interruption, and capability of providing 

workload information to the sampling component. 

Robustness for interruption is imperative because 

there is a possibility that computing may be 

interrupted by the sampling process. 

The sampling component of PROS adaptively sets 

an interval for collecting sensing information from the 

sensors. This component shall be responsible for 

distributing the load during the wait time with a 

minimum number of sampling intervals. To achieve 

this goal, this paper proposes an urgency-triggered 

sampling strategy. Here urgency is defined based on 

the load information provided by the computing 

component and the remaining time in the current 

control cycle. 

3.1 State-oriented Computing Strategy 
The main idea of PROS is to adjust the controller’s 

sampling interval and the computing component’s 

needs to quickly adapt itself to the state changes. In 

light of the parametric active-set algorithm presented 

in qpOASES (Hans J F. et al 2014), which is an 

effective method to solve QP sequentially by 

exploiting the geometrical property (Hans J F. et al 

2014), we herein present the State-Oriented 

Computing Strategy (SOCS).  

To obtain QP(x_t) at current instance x_t, SOCS 

iteratively searches a straight line within the state 

space from its preceding value given as QP(x_(t-1)). 

Since the state of the physical system is viewed as one 

parameter of Eq. (3), the state space shall be treated 

the same as the parameter space. Fig. 4 shows the 

parameter space of a two-dimensional example. 

According to (Hans J F. et al 2014), the parameter 
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space can be divided into multiple regions. In each 

region, the optimal solution to Eq. (3) has an identical 

active set, which is a set of indices of the active 

constraints. It also means that if both the previous 

state and the current state fall into the same region, 

their corresponding optimal solutions have the same 

active set, and thus, no iteration is needed. On the 

other hand, if the two states are located in different 

state regions, several active set changes (iterations) are 

necessary to move from the previous solution to the 

current one. As shown in Fig. 4, we use a trajectory to 

indicate the dynamic change of states. Note that once 

the trajectory crosses the boundary of the state regions, 

it means the active set has been updated, which 

corresponds to one iteration. 

Note that SOCS generates sub-optimal control 

signals along with the change of states (in a straight 

line originated from x_(t-1)), and only the latest 

solution (the path reaches the state x_t) is applied to 

the real physical system. 

        (4a) 

  
       (4b) 

     
       (4c) 

        
                (4d) 

        
               (4e) 

The state and constraint vectors are given as follows: 

              (5a) 

                (5b) 

                (5c) 

where the parameter τ is the step length along the 

parameter change direction, which is determined by 

Eq. (10). We assume that the starting point is a known 

optimal solution U_0^* and λ_0^* (and their 

corresponding optimal active set is A_0^*) of the last 

QP(x_0) and we intend to obtain QP(x_0^new). The 

basic idea of qpOASES is to move from x_0 towards 

x_0^new, and thus from  (U_0^*,λ_0^*) towards 

(U_new^*,λ_new^*), while keeping primal and dual 

feasibility, i.e. optimality, for all the intermediate 

points. 

Figure 4: Paths from one QP to the next across multiple state 
regions: the solid line is the  path created by the controller. 
Sub-optimal solutions are generated along the path, where x_t 

denotes the sampled state within the t^th control cycle. 

Theorem 1: Assume the active set   stays unchanged 

during the state transition from    to      , i     
  0      . Let     be the primal step direction  
and      be the dual step direction; that is, 

             0  (6a) 

       
       

  0   (6b) 

Then we shall have 
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Proof: At every intermediate point, the primal variable 

       
     and the dual variable   have to satisfy the 

     optimality conditions,  KKT condition; therefore,  
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  0This condition is met at , as the solution starts 

from the previous optimal solution. Hence, we have 

(
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That is, 

(
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)  (7d) 

The active set stays unchanged as long as no 

previously inactive constraint becomes active. That is, 

  
                      (8) 

   for some , and no previously active constraint 

   becomes inactive for some . That is, 

  
       0 (9) 

