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1 INTRODUCTION 
THE performance of the MIMO-OFDM systems 

has improved with the usage of coding schemes, such 

as SFBC (Lee & Williams, 2000). For more than two-

transmitters, the coding schemes exhibit either low 

code-rate or the quasi-orthogonal (QO) with reduced 

diversity-gain. Prior to detection of the data symbols, 

the conventional channel estimation techniques 

utilized in the communication systems are the least-

squares (LS) and the minimum-mean-square-error 

(MMSE). The heuristic approaches for channel 

estimation and equalization, which employ ANNs, 

have also been utilized due to their universal 

approximation and learning ability (Haykin, 2009). As 

a nonlinear classifier, ANNs can be used to form 

nonlinear decision boundaries, and these can estimate 

a nonlinear wireless fading channel for compensation. 

For the MIMO-OFDM systems, the neural-network 

with feedback is reported for reliable channel 

estimation by Seyman & Taspinar (2012), which 

utilizes the backpropagation (BP) algorithm for 

network training. For the space-time coded OFDM 

systems, the channel estimation can be performed 

using a feedforward multilayered perceptron network 

(Seyman & Taspinar, 2013). But, it is also 

advantageous to incorporate the ANNs directly for 

channel equalization, without the explicit requirement 

of the channel estimation (Ye, Li, & Juang, 2018), in 

which, deep neural networks are utilized for signal 

detection, because of their ability to learn the 

characteristics of channels without online training. 

ANNs can be structured as a feedforward (without 

feedback), or recurrent (with feedback loop) (Haykin, 

2009). The presence of the feedback loop in recurrent 

architectures tends to boost the learning capability of 

the network. The most common learning algorithm is 

the gradient-descent-with-momentum (GDM), in 

which, the weight-update is stabilized and accelerated 

using the influence of the previous step on the current 

update (by minimizing the error between the network 

outputs and the desired response) (Haykin, 2009). As 

the weight-update is also dependent on the partial 

derivative of the error function w.r.t. weight vector, 

the resilient-propagation (RProp) algorithm makes the 

weight-update size vary according to the behavior of 

the partial derivative (Riedmiller & Braun, 1993). 

Another category of learning algorithms utilizes the 

standard optimization techniques to minimize the error 

energy as a function of weights, like the Levenberg-

Marquardt (LM) algorithm, which is a modification of 

Gauss-Newton method for the application of a 

nonlinear LS algorithm (Hagan & Menhaj, 1994).  

This research paper addresses an ANN based 

receiver for the 4 1  SFBC-OFDM system using the 

backpropagation algorithm for the network training, 
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Figure 1.  Model for the Underlying 4x1 SFBC-OFDM System. 

which directly recovers the transmitted symbols from 

the received signal. The conventional matched-

filtering (MF) equalization approach, even with a 

perfectly known channel, introduces interference from 

the adjacent symbols, because of QO-codes. The 

feedforward (FFNN) as well as the recurrent (RNN) 

network architectures are explored as intelligent 

receivers for the underlying system, while utilizing 

various learning algorithms for the intended 

equalization. The bit-error-rate (BER) performance 

evaluation of the underlying SFBC-OFDM system is 

also analyzed (through Monte-Carlo simulation) using 

distinct QO-STBC schemes (Hou, Lee, & Park, 2003). 

2 SFBC-OFDM SYSTEM MODEL 
IN an SFBC-OFDM system (as shown in Figure 

1), the serial stream of the binary data is taken as an 

input to the underlying system, and it is first mapped 

to the M-ary quadrature-amplitude-modulation (M-

QAM) to generate information symbols. These 

symbols are collected in a serial-to-parallel converter 

to form a symbol vector as: 
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matrix transposition operator and p is block index. The 

symbol vector is then fed to an SFBC encoder, which 

generates the coded sequence vectors (of length N) for 
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space-frequency diversity. The QO-coded sequence 

vectors, for 4TM   transmitters (Jafarkhani, 2001), 
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X  are then mapped on to 

the N-subcarriers via the inverse-fast-Fourier-

transform (IFFT) to form transmit sequences,
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  , for 

