
Intelligent Automation And Soft Computing, 2020 
Vol. 26, no. 3, 397–405 
DOI: 10.32604/iasc.2020.013916

deisy.chaves@correounivalle.edu.co CONTACT  Deisy Chaves 

Automated Inspection of Char Morphologies in Colombian Coals using 
Image Analysis 

Deisy Chaves1,5,*, Maria Trujillo1, Edward Garcia2, Juan Barraza2, 
Edward Lester3, Maribel Barajas4, Billy Rodriguez4, Manuel Romero4 
and Laura Fernández-Robles5  
1Multimedia and Computer Vision Group, Universidad del Valle, Cali, Colombia 
2Chemical Engineering School, Universidad del Valle, Cali, Colombia 
3Department of Chemical and Environmental Engineering, University  of Nottingham, Nottingham, United Kingdom 
4Colombian Geological Serv ice, Bogota, Colombia 
5Group for Vision and Intelligent Systems (former VARP), Universidad de León, León, Spain 

KEY WORDS:  Char classification, coal combustion, image processing, machine learning, morphological 

features. 

1 INTRODUCTION 
PULVERISED coal combustion is a two stage 

process (Cloke & Lester, 1994; Rojas & Barraza, 

2007; Stach, 1982; Unsworth, Barratt, & Roberts, 
1991). In the first stage, coal particles devolatilise to 

form char particles. Temperature, residence time, 
heating rate and the type of coal all influence the char 

morphologies that are formed. These char 

morphologies will go on to dictate combustion 
performance in power plants (Kızgut, Bilen, Toroğlu, 

& Barış, 2016; Rojas & Barraza, 2008). This is why 
coal type has a direct impact on combustion 

performance i.e. poor combustion coals form char 
particles with morphologies that have poor 

combustion characteristics. 
Commonly, experts classify char samples manually 

based on the observed morphologies in a char block 

consisting mainly of resin and char (Bailey, Tate, 
Diessel, & Wall, 1990). Sectioned char particles are 

observed through a microscope (with a magnification 

of 320-500x), counted and classified following the 

International Committee for Coal and Organic 

Petrology (ICCP) standard. This standard identifies 
morphological characteristics, such as unfused 

material, wall thickness and porosity of particles 
(Alvarez & Lester, 2001; Lester et al., 2010; Rojas & 

Barraza, 2008). This process is subjective (because it 
is done manually) and time-consuming since it is 

necessary to analyse between 350 and 500 particles 

per char sample (Rojas & Barraza, 2008; T. Wu, 
Lester, & Cloke, 2006).  

As image analysis tools and microscope hardware 
have improved over the last 30 years, automation has 

improved dramatically (Lu & Weng, 2007; Ghiasi-
Freez et al., 2014; Caridade et al., 2015; Juang & Wu, 

2017; Cervantes et al., 2017; Muhammad Burhan 

Khan et al., 2018). Systems now exist that can 
characterise coal automatically based on texture and 

colour features (Alpana & Mohapatra, 2016), predict 
coal ash content (Zhang, Yang, Wang, Dou, & Xia, 

2014), estimate particle size and particle size 
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distribution of fine coal (Igathinathane & Ulusoy, 

2016). In a similar way, the analysis of char particles 
can be automated using image techniques to process 

(i) high-speed videos of char particles during the coal 
combustion (Adamczyk et al., 2016; Riaza, Gibbins, 

& Chalmers, 2017; Schiemann, Vorobiev, & Scherer, 
2015) and (ii) char images taken by a digital camera 

attached to a microscope (Alvarez, Borrego, & 

Menéndez, 1997; Chaves et al., 2013; T. Wu et al., 
2006). In the latter case, the microscopy images are 

post-processed to automatically identify char particles 
and quantify morphological characteristics used for 

assigning a char type using the ICCP decision tree 
(Lester et al., 2010), such as is shown Figure 1. 

 

Figure 1. ICCP classification of coal chars. 

Unfused material is perhaps the most critical 

feature in the ICCP decision tree. However, char 
particles from Colombian coals, do not contain high 

levels of unfused material because the coals 
themselves tend to only have low levels of the types of 

inertinite sub-macerals that create unfused structures. 
e.g. fusinite and macrinite (Sánchez, Rivera, & 

Velásquez, 2011; Vargas et al., 2013).  
We have used a supervised learning approach to 

automatically learn a new classification criterion for 

Colombian chars and evaluate the contribution of the 
unfused material feature in the classification results. 

Particularly, a general classification model is built 
using a set of char particles annotated by an expert. 