Correspondingly, the maximum possible step length 

     is determined as follows: 

    
    

     
      

        

         
   

  
        

(10a) 

    
         

         
 

     

   
 (10b) 

               
    

     
      (10c) 

In the case that τ_max equals one, the new state 

x_0^new has been reached, and at the same, the 

solution of the new quadratic program QP(x_0^new) 

has been found. In other cases, a constraint needs to be 

relaxed or added to active set A, which limits τ_max 

from reaching 1. Once the active set is updated, the 

procedure repeats, and a new step direction and size 

are obtained. This iteration stops until τ_max is equal 

to one, indicating the solution of QP (x_0^new) has 

been found. 

The detailed algorithm is summarized in Algorithm 

1. The input is the optimal solution (U_(i-1)^*,λ_(i-

1)^*) of the problem at previous control cycle 

QP(x_(i-1)), and x_(i-1) is the system state (i.e. 

problem parameter). According to the optimal solution, 

we can obtain the corresponding optimal active set 

A_(i-1)^* which is a set of the indexes of active 

constraints (constraints that are satisfied with equality). 

The output of the algorithm is the optimal solution and 

the corresponding active set of current control cycle. 
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As SOCS produces a sequence of optimal solutions for 

QPs along the path, it is possible to break from this 

sequence any time and initiate a new path from the 

current iteration towards the next QP. 

3.2 Urgency-triggered Sampling Strategy 

This framework allows the workload of a control 

cycle to distributed to several sampling intervals, and 

it contains the following aspects: 

1) The system samples the system and collects the

data. 

2) The system then breaks the cycle time into a

number of sampling cycles (intervals) that each lasts 

for wait.time. 

3) During each sampling cycle (interval),

computing work can be performed, and the 

intermediate solution, as an approximation of the final 

output, shall be generated at the end of every interval. 

This framework allows the workload of a control 

cycle to distributed to several sampling intervals. 

Let the execution time of the computing component 

be less than or equal to the sample interval length, 

i.e.,exec.time≤wait.time. The intermediate solution

would keep to be primal and it maintains dual 

feasibility, as τ_max converges to 1. According to Eq. 

(10), the primal feasibility is given as: 

   
      

        

         
   

  
        

   

 
          

        
   (11) 

                       

and the dual feasibility is given as: 

   
         

 
     

   

   

  
    

  
   (12) 

       0 

As a result, the most important part of this 

framework is to choose the sample interval length 

wait.time. One simple approach to determine wait.time 

would be directly dividing T_c into a fixed number of 

intervals. To spread the most of the workload across 

the idle time, one idea is to make wait.time as short as 

possible, and avoid a collision between the operations 

of sampling and computing. Actually, by setting 

wait.time to be 

                       (13) 

any potential conflict can be avoided. A coordinated 

sampling and control scheme is summarized in 

Algorithm 2. We first initialize the current active set 

   with the working set     
  obtained from the 

previous control cycle. Then we run       iterations of 

the proposed sampling and computing cooperation 

strategy       times. Here      , the number of 

iterations,  is a constant determined offline,     , 

      
  

         
(14) 

At every iteration, the sensors do not need to 

continuously measure the system, or during every 

control cycle; instead they measure states x_(i|t-1) for 

every wait.time (seconds). After the sensor 

information x_(i|t-1) is obtained, the suboptimal 

control signal U_(i|t-1)^* is derived by running SOCS 

as explained in the previous section. 

In the fixed sampling strategy algorithm, the length 

of wait.time is determined off-line. A two-dimensional 

example is illustrated in Fig. 5. In the applications 

where frequent sampling is allowed, the fixed 

sampling strategy is expected to significantly reduce 

the number of iterations to generate the optimal 

control signal, and thus help improve the real-time 

performance. However, in some cases, sampling, like 

perception-based sampling, can be expensive or time-

consuming. In these applications, the design objective 

is two-fold: minimizing the sampling times, and 

spreading most of the workload across the idle time. 