1,2,3,4i  , with 
, ( )i kX p  as the 

thk  symbol of thp  

block of 
thi  transmit sequence, as in (1). Each ( )i px  

is processed to have a cyclic-prefix (CP) of length G, 

which is larger than the delay spread of channel L 

(number of multi-paths) (Kohli & Kapoor, 2016). The 

transmitted SFBC-OFDM signal encounters the time-

varying fading channel, which is assumed to remain 

static for one CP-OFDM block period. Its tap-

coefficients are considered to follow the second-order 

autoregressive (AR2) process (Kohli & Mehra, 2006; 

Singh & Kohli, 2014), as: 

, 1 , 2 , ,( ) ( 1) ( 2) ( )i l i l i l i lh p K h p K h p v p          (2) 

Where, 
, ( )i lh p  is the channel tap-coefficient for the 

thl  path (with 4L  ) while the transmission of the
thp  block through thi  transmitter 

, ( )i lv p  is the 

complex zero-mean white Gaussian noise. The scalar 

coefficients are considered to be 

 1 12 cos 2D DK r f T   and 2

2 DK r  with 

11 2D Dr f T  , Df  is the maximum Doppler shift, 

1Df T  is the fade-rate, 1 ( ) sT N G T   is the CP-OFDM 

symbol block period, and sT  is the M-QAM 

information symbol duration (i.e., equivalent to the 

sampling period). After removal of the CP, the 

received signal ( )ny p  is processed using an N-point 

FFT operator to obtain the symbols as: 

 
4
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    (3) 

where, 
, ( )i kH p  for 0,1,..., 1k N   corresponds to 

the FFT of the channel impulse response between the 
thi  transmitter antenna and receiver; ( )kW p  is the 

zero-mean additive-white-Gaussian-noise with 

variance 2

w . When channel gains between adjacent 

subcarriers are approximately equal i.e.,  
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,4 ,4 1 ,4 2 ,4 3( ) ( ) ( ) ( )i m i m i m i mH p H p H p H p      for 

1,2,3,4i   (Rouquette, Mérigeault, & Gosse, 2002), 

the equation (3) can be expressed as equation (4) or 

equivalently above the equation in a vector/matrix 

form then: 
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The QO-codes retain full code-rate with reduced 

diversity gain. The conventional application of the MF 

for the symbol decoding leads to 
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where (.)H  is the Hermitian transpose operator, and 

the parameter 
2 2

1,4 2,4( ) ( )m mH p H p     

2 2

3,4 4,4( ) ( )m mH p H p  depicts diversity gain, and the 

interference term is indicated by the parameter of 

 * *

1,4 4,4 2,4 3,42Re ( ) ( ) ( ) ( )m m m mH p H p H p H p   . The 

need for appropriate symbol decoding motivates the 

usage of the ANN for intended channel equalization in 

the underlying SFBC-OFDM system. 

3 ANN BASED EQUALIZATION 

 

Figure 2.  ANN based Model for Equalization in the 4x1 SFBC-
OFDM System (Nawaz, Mohsin, & Ikram, 2009). 

The ANNs learn about the fading environment by 

adjusting synaptic weights with the help of training 

the algorithms, in order to provide a desired response 

for a given stimuli. The network paradigm employed 

for equalization in the 4 1  SFBC-OFDM system is 

illustrated in Figure 2, in which, there are 4 

independent NNs for recovering the symbols 

transmitted from each transmitter. During training, the 

complex-valued received symbol 
4 ( )m pY  are split 

into real and imaginary parts, and then fed to the input 

layer of each ANN block, since a neural network 

efficiently processes only real symbols. Thus, each 

network has 8 input and 2 output-nodes (real and 

imaginary), which are combined to form a complex-

valued estimate of the transmitted symbol (Nawaz, 

Mohsin, & Ikram, 2009). The training sample, utilized 

to train the ANN in a supervised manner, is denoted 

as:  4 4
1

( ), ( )
P

m m
p

p X p


Y . Considering 
4

ˆ ( )mX p  as the 

symbol produced at output of the ANN, the error 

signal generated at each output node is: 
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where,  Re x  and  Im x  indicate the real and 

imaginary parts of the complex-valued x respectively. 

