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1 INTRODUCTION 
A search of the literature shows that over the past 

few years (Low & Wang, 2008; Liu & Prior, 2015), 

robot positioning is most commonly implemented by 
triangulation using GPS or Wi-Fi receivers. 

Positioning-enabled mobile devices, equipped by the 
user, also facilitate the trajectory tracking by the robot. 

The Euclidean distance between the user and also the 

robot can be computed for tracking if they are close 
enough together. Besides the positioning, another 

method of tracking uses a variety of sensors. Well-
developed RGD-D sensors (Vetrella, Savvaris & 

Fasano, 2015) are frequently used in robot tracking. 
The images of color and depth offer information such 

as; current distance, posture and body frame, which is 
used for tracking. This greatly reduces the failure rate 

and allows more stable tracking. 

Although the GPS positioning is used mostly by 
commercial available quadrotor drones, it has error 

sources due to environmental interference and safety 
concerns. The development of the GPS independent 

drones has become the center of research in recent 
years. Unlike an RGB-D sensor system a dual-camera 

stereo vision system, which uses two cameras to 

derive and synthesize the depth of the pixels, without 

using infrared depth sensing, and this greatly reduces 
the size and power needed by the sensors. A single 

camera has been used for object tracking in some 
studies (Engel, Sturm & Cremers, 2012; Dang, Pham 

& Pham, 2013; Valenci & Kim, 2018). The system 
has simple hardware architecture but a more 

complicated tracking algorithm, and delivers good 

tracking performance very suitable for the quadrotor 
drones. Single camera image tracking uses a 

foreground recognition method based on a hue shift. 
Images are first converted from the original RGB 

format to the HSV color space, with the hue 
representing the color feature distribution of the object 

to be tracked. The thresholds of saturation and value 

can be adjusted to suit ambient lighting and 
accommodate light changes. 

In this study a tracking method based on a 
Tracking-Learning-Detection (TLD) algorithm 

proposed by Kalal et al. (Kalal, Mikolajczyk & Matas, 
2012) has been used. It combines the tracking, 

detection and an online learning mechanism. A 
description of how the machine vision is introduced 
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into a quadrotor drone controller is also presented. The 

hardware equipment and system architecture will be 
covered in Section 2, which gives a clear description 

of the operational flow. Further details about this 
method are given in Section 3. The methods for the 

quadrotor posture estimation and control are 
introduced in Sections 4 and 5. Experimental results 

are presented in Section 6. 

2 HARDWARE AND SYSTEM ENVIRONMENT 
THE hardware architecture of the quadrotor drone 

autonomous tracking system is comprised of 

computational equipment on the ground-side, and 
communication side and the flight control on the 

drone itself. The posture control and image processing 
are handled by both the communications side on the 

drone and the ground, as shown in Figure 1. The flight 

controller is mainly responsible for computing the 
posture and interpreting throttle commands. The 

current posture of the drone is received and 
transmitted to the ground side. The ground side has a 

set of bi-directional 2.4 GHz radio frequency modules 
and a smartphone. These deal mainly with 

complicated image computation but also compensate 

for the lack of sufficient flight controller 
computational power. 

Figure 1.  Hardware Architecture. 

The hardware used is the Phantom 3 Advanced 
quadrotor drone developed by DJI. The autonomous 

tracking system was implemented by integrating the 
existing quadrotor drone system and the algorithms 

represented in this paper. To integrate resources 

among different platforms, C++ coded image 
processing functions are incorporated into the Android 

system. Figure 2 shows a detailed flow chart of the 
system. 

3 IMAGE TRACKING 
FIGURE 3 shows the image tracking flow chart. 

To ensure the display of the real-time screen input, the 

latest image is loaded from the buffer only at the start 

of a new cycle, the others are being discarded. 
However, this method has limitations in the optical 

flow applications. One condition that needs to be 

satisfied in the optical flow equation is that the 

displacement of the object in nearby frames must be 
small. The optical flow computation might not 

produce good results if too many images are 
discarded. Therefore, it is necessary to compress the 

images as much as possible. In this study the TLD 
algorithm was employed for tracking. It is suitable for 

long term tracking of the object and is not subject to 

the influence of dynamic backgrounds. It also has 
fewer limitations than other algorithms when used in 

the outdoor image tracking. 
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Figure 2. The Flowchart of the Software Processing Established 
on the Ground Station. 
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Figure 3. The Flowchart of the Image Tracking. 

3.1 Tracking-Learning-Detection (TLD) 
The TLD algorithm includes three parts that work 

simultaneously, see Figure 4. These are tracking, 
detection and learning. The tracker estimates the 

moving direction of the object. When the tracker loses 
the position of the object, the detector starts. The 

Learning evaluates the tracking results and online 

learning allows better tracking. The information of the 
object’s dynamic estimation includes the next possible 

position and the moving speed of the object in the 
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picture, which will be extracted as control parameters. 