As shown in Fig. 4, the regions on a state space are 
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geometrically irregular, indicating the active set 

changes may happen regularly. A fixed wait.time, a 

control cycle is divided into equal intervals, would fail 

to achieve both objectives. Rather, an adaptive 

sampling strategy is proposed that the sample interval 

is determined by 

                        (15) 

where f is a strictly monotonically decreasing function 

of est.load, and T_r is the remaining time of the 

current control cycle. One can see from Algorithm 1 

that in the path from current sampled state x_(i-1|t) to 

next one x_(i|t), SOCS will generate a step length 

sequence 

               (16) 

where τ_k,k=1,2, ,K, is the step size from one state 

region to the next. Since the number of iterations K 

can be considered as a workload estimation, a 

reasonable choice of function  f would be 

             
 

 
(17) 

where α is the weight of   .

  According to Eq. (15), if remaining time  is 

     short and the estimated value of future load,  , is 

high, it means there is an urgency to complete the 

         computation and cut down the  to be short. 

It is this reason that this strategy is named as urgency-

triggered sampling strategy, as illustrated in Fig. 6, 

and the algorithm is detailed in Algorithm 3. Different 

         from Algorithm 2,  is adjusted online. 

         is the cumulative spending time, which is 

         the accumulated sum of the  and the 

  execution time of SOCS.  If the remaining time  is 

 less than a predetermined threshold of , the sampling 

           interval   would be set to be . 

Figure 5: Paths from one QP to the next across multiple state 
regions. The dashed line is the path created by SOCS combined 

       with the fixed sampling strategy, where  denotes the  

   sampled state within the  control cycle. The sample interval 
  

 
is fixed to be . 

Figure 6: Paths from one QP to the next across multiple state 
regions. The dashed line shows the path created by applying 
SOCS combined with the urgency-triggered sampling strategy. 
Here      denotes the     sampled state within the     control 

cycle. 

4 SIMULATION  
4.1 Experimental Setup 
To evaluate our methodology on an industrial control 

application, we apply it to a DC servomechanism as 

reported in (Bemporad A. et al 1998). Details of the 

experimental setup are provided in Tab. 1. 

Table 1. Experiment parameters 

Paramete

 rs
 Physical meanings  Values

   Cycle time  0.1 s

   Simulative control horizon
4 s  

 (40 cycles)

  Prediction horizon 
0.3 s  

(3 cycles) 

  Simulation time step 0.01 s 

The SOCS algorithm is implemented in Matlab 

using a qpOASS toolbox (Hans J F. et al 2014). 

Several tests are conducted to investigate the 

behavior of three alternative computing strategies. 
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C1: traditional QP solver with an active set 

strategy. 

C2: traditional QP solver initialized with the 

previous solution. 

C3: state-oriented computing strategy presented in 

Section 3. 

Next, we further combine the above computing 

strategies with different sampling strategies: 

S1: fixed sampling strategy that all the sampling 

intervals are set to be the same. 

S2      : urgency-triggered sampling strategy, 

sampling interval is adaptively determined by the 

estimation of the future load situation and the 

remaining time of the control cycle, as presented in 

Section 3. 

For S1, the time of one control cycle is divided into 

equal intervals, and the duration of an interval is 

determined by the number of samples. According to 

Eq. (13), the sampling interval of S1 should be set to 

the maximum execution time in the tests marked as 

C1-3, which in this case is determined to be 0.01 

(seconds). Accordingly, the fixed sampling interval is 

0.01 (seconds), which also means that the fixed 

sampling times of S1 is 10 (times). Since S2 requires 

the load information be provided in test C3, S2 can 

only be combined with C3. 