Total instantaneous error energy of the network is 

represented as: 

 
2 2

1 2( ) 0.5 ( ) ( )p e p e p      (8) 

For batch learning, the synaptic weights of the 

network are adjusted based on the average error 

energy over the training sample as: 

    2 2

1 2

1 1

1/ ( ) 0.5 / ( ) ( )
P P

av

p p

P p P e p e p 
 

        (9) 

where P is the number of SFBC-OFDM symbol 

blocks utilized as the training sample (epoch). 

3.1 Network Architectures 
THE FFNN (Haykin, 2009) consists of an input 

layer of 8 nodes, two hidden layers of 16 and 8 nodes 

respectively, and an output layer of 2 nodes. For the 

RNN (shown in Figure 3), the number of input and 

output nodes are same as in the FFNN. There is only 

one hidden layer (of 8 neurons) with a feedback loop. 

For both hidden layers, the squashing function is 

sigmoid with values in the range –1 to +1 (hyperbolic 
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tangent function) i.e. ( ) tanh( )Sigf r r ; and for the 

output layer, it is the linear function i.e. ( )Linf r r . 

 

Figure 3.  RNN Architecture (Haykin, 2009). 

3.2 Training Algorithms 
ANN models are trained by assuming the SFBC 

OFDM modulation and fading channels as black 

boxes. The BP algorithm (Haykin, 2009) adjusts the 

weight of connection from thi neuron to thj neuron in 

the thq  layer of the NN, denoted as 
( )q

ji , by applying 

a correction 
( )q

ji , which is proportional to the partial 

derivative 
( )/ q

av ji    (9). The synaptic weights are 

updated as: 

 
( ) ( ) ( )( 1) ( ) ( )q q q

ji ep ji ep ji epn n n     
 (10) 

where, 
epn  is the epoch/iteration index. The 

performance of the GDM (Haykin, 2009), RProp 

(Riedmiller & Braun, 1993) and LM (Hagan & 

Menhaj, 1994) algorithms is compared in terms of the 

bit-error-rate (BER) of the SFBC-OFDM system. For 

the appropriate convergence of the BP algorithm, the 

synaptic weight-adjustment/update for the GDM 

algorithm (Haykin, 2009) is given as: 
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where,   is a momentum constant, and   is learning-

rate, which controls the convergence-rate of the 

algorithm. In order to avoid any problem of the update 

disturbance due to unforeseeable behaviour of the 

derivative term in (11), the RProp algorithm changes 

the weight update size, (which will be 

subtracted/added to the weight based on the sign of 

partial derivative) (Riedmiller & Braun, 1993) as: 
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where 0 1     . If the partial derivative changes 

signs from one epoch to other, the weight-update size 

is decreased by 
; otherwise it is increased by 

. 

The LM algorithm (Hagan, Menhaj, 1994) is a batch 

learning technique that minimizes the average error 

energy by updating the network weights after every 

epoch. The weight updating in the NN training using 

the LM algorithm is: 
1

( ) ( ) ( ) ( ) ( )T T

ep epn n


    θ J θ J θ I J θ ξ  (13) 

where, (1) ( )

11 ,..., ,...
T

q

ji    θ  is the network weigh-

vector,  (1),..., ( ),..., ( )
T

p P  ξ  is the error energy 

vector,   is the regularization parameter, I  is the 

identity matrix; and ( )J θ  is the Jacobian matrix, 

defined as: 
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Once all the examples of the training sample are fed to 

the network, the error energy vector and the Jacobian 

matrix are computed for weight updating. Then the 

error energy vector is again computed with recent 

updated weights. If the resultant new errors are 

alleviated, then the regularization parameter   is 

divided by the factor ; otherwise vice-versa for next 

epoch (Hagan & Menhaj, 1994; Seyman & Taspinar, 

2013). 

