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1 INTRODUCTION 
SWARM robots is a highly popular robotics 

system that is composed of a group of interacting 

intelligent robots. The system takes advantage of the 
cooperation among individuals in a swarm in solving a 

particular task. Swarm robotics is influenced from bio-
inspired algorithms such as the Particle Swarm 

Optimization (PSO). A common optimization task for 

swarm robots is the search and rescue problem where 
a swarm is deployed to find the global best (victims) 

and the performance is measured based on how fast 
the global best is discovered. A popular derivation of 

the PSO algorithm for swarm robots is called the 
Robotic Darwinian PSO (RDPSO).   

The main aim of the RDPSO algorithm is to 

improve the efficiency of PSO-based algorithm to 
allow search to take place at a faster rate. The RDPSO 

extends the PSO algorithm using evolution to reduce 
overlapping search area so the robots move away from 

provincial (local) optima. Despite the significance of 
the RDPSO algorithm for multi-robot exploration, 

there remain important gaps for the searching 
capabilities such as premature and slow convergence 

in finding global best, and collisions between robots 

(Couceiro et al., 2014; Dadgar et al., 2017; Kumar et 
al., 2017; Sanchez et al., 2018). The quantum 

computing theory has several advantages that can 

improve the searching capabilities of these PSO-based 
algorithms.  

The quantum-based PSO (QPSO) such as the 
derivation based on the delta potential well model of 

PSO (Sun et al., 2004 (June)) introduced wave 
function to represent quantum behavior in PSO-based 

algorithm. The algorithm has shown improved 
convergence speed and solution accuracy in 

continuous optimization problems. Two recent works 

adopted the method and showed improvement in 
global search ability for particles in optimal power 

flow problem (Yuan et al., 2015) and solved particle 
distribution and localization (Zuo et al., 2018). 

However, these works are particle-based and not 
robot-based. One robot-based work implemented 

QPSO to solve robot path selection (Tokgo & Li, 

2014) however the work focused in free environment 
(no obstacles) and as such not suitable in search and 

rescue simulations.  
In this paper, we introduce the Quantum Robot 

Darwinian PSO (QRDPSO) algorithm to optimize 
swarm robot behavior in search and rescue simulation. 

We show how the algorithm is formed by extending 

main RDPSO parameters representing quantum 
behavior in the form of wave function. To show 

robustness of the algorithm, we examine the global 
best convergence and robot collision occurrences for 

different quantities of robots in a MATLAB 
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simulation. The experimental results show the 

QRDPSO is more efficient, stable and faster to reach 
optimal solution in comparison to the RDPSO 

algorithm.  
The paper is structured as follows. In the next 

section, we present the literature review of the work. 
In section 3, we propose a method of parameters 

control for the QRDPSO algorithm. Experiment 

procedures are described in Section 4. Section 5 
discusses the experiment results and the paper is 

concluded in Section 6. 

2 RELATED WORK 
THIS section presents the technical background of 

the PSO approach. In this review, we analyze the 
mathematical models and show how they work to 

optimize the search and obstacle avoidance in a swarm 

system. We begin by reviewing the traditional PSO, 
followed by the RDPSO and finally the QPSO. 

2.1 Classical PSO 
The PSO (Kennedy & Eberhart, 1995) is an 

optimization algorithm which models a set of potential 
problem solutions as a swarm of particles moving 

about in a virtual search space. Most importantly, the 

PSO contains particles that search for global optima. 
Each of the particle has position 𝑥𝑛[𝑡 + 1] and 

velocity 𝑣𝑛[𝑡 + 1], which depends on several vectors, 

the position 𝑥𝑛[𝑡], velocity 𝑣𝑛[𝑡], local best 𝑋𝑛[𝑡], 
global best 𝐺𝑛[𝑡], and the performance 

vector 𝐹(𝑥𝑛(𝑡)). The path of the particle is measured 
following Dadgar et al. (2016):  

 

𝑣𝑛[𝑡 + 1] =  𝑊𝑉𝑛[𝑡] +
 𝑐1𝑟1(𝑔𝑛

~[𝑡] − 𝑥𝑛[𝑡]) +
𝑐2𝑟2(𝑥𝑛

~[𝑡] − 𝑥𝑛[𝑡])     
(1) 

 

𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1]    (2) 

 
The trend to adopt the PSO in solving swarm 

searching is majorly due to the ease of implementation 
where only few parameters require adjustment. 