First, a feature vector is extracted for each annotated 
char particle using morphological features. Second, a 

classifier is trained with the obtained feature vectors . 

In this work, we build models using three machine 
learning algorithms. Third, classification of new char 

particles is performed by using the built classification 
model. 

In this paper, a comparison of the performance of 
the standard ICCP protocol and automated supervised 

classification models is conducted using coal samples 

from Cundinamarca, a region Colombian in the south 
of Colombia. The hypothesis of this study is focused 

on addressing the issues of characterising chars from 

Colombian coals that have low levels of unfused 
material. A machine learning method may be more 

accurate in classifying chars than following the 
decisions as laid out in the traditional ICCP decision 

tree. Nonetheless, we propose to use more features 
related to the four standard morphological features for 

a more reliable description of the images. We also 

study the contribution of unfused material feature to 
the supervised classification models. 

Section 2 describes the features used to represent 
the char particle images and the machine learning 

algorithms used to build the char classification 
models; Section 3 is focused on experimental 

evaluation; and Section 4 includes final remarks. 

2 MATERIAL AND METHODS 
THE proposed char classification model is built 

using image analysis and supervised learning. Given a 

digital image of chars, a particle segmentation 

algorithm is used to extract particles present in the 
image. Initially, each char particle is processed 

independently by calculating morphological features 
based on shape descriptors. Later on, a machine 

learning algorithm is used for building a classifier. 
The obtained classifier is used to assign a char 

type/group to a particle under analysis, see Figure 2.  

 

Figure 2. Supervised char classification process. 

In this paper, two char groups are considered: (i) 

high reactive char have morphologies characterised 
by high porosity, thin-walls and large superficial area, 

and (ii) low reactive char have morphologies 

characterised by low porosity, thick-walls and small 
superficial area. These morphology char groups were 

defined based on the eight char-types of the ICCP 
decision tree as illustrated in Figure 3.  

2.1 Image Acquisition 
Coal from Cundinamarca was used to produce char 

particles. The proximate, ultimate and petrographic 

analysis of the Cundinamarca coal are presented in 
Table 1. The proximate analysis determines the 

thermal energy released when the coal is burnt and 

predicts how coals will behave when handled and 
burnt. The ultimate analysis determines the amounts 

of the principal chemical elements in a coal sample. 
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The petrographic analysis quantifies the individual 

organic components of coal (macerals).  
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Figure 3. Char morphology groups. High reactive chars: (a) 
Crassisphere; (b) Teniusphere: (c) Tenuinetwork; (d) 
Crassisnetwork. Low reactive chars: (e) Mixed Porous; (f) 
Mixed Dense; (g) Solid; (h) Inertoid. 

In particular, Cundinamarca coal is a bituminous 
coal which is characterised by a high volatile matter 

and sulphur content with a low amount of liptinite 

maceral.  This kind of coal ignites easily and burns 
well to generate electricity in coal-fired power plants. 

However, if burnt improperly it can produce excessive 
air pollution for unburned carbon when, for instance, 

the operating conditions are not optimised. 
 

Table 1.  Proximate, ultimate and petrographic analysis of the 
Cundinamarca coal. 

Prox imate Analy sis (p/p.%, df.)  

Moisture   2.56 

Ash 12.21 

Volatile matter   35.93 

Fix ed carbon (calculated by  difference) 49.30 

High Heating Value (BTU/lb) 12670 

Ultimate Analy sis ( p/p.%, af.)  

Carbon   71.62 

Hy drogen   5.17 

Nitrogen   1.69 

Sulphur    1.45 

Ox y gen (calculated by  difference)    7.86 

Petrographic Analy sis (v ol.%)  

Vitrinite (mmfb)  65.6 

Liptinite (mmfb)   9.7 

Inertinite (mmfb)   24.8 

df: dry free; af: ash free; mmfb: mineral matter free basis  
 

We obtained char particles by the devolatilisation 
process using an entrainment tubular reactor. Coal 

samples with a particle size of -250µm and a 1% v/v 
oxygen gas flow used to allow tar oxidation and avoid 

char particle condensation. Coal particle residence 
times in the reactor were 100ms, 200ms, 300ms at 

800°C, 900°C, 1000°C, respectively with a 10
4°C/s 

heating rate. These conditions are similar to the 

average operating conditions used in industrial 

pulverised-coal combustion systems (H. Wu et al., 
2011).  

Char samples from these experiments were 
mounted in blocks, which are built using char, resin 

and liquid hardener. The char block surface is polished 

with fine polishing clothes using suspensions of 

alumina at 0.5, 0.3 and 0.05 microns. Finally, digital 
images of 1600x1200 pixels are taken with a camera 

coupled to a metallographic microscope and 50x 
magnification lens. The internal 10x objective means 

that particles are magnified by a total of 500x. 