4 SIMULATION RESULTS 
FOR the Monte-Carlo simulation under various 

fading scenarios, the fade-rates and different values of 

the signal-to-noise-ratio (SNR), a 4 1  SFBC-OFDM 

system with 4-QAM scheme 64N   and 16G   (CP) 

is considered that corresponds to the work of Ye, Li, 

& Juang, 2018. The QAM symbols are then encoded 

for 4-transmit antennas using the QO-STBC scheme 

(as in Equation 1). The ANN is trained using a 50P   

SFBC-OFDM symbol block as a training sample 

(epoch). Each example in a training sample is first fed 

to the NN for the output and error calculations, which 

are utilized for weight updating after each epoch (after 

averaging errors from all examples in an epoch). The 

received signal and originally transmitted signal for 

the first 50 SFBC-OFDM blocks are treated as 

training data. The input to ANN model is the received 

signal, and the model is trained to reduce (by iterative 

process) the difference between the network output 

and originally transmitted signal (Ye, Li, & Juang, 

2018). 

4.1 BER Performance of ANN Algorithms at 
Different Fade-rate and SNR Values 

For the GDM algorithm, the learning-rate and 

momentum constant are considered to be 0.1   and
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0.01  , respectively, for both the FFNN and RNN. 

For the RProp algorithm, the initial learning rate is 

kept at 0.95   for the FFNN, 0.1   for the RNN, 

with 1.2   and 0.5  . The initial value of the 

regularization parameter in the LM algorithm is set at 

0.95   for the FFNN, 0.1   for RNN, and 

=10. The fade-rate =0.0001 at SNR, =+25dB for 

FFNN, and the BER value in case the LM algorithm is 

0.0017 (as illustrated in Figure 4), which provides 

approximately +1dB performance advantage over the 

MF approach under similar conditions. However, the 

BER =0.0021 for the RProp and the BER =0.0035 for 

the GDM algorithm, which are observed under the 

same scenario. For the RNN, the BER values are 

0.0010, 0.0013, and 0.0021 and for the LM, RProp 

and GDM algorithms respectively, which is in the 

close vicinity to BER =0.001 and for the LS algorithm 

(as shown in Figure 5).  

 

Figure 4.  BER vs. SNR for the FFNN at the Fade-rate of 
= 0.0001. 

 

Figure 5.  The BER vs. the SNR for the RNN at the Fade-rate of 
= 0.0001. 

For the fade-rate to =0.001 and the BER =0.01 and  

in case of the LM algorithm, its performance 

advantage in terms of the SNR is approximately 3dB 

for the FFNN and 4.5dB for the RNN in comparison 

to the MF approach (Rouquette, Mérigeault, & Gosse, 

2002) (as depicted in Figures 6 and 7). The RNN 

provides better symbol recovery with a SNR 

advantage of approximately +1dB for LM, 0.5dB for 

the Rprop and 1.75dB for the GDM algorithms, at the 

BER of =0.01, in comparison to the FFNN. The LS 

algorithm performs approximately +1dB better than 

the LM algorithm in the RNN at a fade-rate of =0.001 

and the BER of =0.01. It is evident from Figure 8 that 

as the fade-rate elevates, the BER performance gets 

deteriorated for all the algorithms, but the 

performance of the RNN supersedes the FFNN. 

However, the LM algorithm apparently outperforms 

the RProp as well as the GDM algorithms by 

providing a lower BER under similar conditions, such 

that the BER(LM) < BER(RProp) < BER(GDM). 