However, the approach poses several disadvantages 
such as the inability to work out the problems of 

scattering and optimization, premature convergence 

and suffers from partial optimism causing inexact 
regulation of speed and direction (Cai et al., 2013). 

These limitations mean the PSO algorithm will work 
in some problem to get optimized solution but fail in 

others and get sub-optimal solutions. For this reason, 
the RDPSO as an enhancement of PSO offers 

solutions for robots to escape local optima.  

2.2 Extension to RDPSO 
The RDPSO have been a popular choice after a 

report took note it is faster and more accurately 
converges than other optimization approaches  in 

finding optimal solutions (Couceiro et al., 2014). In 

terms of equation, the RDPSO has the same 

coefficients as the PSO but introduces new 
coefficients for static and dynamic obstacle avoidance. 

The use of robots (instead of particles) means that 
each robot can have obstacle sensor with a detection 

radius 𝑟𝑠 and a sensing function 𝑔(𝑥𝑛[𝑡]) defined upon 

sensor data collection (Nakisa et al., 2015). Hence, the 
equation (1) of velocity is extended as follows: 

 
𝑣𝑛[𝑡 + 1] =  𝑊𝑉𝑛[𝑡] +
 𝑐1𝑟1(𝑔𝑛

~[𝑡] − 𝑥𝑛[𝑡]) +
𝑐2𝑟2(𝑥𝑛

~[𝑡] − 𝑥𝑛[𝑡]) −

𝑐3𝑟3 (𝑥𝑛
�̃�[𝑡] − 𝑥𝑛[𝑡])     

(3) 

 
The 𝑐3 and 𝑟3 from (3) are the obstacle’s capability 

weight and random, and 𝑥𝑛
�̃�[𝑡] is the position of robot 

𝑛 which optimizes the increasing or decreasing of the 

monotonic and positive sensing function for solution 
convergence (Cecconi & Campenni, 2010). The 

advantages of the RDPSO are that it is adaptable to 
huge population of robots, include parameters of the 

real surroundings for obstacle avoidance and observe 
faster and accurate convergence compared to other 

approaches. Nevertheless, collision between robots is 
still an issue (Couceiro et al., 2013 (June)) and the 

reviewer of modern heuristic algorithms can find more 

comprehensive algorithms that can reach the global 
best in a shorter time. This inspired supplanting the 

PSO with more sophisticated approach such as the 
quantum-behaving particles (QPSO). 

2.3 Quantum Delta Potential Well Model of 
PSO (Quantum-behaved PSO) 

The QPSO describes the state of particles, which 
design allows potential for better global search ability. 

In quantum space-time, the quantum state of a particle 
is shown by the wave function Ψ(�̅�, 𝑡) rather than 

position �̅� and velocity �̅�. This is due to the dynamism 

of the particles’ behaviors, which is developed in 

different direction from that in PSO, that the exact 
values of �̅� and �̅� cannot be determined. We can only 

assume the probability of particle 𝑠 showing up in 

position �̅� from the partial differential equation 

|Ψ(�̅�, 𝑡)|2 which depends upon the potential field in 

which the particle lies (Sun et al., 2004 (December)):  
 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗

±  𝛼|𝑋𝑖,𝑛
𝑗

− 𝑝𝑛
𝑗 | ln(

1

𝑢
𝑖,𝑛+1

𝑗 ) (4) 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗

±  𝛼|𝑋𝑖,𝑛
𝑗

− 𝐶𝑛
𝑗 | ln(

1

𝑢
𝑖,𝑛+1

𝑗 ) 
  

(5) 

 

In (4) and (5), 𝐶 is the m best positions vector and 

𝑛 is defined as the number of iterations. 𝑗 is the 

component of the position of particle 𝑖 where 𝑗 𝑡ℎ(1 ≤
𝑗 ≤ 𝑁) for the particle 𝑖(1 ≤ 𝑖 ≤ 𝑀) at the (𝑛 + 1) 

position, where 𝑁 is space dimensions and 𝑀 refers to 
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number of particles. 𝑃𝑛
𝑗 is the centre of the 𝑁-

dimension Hilbert space with a δ potential well. It is 

the best previous position, the position giving the best 
objective function value of fitness value, of the 

particle 𝑖 (also refers to as Personal Best). 