2.2 Morphological Feature Extraction 
The ICCP decision tree and Colombian coal 

characteristics are used as a reference for selecting the 
ten morphological image features listed below 

(Chaves et al., 2013; Lester et al., 2010; Liu, 
Cashman, & Rust, 2015):  

Area is calculated as the number of white colour 
pixels in a binary char image. The binary image 

(representing the area char particle) is obtained by the 

Triangle method (Zack, Rogers, & Latt, 1977), in 
Figure 4b.  

Unfused material is measured as the ratio between 
area unfused material and area char particle. Unfused 

material corresponds to the brightest grey intensities in 
char images —in our case intensity values between 

250 and 255, in Figure 4c. 
Number of pores identified in a char particle image, 

in Figure 4d. 

Porosity is calculated as the ratio between the area 
represented by pores and area char particle. 

Sphericity is the ratio between the minimum and 
the maximum Feret diameters. The minimum and the 

maximum Feret diameters correspond respectively to 
the shortest and the longest distance between any two 

parallel tangents on a char particle, in Figure 4e. If the 

two measurements are identical then sphericity is 
equal to 1. 

Wall thickness is measured in a binary char image 
in three steps. First, lines are drawn from the image 

centre at each direction. For every line, a measure of 
thickness is calculated as the distance of two 

intersected points at the particle edges. Second, the 

histogram of wall thickness is computed (see Figure 
4f). Third, the first, second and third quartiles of wall 

thickness distribution are calculated to represent the 
particle wall thickness. 

Compactness is obtained as the ratio between area 
char particle and bounding rectangle area which 

surrounds the particle, in Figure 4g. 
Solidity is calculated as the ratio area char particle 

and the convex hull area of a particle, in Figure 4h.  

Defect area is calculated as: 

 
(𝐴𝑐ℎ−𝐴𝑟𝑒𝑎)

𝐴𝑟𝑒𝑎
, (1) 

 

where Area is the area char particle and Ach is the 
convex hull area of a particle. 

Roundness is computed as:  

 
4𝐴𝑟𝑒𝑎

𝜋𝐷𝑀𝑎𝑥𝐹𝑒𝑟𝑒𝑡2
 ,  (2) 
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where Area is the area char particle and DMaxFeret is 

the maximum Feret diameter.   
Once selected morphological features are computed, a  

vector is  built by concatenating those features. Table 2 
presents the six feature vector configurations 

evaluated in this work. The first feature vector is 

composed of the features that are used for the ICCP 
decision tree —the unfused material, the porosity, the 

sphericity and the second quartile of the wall thickness 
distribution. In this case, such features are 

automatically extracted from the grey scale char 
particle image.  

The second feature vector includes , in addition to 

the previous ones, the area, the number of pores and 
the first and the third quartiles of the wall thickness 

distribution of particles.  
The third feature vector includes additionally the 

compactness, the solidity, the defect area and the 
roundness of char particles.  

The fourth, fifth and sixth feature vectors are 

equivalent to the first, the second and the third 
configurations respectively, but without considering 

the unfused material feature.  
In this way, we can evaluate two cases: (i) whether, 

when using an automatic inspection system, by adding 
more features to the ones proposed by the ICCP 

results create an improvement; (ii) whether the 
unfused material feature is a robust feature for 

Colombian coals as suggested by the ICCP system. 

2.3 Char Classification 
Given the set of morphological feature vectors 

described previously —in Subsection 2.2— and the 
corresponding label —e.i. high reactive char with 

high porosity, thin-walled and large superficial area 
and low reactive char with low porosity, thick-walled 

and small superficial area— a machine learning 

algorithm is used for building a classifier. In this work 
Support Vector Machine (SVM), Random Forest (RF) 

and Linear Discriminant Analysis (LDA) algorithms 
are evaluated. 

SVM (Boser, Guyon, & Vapnik, 1992) constructs a 
hyperplane or set of hyperplanes in a high or infinite 

dimensional space, which can be used for 

classification, regression or other tasks. Intuitively, a 
good separation between classes is achieved by the 

hyperplane that has the largest distance to the nearest 
training data points of any class —called functional 

margin— since, in general, the larger the margin the 
lower the generalisation error of the classifier. A 

regularisation parameter C controls the tradeoff 

between maximizing the margin and minimizing the 
training error. 