A frame, generally known as the Region of Interest 
(ROI), will be initiated at the start of the TLD 

algorithm. This frame, including its position, will be 
updated regularly by the TLD algorithm during the 

tracking process. 
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Figure 4. TLD Architecture. 

3.1.1 Optical Flow Learning 
For tracking, the TLD algorithm uses a method that 

is an improvement on the Pyramid, Lucas-Kanade 

Optical Flow method (Bouguet, 2001). The basic 
principle of L-K optical flow is the detection of the 

positional change of each pixel between the nearby 
frames, by the differential method, to obtain the 

direction and velocity of optical flow. Assume pixel 𝑄 

has a displacement between two nearby frames, and 
all pixels 𝑎𝑛 in the neighborhood space also have the 

same displacements, then the optical equation is 

assumed to hold. The intensities of the pixel in the 
three-dimensional coordinates 𝑥 , 𝑦  and time 𝑡 are 

represented as I𝑥, I𝑦 and I𝑡 , respectively. The optical 

flow rates of  𝑉𝑥, 𝑉𝑦of pixel 𝑄  and adjacent points 𝑎𝑛 

should satisfy; 

I𝑥(𝑎𝑛)𝑉𝑥+ I𝑦(𝑎𝑛)𝑉𝑦 = −I𝑡(𝑎𝑛) (1) 

Since there are several pixels in this hypothetical area, 
a set of simultaneous equations can be solved. 

3.1.2 P-N Learning 
The TLD method uses semi-supervised P-N 

learning, in which the detector’s  errors are estimated 
by the P-N experts. The incorrectly classified positives 

and negatives are given separately to the P-expert and 
N-expert for analysis. The P-expert updates false 

negatives to positives and adds them to the training 
sample set. Similarly, the N-expert updates false 

positives to negatives and adds them to the training 

sample set. Figure 5 shows a diagram of the P-N 
learning architecture. 

3.1.3 The Detector 
The tracker proposed in the TLD method is a 

cascaded classifier, see Figure 6. It is structured as 
three sub-classifiers; patch variance, ensemble 

classifier, and nearest neighbor classifier. Since the 

nearest neighbor classifier needs more computation 

resources, it is not suitable for the application and to 
all of the patches. Therefore, the process is divided 

into three sequential stages. The patches are first 
filtered by the patch variance and the ensemble 

classifier. The patches that meet the criteria are fed 
into the nearest neighbor classifier. 

Trai ni ng 

Sampl e

P-N experts

Classifier

Trai ni ng 

Codi ng

Unclassified 

Samples

Classified 

Samples Output the 

Classification 

Results

Learner

 

Figure 5. P-N Learning Architecture. 
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Figure 6. The Flowchart of the Cascade Classifier. 

The purpose of the nearest neighbor classifier is to 
train the object, model 𝑀, which is the set used to 

represent the object and its data in the surrounding 

environment. It is a set of patches that contain 
positives and 𝑃𝑛

+ negatives 𝑃𝑛
−. P

+
 and  𝑃− represents 

the patches of the object and the background, 

respectively. In this method, the spatial similarity of 

two tracking frames is measured with overlap, which 
is defined as the summation of the intersection and 

union of the two tracking frames. The shape of the 
object is represented as patch p. The similarity 

between the two pictures Pi and Pj can be represented 
as shown in Equation (2). 

𝑆(𝑃𝑖 , 𝑃𝑗) = 0.5(NCC(𝑃𝑖 ,𝑃𝑗+1)+ 1), (2) 

where the NCC is the normalized correlation 

coefficient and for patch p and the object model M, 
several quantitative indicators are defined in the P-N 

learning method: 
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1. Similarity with the positive nearest neighbor: 

𝑆+(𝑝,𝑀) = 𝑚𝑎𝑥
𝑝𝑖
+∈𝑀

𝑆(𝑝, 𝑃𝑖
+) (3) 

2. Similarity with the negative nearest neighbor: 

𝑆−(𝑝,𝑀) = 𝑚𝑎𝑥
𝑝𝑖
−∈𝑀

𝑆(𝑝, 𝑃𝑖
−) (4) 

3. Similarity with the positive nearest neighbor 

considering 50% earliest positive patches: 

𝑆50%
+(𝑝,𝑀) = 𝑚𝑎𝑥

𝑝𝑖∈𝑀⋀𝑖<𝑚/2
𝑆(𝑝, 𝑃𝑖

+) (5) 

4. Relative similarity: 

𝑆𝑟 =
𝑆+

𝑆+  + 𝑆−
 (6) 

5. Conservative similarity:  

S𝑐 =
𝑆50%

+

𝑆50%
++ 𝑆−

 (7) 

If 𝑆𝑐(𝑝, 𝑀) > 𝜃𝑁𝑁, where the threshold 𝜃𝑁𝑁 = 0.6 

and its value is the empirical value, then patch 𝑝 is the 

Positive samples of final output by detection. 