 
𝑝𝑖,𝑗 = 𝜑. 𝑝𝑖,𝑗(𝑡) + (1 − 𝜑). 𝐺𝑗(𝑡)    (6) 

 
In (6), 𝐺(𝑡) = (𝐺1(𝑡), (𝐺2(𝑡), …, (𝐺𝐷(𝑡)) describes 

the optimal position vector of the group’s particle in 

space with dimension 𝐷 (also refers to as Global 
Best). The 𝜑 refers to population size, 𝑝𝑖,𝑗 is the local 

attractor of each particle, and 𝜇 is a uniformly 

distributed random number between 0 and 1 (Sun et 
al., 2011). (6) can be rewritten as:  

 
𝑝𝑖,𝑗(𝑡 + 1) = 𝐺𝑗(𝑡) + 𝜑.(𝑝𝑖,𝑗(t)−𝐺𝑗(𝑡)) 

where (1 ≤ 𝑖 ≤ 𝑁,1 ≤ 𝑗 ≤ 𝐷) 
(7) 

 
It can be observed from (4) and (7) that the local 

attractor 𝑝𝑖,𝑗(𝑡 + 1) is associated with the difference 

between the best position in the swarm 𝐺𝑗(𝑡) and the 

best position of the current particle 𝑃𝑖 ,𝑗(𝑡). Its position 

𝑥𝑖,𝑗(𝑡 + 1) is associated with the difference between 

the average positions of current particles 𝑐𝑖(𝑡) and the 

position of the particle itself 𝑥𝑖,𝑗(𝑡). 

The usage of these position vectors  ensure stable 

convergence between particles which promotes faster 
and stronger searchers. The only problem is, it is not 

directly usable to describe multi-robot applications, 
unlike the RDPSO. In the next section, we show how 

we adopted the QPSO in our proposed PSO derivation 
for swarm robot application.  

3 THE PROPOSED QRDPSO ALGORITHM 
IN this section we show how the proposed 

QRDPSO is derived. The aim of this algorithm is to 
propose a new cost or fitness function in a manner that 

it would guide the robot to the global best while 
avoiding obstacles. Maintaining communication is key 

(Baghaei & Agah, 2013) so when a robot moves from 
any position to the target position, it is able to avoid 

both static and dynamic obstacles in the environment.  

For obstacle avoidance, we assume every robot is 
equipped with sensors suitable for finding obstacle 

location within a finite sensing radius  𝑟𝑠. The sensing 

function 𝑞(𝑥𝑖[𝑡]) is also defined. This function 
describes the data collected from the sensor such as 

the distance from robot to obstacles or detected 

objects from the surrounding.  

3.1 Individual robot-obstacle susceptibility rate  
The trajectories of individual robots passing an 

obstacle are given by the s tandard deviation value for 

the obstacle susceptibility 𝜎(𝑞𝑖(𝑡)) and the standard 

deviation value for the current position of the robot 

𝜎(𝑥𝑖(𝑡)), respectively. At any point, the individual 

robot’s  susceptibility is defined as  follows:   
 

  𝑖𝑠𝑖,𝑗(𝑡) = 𝑖𝑠𝑖,1(𝑡), 𝑖𝑠𝑖,2(𝑡), …, 𝑖𝑠𝑖,𝐷(𝑡)  

 

=
𝜎 (𝑞𝑖,1(𝑡))

𝜎 (𝑥𝑖,1(𝑡))
,
𝜎 (𝑞𝑖,2(𝑡))

𝜎 (𝑥𝑖,2(𝑡))
, …, 

𝜎(𝑞𝑖,𝐷(𝑡))

𝜎(𝑥𝑖,𝐷(𝑡))
(1 ≤ 𝑖 ≤ 𝑁) 

(8) 

 

For optimization, ideally the value of 𝑖𝑠𝑖(𝑡) and 

susceptibility should be directly proportional to each 
other, where (0 < 𝑖𝑠𝑖(𝑡) ≤ 1). If the value of 𝑖𝑠𝑖(𝑡)  

remains 1, it means the robot successfully avoided all 

obstacles. In other words, when the robot 𝑖 

reaches   𝜎(𝑞𝑖,1(𝑡)) 𝜎 (𝑞𝑖,1(𝑡))⁄ = 1, it means the 

robot has changed positions without hitting any 

obstacle.  
The information regarding the obstacle in the 

surrounding would come from range finders such as 
an ultrasonic or laser sensor mounted on the robot. 