RF (Criminisi, Shotton, & Konukoglu, 2011) is an 
ensemble of decision trees. Each decision tree is 

trained using a subset of the training data. The final 
classifier corresponds to a combination of individual 

trees. RF can be summarised in three steps (Criminisi 
et al., 2011; Tang, Lu, Sun, & Jiang, 2012): (i) choose 

T subsets from training data —T is the number of 

decision trees in the forest; (ii) grow a decision tree, 
with D nodes, for each subset of training data. The 

best split at each decision tree node is selected using a 
subset of features; (iii) classify test data by combining 

the outputs of the T trees.   
LDA (Fisher, 1936) generates a linear combination 

of features that best separates two classes by fitting 

class conditional densities to the dataset and using 
Bayes’ rule. The model fits a Gaussian density to each 

class, assuming that all classes share the same 
covariance matrix.  

3 EXPERIMENTAL SET-UP, RESULTS AND 
DISCUSSION 

EXPERIMENTS were performed on a dataset 

composed of 1600 char images —800 images 
correspond to high reactive chars and 800 images 

correspond to low reactive chars. Morphological 
features presented in Subsection 2.2 were normalised 

in order to avoid the effect of different scales . A five-
fold cross-validation was employed to make the 

method able to generalise to independent data sets . 

The dataset was split into two groups (80% and 20% 
of the data) which were used as training and testing 

sets, respectively.  

 
Table 2.  Feature vector configurations used to build the char classification models. 

Feature  

Vector # 

Features 

Unfused material Porosity Sphericity Wall Thickness Area Num. Pores Compactness Solidity Defect area Roundness 

   Q2 Q1,Q3       

1 X X X X        

2 X X X X X X X     

3 X X X X X X X X X X X 

4  X X X        

5  X X X X X X     

6  X X X X X X X X X X 
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Figure 4. Morphological char features. (a) Char particle image 
in grey scale; (b) Total area of the particle in white colour; (c) 
Unfused material in yellow colour; (d) Identified pores in red 
colour; (e) Illustration of the minimum and maximum Feret 
diameters in red and blue colours respectively; (f) Line 
transects used for calculating wall thickness; (g) Bounding 
rectangle surrounding the particle in red colour; (h) Convex 
hull area of particle in white colour. 

SVM classification models were trained using a 

linear kernel with a regularisation parameter C=1. RF 
classifiers were built employing T=50 trees. Each tree 

was grown to a maximum level size D=6. The number 

of features selected to learn the split function is, at 

each node, equal to 𝜌 = √𝜏 where the number of 
features, 𝜏, depends on the feature vector used to train 

the models.  

Table 3 presents the average accuracy (Acc) values 
and the Area Under the Receiver Operating 

Characteristic Curve values (AUC) obtained for the 

SVM, RF and LDA classifiers built using the six 
vector feature configurations described in Table 2. 

Acc corresponds to the proportion of char particles 
correctly classified with respect to the total number of 

evaluated images (Powers, 2011). AUC corresponds 
to the probability that a classifier ranked a randomly 

chosen “high reactive char” example higher than a 
“low reactive char” one, which indicates how well a 

feature vector can distinguish among classes (Powers, 

2011).  Char classifiers with higher Acc and AUC 
values exhibit better performance.   

Figure 5 shows the Receiver Operating 
Characteristic Curves (ROC) obtained for the SVM, 

RF and LDA classifiers built using the six vector 
feature configurations described in Table 2.  ROC 

corresponds to a plot of the true positive rate against 

the false positive rate when a discrimination threshold 
is varied. The threshold determines when an example 

is positive, “high reactive char”, in our case.  A 
classifier is more accurate, the closer the ROC curve 

follows to the left-hand border and then the top 
border. 

Classification models obtained using the three 

machine learning algorithms present similar Acc and 
AUC results (see Table 3 and Figure 5) for each 

training feature vector suggesting that chosen features 

allow learning stable classifiers. In particular, char 

classification models generated by RF show slightly 
higher accuracy values in comparison to SVM and 

LDA models. 
Experts manually classified the char particle 

images following the ICCP decision tree. An Acc 
value of 0.5656 was achieved since chars from 

Colombian coals are low in unfused material and, as 

mentioned earlier, fused/unfused is the most important 
discriminator in the ICCP decision tree. On the other 

hand, Acc values increased —Acc average between 
0.6281±0.0169 and 0.7438±0.0238 and AUC between 

0.7266 and 0.8420— when the classification models 
are built by supervised algorithms employing the first 

feature vector configuration that is based on the 
features used by the ICCP decision tree. Machine 

learning algorithms are able to connect the 

relationship between particle shape characteristics 
distinguishing better among the high reactive and low 

reactive chars. We therefore conclude that computer 
vision systems can outperform ICCP protocol for 

chars derived from Colombian coals and, by 
extension, other coals that produce low levels of 

unfused material. 