3.2 Inverse Perspective Mapping (IPM) 
When the position of the object on a two-

dimensional plane has been obtained, it must be 
mapped onto a three-dimensional space to calculate its 

actual position and distance. This has been achieved in 

this study using the inverse perspective mapping 
method (Muad, et al, 2004). The principle of the IPM 

is shown in Figure 7, where [𝑥𝑐 ,𝑦𝑐 ,𝑧𝑐 ] represents the 

camera’s coordinate system, [ 𝑥𝑔 ,𝑦𝑔 , 𝑧𝑔]  is the 

coordinate system of the earth, f  is the camera’s focal 

length, 𝜃𝑐  is the camera’s forward leaning angle, 𝜑𝑐 is 

the deviation angle of the image plane, Hc    is the 
height of the camera above the ground surface, o is the 

obstacle point on the ground surface, o' is the obstacle 

when o moves a distance d in the direction of 𝑥𝑔 , g is 

the point on the ground surface that has a distance of x 

from the origin of the earth coordinate system, and g' 
is the point where point g moves distance d along the 

direction of 𝑥𝑔 . 

The coordinates of p, which represent the 

coordinates of the pixel on the original image, can be 
obtained from the picture. u represents the position in 

the world coordinate system. The relation between 
them is represented as: 

[

𝑢𝑥
𝑢𝑦
𝑢𝑧
] = [

0
0
𝐻𝑐

] 

+λ [
𝑝𝑥 cos 𝜃𝑐 − 𝑓 cos 𝜑𝑐sin 𝜃𝑐 +𝑝𝑧 sin 𝜑 sin 𝜃𝑐
𝑝𝑥 sin 𝜃𝑐 +𝑓 cos 𝜑𝑐 cos 𝜃𝑐 −𝑝𝑧 sin 𝜑 cos 𝜃𝑐

𝑓 sin 𝜑𝑐 −𝑝𝑧 cos𝜑𝑐

] 

(8) 

where λ is the mapping coefficient in the world 
coordinate system, λ can be obtained when the ground 

coordinate uz is 0. Ground coordinates ux and uy, is the 
distance and width between the object and camera, 

and in the world coordinate system can be obtained as 
seen in Equations (9) and (10). 

𝑢𝑥 = 
𝐻𝑐𝑝𝑥 cos 𝜃𝑐 + (𝑝𝑧sin 𝜑 − 𝑓 cos 𝜑𝑐)(𝐻𝑐 sin 𝜃𝑐)

𝑝𝑧 cos 𝜑𝑐+ 𝑓 sin 𝜑𝑐
 

(9) 

𝑢𝑦 = 

𝐻𝑐𝑝𝑥 sin 𝜃𝑐 − (𝑝𝑧sin 𝜑𝑐− 𝑓 cos𝜑𝑐)(𝐻𝑐 cos 𝜃𝑐)

𝑝𝑧cos 𝜑𝑐+ 𝑓 sin 𝜑𝑐
 

(10) 

Since 𝜑𝑐 is the deviation angle of the image plane, 

which is normally set to 0, the equations are rewritten 
as Equations (11) and (12). 

𝑢𝑥 =
𝐻𝑐𝑝𝑥

𝑝𝑧 cos𝜑𝑐+ 𝑓sin𝜑𝑐
 (11) 

𝑢𝑦 =
𝐻𝑐(𝑓 cos𝜑𝑐−𝑝𝑧𝑓sin𝜑𝑐)

𝑝𝑧 cos𝜑𝑐+𝑓 sin𝜑𝑐
 (12) 

The object’s position in the world coordinate 

system has been obtained and the next question is how 
to control the drone to perform the object tracking? 

Related methods will be covered in the following 

section. 
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Figure 7. The Principle of the IPM. 

4 POSTURE MEASUREMENT AND MODELING 
THE posture control flow chart is shown in Figure 

8. This section deals with the methods of posture 
measurement and coordinate transformation. The 

inertial measurement units, including gyroscope and 
accelerometer are used to generate information on six 

axes. After the Kalman filter has been applied, 
quaternions are used to calculate the current position 

of the drone. 

Input the

 Sensor Value

control parameter adjustment

Calculate the Quadrotor Posture

Calculate the position error

Kalman Filter

 

Figure 8. The Flow Chart of the Posture Control Parameter 
Adjustment. 
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4.1 The Kalman Filter 
The Kalman filter (Ludeman, 2003) is recursive 

and widely used in communications and control 
systems. It is capable of producing an accurate 

estimate of a current state even with noisy 

measurements. The estimate of the previous state and 
current measurement are the only input required. The 

development of the Kalman filter is based on linear 
algebra and the Hidden Markov Model. The basic 

Kalman filter model is shown in Equation (13). 