These sensors work by transmitting sound waves or 

light and wait for its reflectance (time-of-flight rules). 
Following the speed=distance/time equation, these 

sensors can easily measure the distance between the 
robot and any solid obstacles or objects. To improve 

the detection, we join readings of the sensors on one 
robot during its movement and make comparison of 

the output value with a predefined threshold. Thus, the 
final value of (8) may lie in the interval (0,1) which is 

useful to determine the trajectories of the robots. 

3.2 Communication rate between the robots 
For the swarm robot to maintain communication, 

we describe the connectivity between robots as a link 

matrix 𝐿 = {𝑙𝑖,𝑓} which can be calculated as functions 

of either distance 𝑑𝑚𝑎𝑥 or signal quality 𝑧𝑚𝑖𝑛 or both. 

Together, they form the adjacency matrix 𝐴 = {𝑎𝑖𝑓} 
and can be defined as follows: 

 

𝑎𝑖𝑗 = {
1,𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛
 (9) 

 

Using the hop distances, i.e., the minimum number 
of hops to interact with non-adjacent (far away) 

robots, the zero-valued off-diagonal entries in the 
adjacency matrix can be manipulated to create a multi-

hop connectivity matrix 𝐶 𝑘 = {𝑐𝑖,𝑓
𝑘 }, where the entry 

(𝑖,𝑓) represent the least number of hop count needed 

to  connect nodes 𝑖 and 𝑓. 𝑘 represents the iteration 

which varies with the number of hops the network can 
handle. The calculation of the connectivity matrix can 

be defined as follows: 

 

𝑐𝑖𝑗
𝑘 = {

ℎ, 𝑖 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑓 𝑏𝑦 ℎ ≤ 𝑘 ℎ𝑜𝑝𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 
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In the case where each robot corresponds to a node, 

to overcome the no connectivity between them, the 

desired position of each robot 𝑋𝑖,𝑛+1
𝑗

 must be 

controlled since it influences the link matrix. One way 

to ensure the full connectivity is to force each robot to 
communicate with its nearest neighbor that has not 

chosen it as its nearest neighbor. Since the 

connectivity depends on the distance or signal quality, 
connectivity between the nodes is determined by 

computing the minimum or maximum value of each 
line of the adjacency matrix 𝐴, after excluding zeros 

and the (𝑖,𝑓) pairs previously chosen. Therefore, a 

connectivity function 𝑚(𝑥𝑖(𝑡)) is defined.  

3.3 Individual robot connectivity rate 
The connectivity rate of individual robots within a 

swarm are given by the standard deviation value of the 

connectivity function 𝜎(𝑚 𝑖(𝑡)) and the standard 

deviation value of the current position of the robot 
𝜎(𝑥𝑖(𝑡)), respectively. At any point, the individual 

robot connectivity is defined as  follows: 

 

𝑖𝑚 𝑖,𝑗(𝑡) − (𝑖𝑚𝑖,1(𝑡), 𝑖𝑚𝑖,2(𝑡),… , 𝑖𝑚𝑖,𝐷(𝑡)) 

=
𝜎 (𝑚 𝑖,1(𝑡))

𝜎 (𝑥𝑖,1(𝑡))
,
𝜎 (𝑚 𝑖,2(𝑡))

𝜎 (𝑥𝑖,2(𝑡))
, …, 

𝜎(𝑚𝑖,𝐷(𝑡))

𝜎(𝑥𝑖,𝐷(𝑡))
(1 ≤ 𝑖 ≤ 𝑁) 

(11) 

 

For optimization, ideally the value of 𝑖𝑚 𝑖(𝑡) and 

the susceptibility should be directly proportional to 
each other, where (0 < 𝑖𝑚 𝑖(𝑡) ≤ 1). If the value of 

𝑖𝑚 𝑖(𝑡)  remains 1, it means the swarm of robots 

successfully connected to each other. In other words, 

when the particle 𝑖 reaches  𝜎(𝑚𝑖,1(𝑡)) 𝜎 (𝑥𝑖,1(𝑡))⁄ =

1, it means the robot is in a position where it has 

connectivity with its neighbor.  This sets the 

connectivity constraints of the robots’ movements, 
while at the same time reducing the calculation 

overhead so that the robots can plan their movements 
considering the communication constraint, based on 

one value only. Moreover, this equation is adaptable 

with different communication techniques to permit the 
robots to correspond with one another. 