A significant increase in Acc performance was 
observed by taking into account additional shape 

features to learn the char classification models  —the 
second and the third feature vector configurations with 

respect to the first one. Models obtained using the 
second feature vector which included general shape 

features —the number of pores, the area and the first 

and the second quartiles of wall thickness particle 
distribution— improved Acc, obtaining average 

values between 0.7894±0.0092 and 0.8394±0.0163 
with AUC values between 0.8929 and 0.9380. In a 

similar way, introducing shape features that better 
describe particle porosity —compactness, solidity and 

defect area— and particle roundness in the third 
feature vector allowed  more robust models to be built 

with higher Acc values —Acc average between 

0.8506±0.0207 and 0.8730±0.0218 with AUC values 
between 0.9415 and 0.9627. 

Additionally, the effect of unfused material was 
evaluated on the fourth, fifth and sixth feature vector 

configurations which do not include this characteristic. 
The obtained Acc values were similar to the previous 

three configurations. This suggests that the unfused 

material does not have a significant effect on the 
classification of chars from Colombian coals  since it 

does not help to distinguish between high reactive and 
low reactive chars. Therefore, the unfused material 

feature can be discarded while evaluating the 
reactivity of Colombian coals. 

4 CONCLUSIONS 
IN this paper, we present an efficient method for 

the automated inspection of char morphologies in 
Colombian coal samples based on computer vision. 

Char classification models were trained using SVM, 
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Table 3.  Acc average and AUC values by classifier:  ICCP decision tree, SVM, RF, and LDA. Higher values mean better performance.   

Feature  

Vector # 

Classifier 

ICCP tree SVM RF LDA 

Acc Acc ±  AUC Acc. ±  AUC Acc. ±  AUC 

1 0.5656 0.6281 ± 0.0169 0.7266 0.7438 ± 0.0238 0.8420 0.6331 ± 0.0202 0.7300 

2  0.8081 ± 0.0149 0.9007 0.8394 ± 0.0163 0.9380 0.7894 ± 0.0092 0.8929 

3  0.8694 ± 0.0281 0.9526 0.8731 ± 0.0218 0.9627 0.8506 ± 0.0207 0.9415 

4  0.6281 ± 0.0169 0.7263 0.7144 ± 0.0217 0.8017 0.6313 ± 0.0223 0.7304 

5  0.8081 ± 0.0164 0.9002 0.8500 ± 0.0201 0.9467 0.7894 ± 0.0092 0.8896 

6  0.8688 ± 0.0248 0.9520 0.8700 ± 0.0213 0.9599 0.8506 ± 0.0207 0.9414 

 

 
(a) 1st feature vector 

 

(d) 4th feature vector 

 
(b) 2nd feature vector 

 

(e) 5th feature vector 

 
(c) 3rd feature vector (f) 6th feature vector 

Figure 5. ROC curves classification results of SVM in blue, RF in green and LDA in red using different feature vector configurations. 
(a-c) feature configurations which include unfused material; (d-f) feature configurations which do not include unfused material. 
Higher AUC values mean better performance.   
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RF and LDA supervised learning algorithms. 

Chars were classified as “high reactive” and “low 
reactive” particles. Ten morphological features 

including ICCP classification characteristics were 
used to build the classifiers: area, unfused material, 

number of pores, porosity, wall thickness (the first, 
second and third quartiles), sphericity, roundness, 

compactness, solidity and defect area. 

Results showed that the unfused material is not 
the most useful characteristic to begin classification 

for chars from Cundinamarca coal, since 
Cundinamarca coal contains low quantities of the 

inertinite maceral. As a consequence, this coal 
produces low quantities of unfused material in the 

char. This led to low accuracy values using the 
ICCP decision tree. 

On the other hand, supervised learning 

algorithms allow to build robust and precise char 
classification models for Cundinamarca coals. The 

models trained with the four ICCP features —
unfused material, porosity, sphericity and second 

quartile of wall thickness— improved the accuracy 
obtained following the ICCP decision tree with a 

maximum difference of 0.1782 using RF. 

Furthermore, considering related morphological 
features, such as compactness, solidity, defect area 

and roundness measurements exhibit a higher 
accuracy —it is observed for RF a maximum 

improvement of 0.3038 with respect to the ICCP 
decision tree.  

Although SVM, RF and LDA classifiers have a 

similar classification performance, RF showed 
higher accuracy values. The best accuracy of 

0.8731 was obtained with the ten morphological 
features.  
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