𝑥𝑘 = 𝑭𝑘𝑥𝑘−1+𝑩𝑘𝑢𝑘+ 𝑤𝑘 (13) 

where 𝑥𝑘 , is the estimate of the current state, 𝑥𝑘−1 is 

the estimate of the previous state, 𝑭𝑘  is the state 

transition matrix, 𝑢𝑘 is the control vector, 𝑩𝑘  is the 

Control-Input Model and 𝑤𝑘  is the input noise. 

Assume the average of 𝑤𝑘  is zero, the covariance 
matrix is 𝑸𝑘  and is under the multivariate normal 

distribution.  Therefore, 

𝑤𝑘~𝑁(0, 𝑸𝑘) (14) 

at the current time is 𝑘, the measurement state is 𝑧𝑘 

and is obtained based on the actual state of 𝑥𝑘. 

                  𝑧𝑘 = 𝑯𝑘𝑥𝑘+ 𝑣𝑘 (15) 

where 𝑯𝑘 is the measurement model, which maps the 

actual state space into the measurement space, 𝑣𝑘  is 

the measurement noise, whose average is assumed to 

be zero? The covariance matrix is 𝑹𝑘  and is under 
normal distribution. Therefore, 

𝑣𝑘~𝑁(0,𝑹𝑘) (16) 

Since the actual state of 𝑥𝑘  is unknown and can 

only be observed through the measurement state of𝑧𝑘, 

the Kalman filter can be represented by two variables; 
𝑥𝑘|𝑘  (Posteriori State Estimate) and 𝑃𝑘|𝑘  (Posteriori 

Error Covariance Matrix). From there, it then 
estimates the current state through the two phases of 

predict and update. An estimate of the current state 
𝑥𝑘|𝑘−1 is obtained from the estimate of the previous 

state, as shown in Equation (17). The current error 
covariance matrix 𝑃𝑘|𝑘−1 is obtained from the previous 

error covariance matrix, as shown in Equation (18).  
Therefore, 𝑥𝑘|𝑘−1 is also referred to as the Priori State 

Estimate and 𝑃𝑘 |𝑘−1 as the Priori Estimate Covariance. 

𝑥𝑘|𝑘−1 = 𝑭𝑘𝑥𝑘−1|𝑘−1+ 𝑩𝑘𝑢𝑘 (17) 

𝑃𝑘 |𝑘−1= 𝑭𝑘𝑃𝑘−1|𝑘−1𝑭𝑘
𝑇+𝑸𝑘 (18) 

The purpose of the updates is to find the 𝐾𝑘 

Optimal Kalman Gain in order to update the Posteriori 

State Estimate and Posteriori Estimate Covariance 
matrix, see (19) through (23). 

�̃�𝑘 = 𝑧𝑘 −𝑯𝑘𝑥𝑘|𝑘−1 (19) 

𝑆𝑘 = 𝑯𝑘𝑃𝑘 |𝑘−1𝑯𝑘
𝑇+𝑹𝑘 (20) 

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝑯𝑘
𝑇𝑆𝑘

−1 (21) 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1+ 𝑲𝑘�̃�𝑘 (22) 

𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝑯𝑘)𝑃𝑘|𝑘−1 (23) 

where �̃�𝑘  is the Measurement Residual and 𝑆𝑘 is the 

Residual Covariance. If initial states  of 𝑥(0|0)  and 

𝑃(0|0)  are defined correctly, then all estimated errors 

will be zero and the covariance matrix will accurately 

reflect the estimated covariance, see (24) through (28). 

𝐸[𝑥𝑘−𝑥𝑘|𝑘] = 𝐸[𝑥𝑘−𝑥𝑘|𝑘−1] = 0 (24) 

𝐸[�̃�𝑘] = 0 (25) 

𝑃𝑘 |𝑘 = 𝑐𝑜𝑣(𝑥𝑘−𝑥𝑘|𝑘) (26) 

𝑃𝑘 |𝑘−1= 𝑐𝑜𝑣(𝑥𝑘−𝑥𝑘|𝑘−1) (27) 

𝑆𝑘= 𝑐𝑜𝑣(�̃�𝑘) (28) 

where 𝐸[𝑎] is the expected value of 𝑎 and 𝑐𝑜𝑣(𝑎) =
𝐸(𝑎𝑎𝑇)𝑇. 

4.2 Definition of Coordinate Systems 
Before computing postures, the ground coordinate 

system and body-fixed coordinate system must be 

defined. The ground coordinate system is made up of 
three orthogonal axes;  𝑥𝑔 , 𝑦𝑔 and 𝑧𝑔 . The body-fixed 

coordinate system is made up of 𝑥𝑏 , 𝑦𝑏  and 𝑧𝑏 . As 

shown in Figure 9 𝜙 , 𝜃 and 𝜓 are the Euler angles 
along the pitch, roll and yaw axes. The detailed 

notations are shown in Table 1. 
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Figure 9.  The System Coordinates of the Quadrotor. 

The detailed definitions of 𝜙 , 𝜃  and 𝜓  are 

summarized in Table 1 below: 

 
 

Table 1.  Defined Posture Angle. 