3.4 Formulating the QRDPSO 
Based on the inertia-weighted parameters for the 

QPSO algorithm mentioned in previous sub-sections, 
if we include parameters 𝑖𝑠𝑖𝑗(𝑡) and 𝑖𝑚 𝑖𝑗(𝑡) into the 

term (𝑋𝑖,𝑛
𝑗

− 𝐶𝑛
𝑗) of (5), we obtain the QRDPSO as  

follows: 
 

𝑋𝑖,𝑛+1
𝑗 (𝑡 + 1) = 𝑃𝑖,𝑛

𝑗
± (𝛼1|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗 |+

𝛼2|𝑋𝑖,𝑛
𝑗

− 𝑖𝑚𝑛
𝑗| + 𝛼3|𝑋𝑖,𝑛

𝑗
−

(12) 

𝑖𝑠𝑛
𝑗 |)ln(

1

𝑢
𝑖,𝑛+1

𝑗 )  

From (12), it can be noticed that the values of 𝑖𝑚 

determines the movement of the robot. Based on the 

mounted sensors’ readings and the communication 
signals’ strength between the robots, each one has the 

option to move in search for a better objective 
function, but that movement is bounded within the 

limitations of these communication constraints. 
However, benefiting from the searching capabilities of 

the quantum-behaving particles in QPSO, 

hypothetically speaking, the robots can avoid any 
local optimal solution and reach the global optimal 

solution within a shorter time.  

3.5 The QRDPSO control architecture design 
We propose a control architecture design for the 

QRDPSO (see Figure 1). In the architecture, the low 

level control (LLC) receives the desired position 

𝑥𝑛
𝑑 [𝑡 + 1] and computes the kinematic model. The 

output of the LLC is represented by the rotation 
𝜃𝑛[𝑡 + 1] and the distance ℎ𝑛[𝑡 + 1]. These outputs 

are useful so the robot can turn to face the target 

(robot-target spatial alignment) and move the distance 
calculated towards it. Whenever a new position is 

calculated, the current robot position 𝑥𝑛[𝑡 + 1] is 

updated. This new position and the corresponding 
value from the objective function 𝑓(𝑥𝑛[𝑡 + 1]) needs 

to be shared between connected robots in the swarm 

so cooperation can emerge.  
We propose that this QRDPSO control architecture 

can be useful for testing with different types of robotic 
systems. If the hardware changes, only the LLC in the 

QRDPSO control architecture needs to be replaced.  

 
 

Figure 1. QRDPSO control architecture  

The following section describes the setup and 

experiment done taking into consideration the scope of 
the search and rescue task and the control parameters 

proposed to compare the performance of QRDPSO 
against its predecessor, the RDPSO.  

4 EXPERIMENT DONE 
IN this section we describe the experiment done to 

condition and determine suitable coefficients for the 
QRDPSO. We then describe the environment setup to 

measure the performance of QRDPSO in comparison 
to its predecessor, the RDPSO. For the experiments, 

we define a swarm of robots in a MATLAB simulator 
running on a high performance workstation Lenovo 
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W530 with Intel iCore7, 2.67GHz processor and 

16GB of RAM. 

4.1 Parameter control 
Conditioning the parameters within the QRDPSO 

is important so we ran a preliminary numerical 

evaluation for the coefficients that controls the 
swarm’s susceptibility to change 𝜇, and the important 

cognitive coefficients  𝛼1, 𝛼2 and 𝛼3 which represent 

the swarm robot’s convergence, trajectory and 

connectivity, respectively.  
Figure 2 shows the behavior of the swarm is 

susceptible to changes 𝜇 when posed with obstacles to 

avoid. When 𝜇=2 (248 positions in 788 iterations), the 

path of the swarm is linear for exploration indicating 
the swarm is stable and converges to an optimal 

solution. When higher 𝜇=2.5 is used (270 positions in 

788 iterations), the path of the swarm is linear at first 
but not stable at later iterations extending the time to 

reach the global solution. When smaller 𝜇=1.5 is used 
(250 positions in 550 iterations), the swarm moves 

slowly and finds it difficult to converge on a solution.  