4.2 Simulation Results 
The optimization algorithm solving the 

fundamental QP problems of C1, C2, C3 is active-set 

method which can be easily warm-started. It is 

reasonable to use the number of iterations to profile 

the workload at different times. Since the real-time 

constraint applies at the end of each cycle (forced to 

output control signal), the focus is placed on the 

workload in the last sample interval. Fig. 7 depicts the 

number of iterations at each time step for different 

strategies within three randomly selected control 

cycles. 

load unbalancing problem: Strategies C1, C2 and 

C3 only have one computing component, and their 

sampling interval spans the entire control cycle. As 

shown in Fig. 7, all the iterations complete in one time 

step, leading to a load unbalancing problem that may 

cause a large time delay. Although in the cases of C2 

and C3, warm-start from the previous solution is 

possible, their performance improvement is not 

obvious. 

Figure 7: Number of iterations (y-axis) at each time step (x-
axis) during three control cycles following different strategies. 

The dashed lines correspond to the last time step of each 
control cycle. 

Figure 8: Number of samples and the amount of time delay 
(milliseconds) at each control cycle following different 
strategies. 

load spreading: The load unbalancing problem is 

addressed by load spreading. To do this, computing 

components C2 and C3 are combined with different 

sampling strategies S1 and S2. Different from simple 

combinations C2+S1 and C3+S1, C3+S2 (PROS) 

proposed in this paper makes sampling and computing 

components cooperate, and adaptively control the 

sampling interval and computing complexity. As 

shown in Fig. 7, C2+S1 cannot deliver load spreading, 

because its warm-start strategy is based on the 

previous solution which does not take advantage of 

the sampling strategies. In addition, due to the state-

oriented warm-start strategy in C3, C3+S1 and C3+S2 

are capable to spread the partial load to be completed 

during otherwise considered idle time. However, 

C3+S1 relies on the frequent sampling, which may 

cause a large communication delay or add sampling 

complexity. This problem is further investigated in the 

following. 

Table 2: Experiment results 

 Strategies
Avg. Time 

 Delay (ms)

Avg. # 

 Iteration

Avg. # 

 Sampling

C1  8.76  61.92 1 

C2  5.43  31.18 1 

C3 0.54 28.31 1 

C2+S1 5.23 21.43 10 

C3+S1 0.07 2.11 10 

C3+S2 
(PROS) 

0.19 3.87 2.78 

Fig. 8 plots the time delay and the number of 

samplings obtained from applying different strategies 

over 40 control cycles. Here both C3+S1 and C3+S2 

significantly outperform other baseline cases. Also, 

the performance gap between C3+S1 and C3+S2 is 

reasonably small, around 0.12 milliseconds on average. 

However, sampling times of C3+S2 is much less than 

that of C3+S1, 72.25% less on average. This result 

confirms the proposed PROS may achieve near-
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optimal performance with rather low sampling 

complexity.  

The summary of experiment results over 40 control 

cycles are shown in Tab. 2. For Avg. Time Delay and 

Avg. # Iteration, we only evaluated the last sampling 

period of each control cycle. As one can see, C3 

clearly outperforms other competing control 

algorithms in the term of average time delay. By 

combining with the S2, we further reduce the numbers 

of iterations and samplings. Therefore, C3+S2 (PROS) 

achieves small time delay with a reasonable sampling 

complexity. 

5 CONCLUSION 
Observing the impacts of the load unbalancing 

problem on the feedback control loop, we developed a 

cooperative framework, PROS, which coordinates the 

sampling and computing components of a controller to 

spread the load to the entire control cycle. The 

sampling component requests future load condition be 

estimated from the computing component, and it 

determines the sampling interval during one control 

cycle that is used to activate computation of an 

intermediate solution. In this way, the intermediate 

solution progressively approaches to the optimal 

control signal along with changes of the sampled state 

within a control cycle. Experimental results showed 

PROS outperformed the competing strategies by a 

wide margin. The proposed PROS can be extended to 

apply to the feedback control of nonlinear systems.
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