𝜙 Roll Rotate 𝑥𝑏 −𝜋 ≤ 𝜙 ≤ 𝜋 Counter 

clockw ise 𝜃  Pitch Rotate 𝑦𝑏  −𝜋 ≤ 𝜃 ≤ 𝜋 
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𝜓 Yaw  Rotate 𝑧𝑏  −𝜋 ≤ 𝜓 ≤ 𝜋 Rotation 

 
The first step of the coordinate transformation 

(Castillo, Dzul & Lozano, 2004) is to find the rotation 
matrix for all the Euler angles. As shown in the 

equation below, R𝑥𝑏
𝑥𝑔

, R𝑦𝑏
𝑦𝑔

 and R𝑧𝑏
𝑧𝑔

 are the rotations 

generated by 𝜙, 𝜃 and 𝜓, respectively. The complete 

rotation matrix can be obtained after the completion of 
rotations along the three axes, shown in Equation (29). 

R𝑏
𝑔 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 −𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙− 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+ 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜓𝑆𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙− 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

] (29) 

 

4.3 The Conversion of Quaternions 
Quaterions (Diebel, 2006) are generally used in 

solving the problems of singularities associated with 

the Euler angles and Gimbal lock. Quaternions are 
used here, because it is more convenient and faster to 

retrieve quaternions during frequent posture changes. 

A Quaternion is a four-dimensional complex number, 
which has four parts; 𝑞0 , 𝑞1 , 𝑞2  and 𝑞3 , where 

𝑞0
2+𝑞1

2+𝑞2
2+𝑞3

2=1. Like the rotations of the Euler 

angles, assume that after 𝛼, 𝛽 and 𝑟 times of rotations, 

(cos−1𝛼 ,cos−1𝛽,cos−1𝑟) is equivalent to the rotation 
of 𝜇. The quaternion can be defined as: 

𝑞0= 𝑐𝑜𝑠
𝜇

2
, 𝑞1= 𝛼𝑠𝑖𝑛

𝜇

2

𝑞2= 𝛽𝑠𝑖𝑛
𝜇

2
, 𝑞3= 𝑟𝑠𝑖𝑛

𝜇

2

 (30) 

It can be represented using the Euler angles in 

Equation (31). 

{
 
 
 

 
 
 
𝑠𝑖𝑛𝜃 = 2(𝑞0𝑞2−𝑞3𝑞1)             

𝑡𝑎𝑛𝜓 =
2(𝑞0𝑞3+𝑞1𝑞2)

𝑞0
2+𝑞1

2−𝑞2
2−𝑞3

2

𝑡𝑎𝑛𝜙 =
2(𝑞0𝑞1+𝑞2𝑞3)

𝑞0
2− 𝑞1

2−𝑞2
2+𝑞3

2

 (31) 

The three-axis outputs of the gyroscope are; g𝑥, g𝑦 
and g𝑧 . Therefore, the quaternion is updated in 

Equation (32): 

[

𝑞0̇
𝑞1̇
𝑞2̇
𝑞3̇

] = [

−𝑞1 −𝑞2 −𝑞3
   𝑞0 −𝑞3    𝑞2
   𝑞3   𝑞0 −𝑞1
−𝑞2  𝑞1     𝑞0

][

g𝑥
g𝑦
g𝑧
] (32) 

Assume the initial gyroscope values are; g𝑥 =
g𝑦 = g𝑧 = 0 . Initializations of quaternion are; 

𝑞1= 𝑞2 = −𝑞3= 0, with 𝑞0 = 1 only. The posture of 

the drone can be updated continuously by the 

quaternion iterations. 

5 QUADROTOR DRONE CONTROL 
AS shown in Figure 10, the main function of the 

control system takes place in two stages: The first 

stage involves the stabilization of the posture, and the 
second stage is position control, through which 

autonomous tracking can be achieved. 

Position Control

Posture Control

-
+ Posture 

Control

Angle Errorposture control input

Gyroscope
Posture 

Calculation

Position 
Contorl-

+

 Position Error 
on the Image 

Displacement 
Compensation

Quadrotor

Accelerometer
Displacement 

calculation

Horizontal 
Position Error

Current 
Posture

Image 
Processing

 

Figure 10. The Principle of the Quadrotor Tracking. 

The purpose of the posture control in the first stage 

is to keep the drone’s body as stable as possible by 
compensating the roll angle of ϕ and the pitch angle of 

θ so that the drone can be maintained in a horizontal 

attitude above the ground. The control of yaw angle 𝜓 
is mainly achieved through compensation, in other 

words, the introduction of the position difference of 

the object. Angle errors can be obtained by integrating 
the angular velocities measured by the gyroscope.  