Consequently, the swarm gets stuck in a sub-optimal 
solution with this value. Thus, the value 𝜇=2 is 

selected for the swarm’s susceptibility to changes  

Figure 3 shows how the parameter 𝛼1 influences 
the speed of convergence for the swarm. When 𝛼1=1.5 

(250 positions in 780 iterations), superior performance 

is observed on the speed of convergence and sub-
optimal solution avoidance. When higher 𝛼1=2 is used 

(260 positions in 780 iterations), the swarm takes 

longer time to find the victim (optimal solution) 
because of unstable movement behavior. The swarm 

did complete the task but not directly. The instability 

of the movement made the swarm to lose the optimal 
path before reaching the victim. When smaller 𝛼1=1 is 

used (280 positions in 850 iterations), the swarm 

shows very instable behavior and lost its way in a sub-
optimal solution. The swarm did not show potential to 

complete its task to reach the victim. Thus, the value 
𝛼1=1.5 is selected to promote the swarm’s speed of 

convergence. 

Figure 4 shows an analysis on how the parameter 
𝛼2 influences the swarm’s trajectory in getting around 

the obstacles. When 𝛼2=2.5, the trajectory behavior is 

worst as the swarm is trapped in sub-optimal solution 
and may not reach the victim. Similarly when 𝛼2=1.5, 

the swarm is moving chaotically and are not able to 

avoid obstacles. Only when 𝛼2=2 the robots in the 

swarm are able to move around the obstacles found in 
its surrounding, then maintain its course to reach the 

victim. The value 𝛼2=2 allows the swarm to 

successfully avoid obstacles in its path thus selected to 
condition the equation proposed.  

Parameter 𝛼3 influences the communication 

behavior of the swarm. With each robot considered as 
a network node, the required position of the robot 

𝑥𝑛[𝑡 + 1] must be controlled since it affects the 

adjacency matrix A. The adjacency matrix depends on 

the maximum interaction range 𝑑𝑚𝑎𝑥 or minimum 

signal quality represented by the link matrix 𝐿 = {𝑙𝑖,𝑗} 

for an N-node network where each entry represents 
the link between the robot 𝑖 and 𝑗 (Li et al., 2015). It is 

important for all robots to stay connected so the 

swarm is cooperative. Nevertheless, the swarm may 
lost communication while performing the search and 

rescue task.  

 

Figure 2. Analysis of swarm trajectory parameter 𝛍 

 

Figure 3. Analysis of swarm convergence parameter 𝜶𝟏  

 

Figure 4. Analysis of swarm obstacle avoidance parameter 𝜶𝟐  
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Losing communication means a particular robot 

has gone out of its communication range.The robot is 
not lost per se and can regain communication if it is 

able to regain the range and pick up signals from 
neighbouring robots. In Figure 5, when 𝛼3=2.5, the 

swarm lost communication before reaching the 

optimal solution. It gets close to the solution but 
cannot reach it. When 𝛼3=1.5, the swarm has unstable 

trajectory and gets stuck in sub-optimal solution. 

When 𝛼3=2 (260 positions in 780 iterations), the 

swarm moves directly towards the optimal solution 
with all the robots maintaining positive connectivity 

between them. Since the success of a search and 
rescue simulation depends highly on the cooperative 

behavior of the swarm, the value 𝛼3=2 is selected. 

 

Figure 5. Analysis of swarm convergence parameter 𝜶𝟑  

4.2 Environment setup 
The aim of the experiment is to measure the 

performance of the proposed QRDPSO in comparison 

to its predecessor, the RDPSO in terms of a swarm’s 

cooperation in searching optimal solution while 
performing obstacle avoidance and maintaining robot 

connectivity. In particular, we observe the 
convergence time and number of robot lost for a 

search and rescue task with the following scopes for 
the experimental setup: 

 The obstacles’ locations are unknown for the 
robots and are randomly spread in the 

environment 

 The shape and the occupied area of each 
obstacle are random and vary between the 

obstacles 

 There is only one target in the environment 

 The location of the target is unknown to the 
robots 

 

 

Figure 6. A 300x300m environment used in experiment with 
random obstacles and a single target (victim) 

Figure 6 shows the environmental setup used for 

the experiment. In Figure 6, the rectangular blocks 
represent random obstacles generated. The triangular 

markers represent robots. The triangular-shaped in 
yellow represents the victim at a random location 

unknown to the robots. The green triangles denote 
robots which successfully located the victim and is 

proceeding towards it. In blue and red, the robots are 

facing some trouble navigating around obstacles  with 
potential to get stuck in local optima. In this example, 

several black triangles are depicted to be far away 
from other robots (on their own at random positions 

respectively). These are the robots that have lost 
communication with the swarm and is moving 

randomly in the hope to regain the communication 

range with the swarm. These robots may get back on 
track towards victim if they are able to receive signals 

from other robots.  