Table 1 illustrates the BER performance of various 

ANN algorithms at different fade-rates for distinct 

values of the SNR. 

 

Figure 6.  The BER vs. SNR for the FFNN at the fade-rate of 
= 0.001. 

 

Figure 7.  The BER vs. the SNR for the RNN at the fade-rate of 
= 0.001. 

 
 



444 KAPOOR & KOHLI 

 

Table 1.  The BER Values of Different ANN Algorithms at Distinct Values of the Fade-rate for the Fixed SNR. 

 
 

4.2 BER Performance for Different Quasi-
orthogonal Codes 

The performance of the ANN based equalisation in 

the SFBC-OFDM system is also analysed using 

various quasi-orthogonal block codes, in which, the 

different distribution of conjugates in the transmission 

matrix results in distinct positions of the correlated 

values (Hou, Lee, & Park, 2003). In this paper, 

different QO-STBC schemes are incorporated in the 

underlying SFBC-OFDM system under similar 

conditions. These schemes are the Jafarkhani code 

(Jafarkhani, 2001), the Tirkkonen–Boariu–Hottinen 

(TBH) code (Tirkkonen, Boariu, & Hottinen, 2000), 

the Jafarkhani with TBH correlated positions code, 

and the TBH with Jafarkhani correlated positions code 

(Hou, Lee, & Park, 2003). 

 

Figure 8.  The BER vs. the Fade-rate at the Fixed SNR of 
= +27.5dB. 

It is quite evident from the results demonstrated in 

Figure 9 that the BER performance of the underlying 

system is approximately similar for the 

aforementioned four QO-STBC codes, while using the 

recurrent neural network architecture with the LM 

training algorithm for equalization. The results are in 

close agreement with the observation reported by Su 

& Xia (2002). Under the typical channel conditions, 

the performance of the TBH based QO-STBC codes 

(Tirkkonen, Boariu, & Hottinen, 2000) is observed to 

be deteriorated (Hou, Lee, & Park, 2003); but in 

combination with the OFDM system, their 

performance improves significantly, as the DFT 

operation at the receiver in the OFDM system 

randomizes the interference/noise terms (Grover, 

Kapoor & Kohli, 2012). However, the QO-STBC 

based codes pioneered by Jafarkhani (Jafarkhani, 

2001) always perform well, with or without the 

OFDM based system configuration, even under the 

adverse fading environment. 

 

Figure 9. The BER for QO-codes at the Fade-rate of = 0.0001. 

5 CONCLUDING REMARKS 
AN ANN based intelligent receiver for a 4 1  

SFBC-OFDM system is explored, which detects the 

transmitted symbols directly from the received signal 

under the slowly time-varying multipath environment. 

It precludes the usage of the channel estimation. The 

simulation results connote that the RNN configuration 

with the LM and RProp algorithms has an edge over 

the FFNN under similar conditions for different fade-
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rate and SNR values, in terms of the lower BER. The 

performance of the RNN with the GDM algorithm is 

found to be better than the FFNN with GDM, but its 

performance is quite inferior to the LM and RProp 

algorithms. The results for the 4 1  SFBC-OFDM 

systems manifest that the recurrent architecture with 

the LM algorithm outperforms all other discussed 

ANN algorithms by exhibiting comparatively a lower 

BER. However, some distinct QO-STBC codes may 

be utilized in underlying the SFBC-OFDM system, 

but the QO-STBC codes proposed by Jafarkhani 

undoubtedly appears to be the best choice. The future 

scope includes the applications of the presented 

channel equalization based intelligent SFBC-OFDM 

technique in the radio-over-fiber transmission systems 

using millimeter waves (Habib et. al., 2017; Liu et. al., 

2017; Zhu et. al., 2013) and under various fading 

scenarios (Kapoor & Kohli, 2015; Kapoor & Kohli, 

2018; Kohli & Lamba, 2018). 
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