5.1 Position Control and Object Tracking 
The second stage is the drone posture control. The 

error of each parameter is represented by 𝑒  in the 

following, including situations where the drone moves 
at a fixed height, along the surface and during the user 

tracking. After this it is only necessary to handle the 
horizontal movement. The compensation of 𝑒𝑥𝑏, and 

𝑒𝑦𝑏  is carried out with the displacements obtained by 

the double integration of the readings of the 

accelerometer. Although some errors do occur when 
the drone hovers for a long time, tracking is not 

affected in the short term. Tracking errors are mainly 
caused by delays in image processing and the object’s 

position deviation computed from the image tracking 

is regarded as part of the error for which the controller 
can compensate. It is intuitive to carry out the position 

control by changing yaw angle 𝜓 and roll angle 𝜙 in 

the horizontally moving drone. However, if image 
tracking errors of 𝑒𝑥𝑐 and 𝑒𝑦𝑐 , and posture stability 

errors of 𝑒𝑥𝑏 and 𝑒𝑦𝑏  are introduced at the same time, 

it will be harder to adjust the controller parameters and 
it will not be so easy for the controller to achieve 

stability. Therefore, the compensation of yaw angle 𝜓 

is carried out first, before the roll angle 𝜙,  then the 

compensation of the relative position of 𝑥𝑏 follows. 
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In addition to a concern for stability, another 

reason for the drone to change yaw angle 𝜓 instead of 
roll angle 𝜙  is the existence of the obstacles to the 

sides. As shown in Figure 11, if the quadrotor vehicle 

tracks the user by compensating for 𝑒𝑥𝑏  and by 

changing the roll angle 𝜙, it is likely to crash into an 

obstacle. 

Obstacle

User’s Movement

Quadrotor’s Movement

The Quadrotor of view

 

Figure 11. User Tracking by Through Roll Angle ϕ. 

If yaw angle 𝜓 is changed first, the obstacle might 

cause the drone to lose the object and enter the 

hovering state, as shown in Figure 12. This is not an 
ideal result. However, it is better than a crash where 

no provision for the handling of obstacles has been 

made. 

Obstacle

Rotate

View

User's Movement

 

Figure 12. User Tracking by Through Yaw Angle 𝝍. 

5.2 Fuzzy-PID Controller 
The advantages of a PID controller are; easy 

implementation, a low parameter number and stability. 
In cases where a complete mathematical model is not 

available, a PID controller is a fairly practical choice. 
However, when dealing with the dynamically 

changing drone postures, a PID controller with fixed 
parameters may not be good enough. A better solution 

was the Fuzzy-PID controller used in this study. The 

PID parameters are dynamically adjusted through 

fuzzy control to adapt to a more complicated system 

and give better control of the drone posture. (Choi, 
2015; Sato, 1995; Huang & Luo, 2018). 

5.2.1 Fuzzy Control 
Fuzzy control is a three part process . The input 

fuzzy set first has to be determined and then the 
member functions of the input and output must be 

defined. Multiple member functions are needed if 
there is more than one input or output. In this study 

every PID controller used error e and error change 𝑐𝑒 as 

input variables, while the output variable are k𝑝, k 𝑖 and 

k𝑑 Arranging the elements in ascending order gives, the 

fuzzy set NB (Negative Big), NM (Negative Medium), 
NS (Negative Small), ZO (Zero), PS (Positive Small), PM 

(Positive Medium), and PB (Positive Big). 
Figure 13 shows the member functions of the two 

input variables, error e and error change 𝑑𝑒 . The 

normalized input values lie between -1 and 1, which is 
the domain. Any input or output values in applications 

beyond this domain must first be normalized. 

Exceptional handling is needed for the values outside 
the domain. Amplitude limitation is normally applied 

so that the boundaries will be in the shape of a 
trapezoid. Membership function is mainly used to 

describe the fuzzy input or output set. 

 

Figure 13. The Member Functions of the Two Input Variables 

In addition to the member function, we also need to 
define the fuzzy rules. Each output has its fuzzy rules 

corresponding to the input variables, which are used to 
determine the set to which the output belongs and the 

gradient of the membership. Experience gained in 
adjusting the PID controller (the PID controller was 

discussed in the last section) allowed the development 
of the following set of rules. When error e is large and 

error rate 𝑑𝑒 is small, a larger 𝑘𝑝 will be chosen to speed 

up the compensation. When e and error rate 𝑑𝑒 are both 

small, a larger 𝑘𝑖 is chosen to compensate the steady state 

error as much as possible. When e is small but the error 

rate 𝑑𝑒  is large, a relatively large 𝑘𝑑  is chosen to 
suppress the error fluctuation. Once the rules are 

determined, individual fuzzy rule bases can be built for 

each output. The real-time adjustment of the parameters 
can also be achieved through fuzzy control. The Fuzzy 

rule bases used in this paper are shown in Tables 2 - 4. 
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Table 2.  𝒌𝒑 Fuzzy Rule Base. 

 
Table 3.  𝒌𝒊 Fuzzy Rule Base. 