5 RESULTS 
WE present the experiment results in this section. 

We ran both the RDPSO and the QRDPSO algorithms 
following the environment setup described in section 

4.2 and experiment with a group of 5, 10, 15 and 20 

robots in a swarm. Figure 7 shows the results when the 
QRDPSO is compared with the RDPSO in terms of 

speed of convergence in searching the optimal 
solution (victim). The chart shows that when the 

number of population of robots increases (i.e. 5, 10, 15 
and 20), the time needed to find the optimal solution 

while maintaining connectivity and performing 

obstacles avoidance decreases for both QRDPSO and 
RDPSO. However, the robot in the QRDPSO are 

faster than the robots in the RDPSO. For example, in 
the QRDPSO, 5 robots can reach the optimal solution 

in 319 iterations but the RDPSO requires 418 
iterations to reach the victim. The trend is similar with 

10, 15 and 20 robots for the QRDPSO. This means the 
QRDPSO swarm rescues the victim fas ter and 

consumes less energy in doing so.  
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Figure 7. Comparison between the QRDPSO and RDPSO 
convergence performance 

Figure 8 shows the number of robot lost after the 

QRDPSO and the RDPSO swarms completed their 
task. When the number of robot population increases 

(i.e. 5, 10, 15 and 20), the number of robot lost 

increases but the time needed to find the optimal 
solution decreases. When 5 robots are deployed, the 

QRDPSO completed the task in 366 iterations with 2 
lost robots but the RDPSO lost 2 robots in 418 

iterations. When 10 robots are deployed, the QDPSO 
lost 2 robots in 319 iterations but the RDPSO lost 4 

robots in 368 iterations. When 15 robots are deployed, 

the QRDPSO lost 4 robots in 207 iterations but the 
RDPSO lost 6 in 252 iterations. Similarly when 20 

robots are deployed, the QRDPSO lost 6 robots in 180 
iterations but the RDPSO lost 8 robots in 230 

iterations. Robots are lost because they are outside of 
the communication range (not connected to other 

robots). This is due to the performance of the 
objective function, in which no improvement to the 

minimize cost function is observed for both 

algorithms. However, if the lost robots do not get 
trapped in local optima and continue searching, they 

could somehow regain communication and may be 
able to regroup and reach optimal solution.  

 

Figure 8. Comparison between QRDPSO and RDPSO robot lost 
performance 

6 CONCLUSION 
THIS paper shows how the QPSO, a quantum-

based particle behaving algorithm is adopted onto the 
robot-based algorithm the RDPSO, to produce a new 

PSO derivation for swarm robotic application, the 
QRDPSO. In this paper, details on the algorithm 

formulation in particular a new cost or fitness 
function, and parameter conditioning are included. 

The proposed cost or fitness function aims to guide the 

robot swarm to overcome communication constraints 
and avoid getting trapped at obstacles (local optima) 

so the swarm may reach the victim (global best) in 
search and rescue simulations.  

The paper then compared the QDPSO and the 
RDPSO algorithms on a MATLAB simulator. 

Following similar setup for both algorithms, the 

experiment showed that the QRDPSO model has a 
linear convergence of the whole population (robots) 

when reaching the global best solution and showing 
lesser number of robot lost in comparison to the 

RDPSO. In addition, the QRDPSO performs better in 
both speed and energy consumption in comparison to 

the RDPSO.  
Communication is important for the swarm to 

maintain cooperation and we report improvement in 

terms of connectivity among individual robots in the 
QRDPSO swarm over the RDPSO. Nevertheless, 

there is still much to explore in regards to enhancing 
the QRDPSO swarm communication for robot energy 

conservation and prolonged lifetime during search and 
rescue exploration. One particular approach is to look 

into identifying partitions in the wireless sensor 

network for a more coordinated swarm movement 
(Cheng et al., 2015).  
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