𝑘𝑖 
e 

NB NM NS ZO PS PM PB 

𝑑𝑒 

NB NB NB NM NM NM NS ZO 

NM NB NM NM NM NS ZO PS 

NS NM NM NM NS ZO PS PM 

ZO NM NM NS ZO PS PM PM 

PS NM NS ZO PS PM PM PM 

PM NS ZO PS PM PM PM PB 

PB ZO PS PM PM PM PB PB 

 
 

Table 4. Fuzzy Rule Base 𝒌𝒅. 

𝑘𝑑 
e 

NB NM NS ZO PS PM PB 

𝑑𝑒 

NB 
NS NM NB NB NB NM NS 

NM NS NS NM NM NM NS NS 

NS ZO NS NS NS NS NS ZO 

ZO ZO ZO ZO ZO ZO ZO ZO 

PS ZO PS PS PS PS PS ZO 

PM PS PS PM PM PM PS PS 

PB PS PM PB PB PB PM PS 

 

Lastly, the output is obtained by the defuzzification of 
the results with reference to the member function of 

the output parameters. For the defuzzification, the 
Center Average Defuzzifier, as shown in Equation 

(33), was used where 𝐵′ represents the fussy set, h the 

height of 𝐵′, 𝑝𝑙 the y value of the original center point 

of 𝐵′ and 𝑙 the 𝑙-th gradient of the membership. 

𝑦∗ =
∑ 𝑝𝑙(𝐵𝑙

′)𝑚
𝑙=1

∑ ℎ(𝐵𝑙
′)𝑚

𝑙=1

 
(33) 

The domains of the member functions for the input 

and output are all between -1 and 1 by default. The 
parameters are adjusted gradually during the 

simulation and testing. In the first stage, only the 
fuzzy rules and input-output plots are established. The 

relations between the input and output are defined by 
different curves. Each triangle in the input 

membership function has the same area and height so 

that the output curves can be adjusted easier. Figures 
14 - 16 are the output membership functions. 1:1 direct 

mapping was used to reduce fluctuation of the 

compensation ratio. For 𝑘𝑖, NM and PM are expanded to 
make it easier for the fuzzy controller to recognize the 

nuanced differences between the middle values. With the 

same principle, NB and PB are also expanded to achieve 
more precise suppression of error fluctuation. Figures 5.5 - 

5.7 are the membership functions 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑, and 

their corresponding response curves versus the output. 

X axis is 𝑒 and Y axis is 𝑑𝑒. The vertical axis in the 
3D plot represents the Individual output.  

 

  

(a) Membership Function (b) The Relation between 
the Input and Output 

Figure 14.  𝒌𝒑 Membership Function and the Relation between 

the Input and Output. 

  

(a) Membership Function (b) The Relation between 

the Input and Output 

Figure 15.  𝒌𝒊 Membership Function and the Relation between 
the Input and Output. 

  

(a) Membership Function (b) The Relation between 

the Input and Output 

Figure 16.  𝒌𝒅 Membership Function and the Relation between 
the Input and Output. 

5.2.2 Fuzzy-PID Architecture  
Figure 17 shows the prototype fuzzy controller 

used in this study before the parameter adjustment. 
Blocks A and B in the figure are the fuzzy controller’s 

gains for the input and output. They are used to adjust 
the input and output limits of the Fuzzy-PID 

controller. If the gains are set too high, the gradient of 

membership will always fall in the NS or PS interval. 
With gains that are too small, the gradient of the 

membership might always fall in the NB or PS 
interval. Neither condition is ideal for the controller. 

Appropriate adjustment of parameters is necessary 
during the experiment to obtain better results. 

𝑘𝑝 
e 

NB NM NS ZO PS PM PB 

𝑑𝑒 

NB 
NB NB NB NM NM PS PS 

NM NB NB NM NM NS PS PS 

NS NB NM NM NS ZO PS PM 

ZO NM NM NS ZO PS PM PM 

PS NM NS ZO PS PM PM PB 

PM NS NS PS PM PM PB PB 

PB NS NS PM PM PB PB PB 
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Figure 17. The Prototype of the Fuzzy-PID Controller. 

6 EXPERIMENTAL RESULTS 
THE algorithms used in this study have been 

described in the previous sections. The experimental 

results and final parameters used will be represented 
here and the limitations of the system operation will 

also be described. 

6.1 Image Tracking Experiment 
The TLD and IPM based methods were used for 

tracking in this experiment. A known reference point 
is needed for the IPM initialization. The best initial 

point is set in Figure 18 and a schematic diagram is 
shown in Figure 19. 

 

Figure 18. Setting an Initial Position. 

Quadrotor

User

Depression angle of 
30 degrees

Horizontal distance of 2.9 meters

Height of 

3 meters

 

Figure 19. The IPM Side View of the Initial Position. 

If the user initializes the image at the relative 

position shown in Figure 19, the width of the 

projected picture and actual width are approximately 
320 pixels and 3.2 meters, respectively. The 

proportion between the picture and the ROI size can 
be calculated easily. With this proportion of the 

original ROI size, the object, whether moving closer 
or farther away, will be totally reflected in the TLD 

tracking frames.  

 

Figure 20. Initial TLD Tracking. 

Figure 20 shows the initialization state of the TLD 

algorithm. The object to be tracked is marked 
manually. Figure 21 is the result of continuous 

tracking after the object moves for a certain time. 

Figure 22 shows that the object is not lost even if the 
drone moves and the background are updated. 

 

Figure 21. Continuous Tracking. 
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Figure 22. Background Update. 

6.2 Test of the Kalman Filter 
In this test, the quadrotor is powered on, and when 

the drone is hovering, each of its two Euler angles is 

changed by 90 degrees. The original 6-axis values and 
the output values of the Kalman filter are all taken, 

recorded and plotted using MATLAB, as 
shown in Figure 23 (a-f). 

   

(a) Gyroscope x-axis (b)  Gyroscope y-axis (c) Gyroscope z-axis 

   

(d) Accelerometer x-axis (e) Accelerometer y-axis (f) Accelerometer z-axis 

Figure 23. The Results of the Kalman Filter. 

In Figure 23 (a-f), the Blue line represents the 
original reading of the sensor, and the Red line is the 

output of the Kalman filter. It can be seen that most of 
the ambient noise is filtered out, and the actual angular 

velocity and velocity change are retained. The design 

used in this study is not intended for stunt quadrotor 
drones. The pitch angle of the drone used in this study 

is normally smaller than 30 degrees and in practice 
rarely reaches that angle. Therefore, sudden and large 

angle changes have not been taken into consideration. 
Current filter performance was satisfactory under 

these conditions. 

6.3 Fuzzy-PID Simulation 
This is a MATLAB simulation of the Fuzzy-PID 

controlled sine wave tracking. Figure 24 shows the 
Simulink simulation graph. The input signal is a sine 

wave (Red) with amplitude 1 and 1.5 radian/sec 
frequency. The output displayed is Yellow. For 

parameter choices, the gains for P, I and D is 35, 25 
and 10, respectively. The gains here are not the same 

as 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑, and are used to change the output 

range of the fuzzy PID. The 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 outputs of 

the fuzzy PID are variables and can adapt to large-

scale changes of the angular velocity. 
Figure 25 shows the input signals of the fuzzy 

controller. They are; k𝑝  (Red), k 𝑖  (Yellow) and k𝑑 
(Blue). For the ease of observation, the plots are 

created without gain being added. By comparing this 
to Figure 26, adjustment of the fuzzy PID was made to 

𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 for the sine wave to be seen. 
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Figure 24. The Sine Wave Response of the Fuzzy Controller. 

 

 

Figure 25. The Output of the Fuzzy Controller. 

6.4 Posture Control Test 
In the Fuzzy controller posture control test, Figure 

26 (a-c) shows the errors that occurred in 𝜙, 𝜃 and 𝜓 

during hovering. The error range (marked by the Red 
lines) is ± 2 degrees. The overall error was within 

three degrees.  

6.5 Tracking the System Interface 
The tracking system operational interface was 

implemented as a smartphone APP. On the operational 
interface, shown in Figure 27, the user can choose 

which object to track in Block A. The button in Block 
B is used to switch the current drone operational mode 

between manual control and automatic tracking. 
Buttons C and D are used for manual take-off and 

landing. Button E is used to abort current activity and 

force the drone to hover. 
 

   

(a) Angle Error 𝜙 (b) Angle Error 𝜃 (c) Angle Error 𝜓 
Figure 26. The Hover of the Angle Error. 

 
Figure 27. The User Interface. 

7 CONCLUSION 
THE purpose of this paper was the design of an 

autonomous tracking system for a quadrotor drone 

based on machine vision. The system carries out the 
image processing, quadrotor drone posture estimation 

and drone control. The image processing system, in 
addition to the TLD algorithm for tracking, maps the 

position of the object in 3D space using the IPM 

method to calculate the relative distance between the 
object and the drone body. The Kalman filter was 

applied for posture estimation using the original 
values from the gyroscope and its use effectively 

reduced the amount of the sensor noise. The posture 

estimation was achieved using quaternion 
representation by converting the gyroscope readings 

into three-axis angles of the drone’s coordinate 

system. For the position estimation, the displacement 
of the drone was calculated using the accelerometers 

only. Steady hovering of the drone was not possible 
due to the existence of small errors; however, it was 

capable of fulfilling a tracking mission. The fuzzy-
PID control was used for compensation and the 

problems of difficult parameter adjustment and the 

adaptability was solved through posture control. The 
portable ground control terminal was implemented as 

a smartphone APP, and the smartphone and remote 
controller being linked by a transmission channel. The 

user can launch the autonomous tracking system 
proposed in this paper through simple interaction. 
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