
Comput Syst Sci & Eng (2018) 6: 447–455
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Reliable Approximated Number
System with Exact Bounds and
Three-valued Logic
Reeseo Cha1, Wonhong Nam2∗, Jin-Young Choi1

1Department of Computer Science and Engineering, Korea university, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
E-mail: reeseo@korea.ac.kr, choi@formal.korea.ac.kr
2Department of Software, Konkuk university, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea

Many programming languages provides mechanism to guarantee the error ranges of exact numbers and intervals. However, when they are integrated with
unreliable approximated numbers, we cannot rely on the error-ranges anymore. Such unreliable error-ranges may cause serious errors in programs, and
especially in safety critical systems they cost us huge amount of money and/or threaten human’s life. Hence, in this paper, we propose a novel number system
to safely perform arithmetic operations with guaranteed error ranges. In the number system, exact numbers are separated from approximated numbers, and
approximated numbers with strictly guaranteed error-ranges are again separated from unwarranted numbers such as floating-point numbers. A three-valued
logic is also shipped with our number system to appropriately deal with uncertainties due to approximations. A prototype implementation of our number
system in Python is demonstrated. With this module, we can more reliably execute operations on numbers and make judgments on the conditions involving
numbers

Keywords: Formal Methods, Approximated Number System, Exact Bounds, Three-valued Logic

1. INTRODUCTION

A number of modern programming languages and computer al-
gebra systems provide unlimited integers and rational numbers
with symbolic computation for exact arithmetic [1]. Some of
them also support various ways to deal with approximated num-
bers more precisely, such as arbitrary-precision decimal arith-
metic [2]. Moreover, the interval arithmetic [3] is a dedicated
approximation system where error-ranges are strictly guaran-
teed during the arithmetic operations. These systems, however,
are not so well integrated with unreliable approximations such as
IEEE 754 floating-point numbers [4] which are extensively used.
For example, the class methodfrom_float of theFraction
class that is a rational number type in Python [5], maps 0.3 not to
3

10 but to 5404319552844595
18014398509481984. Indeed, this is the fractional represen-

tation of 0.29999999999999999, which is an erroneous result of
approximating intended 0.3 in the IEEE 754 format. Construc-

∗Corresponding author. E-mail: wnam@konkuk.ac.kr

tions of rational numbers from floating-point numbers using this
method let the errors invade from floating-point numbers into
rational numbers. The problem may break the reliability of the
entire rational numbers in the fraction module of Python. For
another example, (3 ** 0.5) ** 2 in Python is evaluated
not to 3 but to 2.9999999999999996, although (

√
3)2 = 3 math-

ematically.
To confidently rely on number systems, we claim that inexact

numbers should be strictly distinguished from exact numbers and
intervals, and that the inexactness invades the world of exactness
minimally and appropriately. Especially, conditional branches
in a program should not be affected inappropriately by uncer-
tainties due to the inexactness of the approximated numbers.

Hence, to appropriately deal with uncertainties, we propose a
novel number system where exact numbers and intervals are
explicitly separated from the inexact approximated numbers
and carefully integrated with them, along with a three-valued
logic system [6]. With this number system, one can safely per-

vol 33 no 6 November 2018 447



RELIABLE APPROXIMATED NUMBER SYSTEM WITH EXACT BOUNDS AND THREE-VALUED LOGIC

form arithmetic operations with guaranteed error ranges, and can
judge conditions without falling into any pitfall.

The rest of this paper is organized as follows. In Section 2,
some important recent studies in closely related areas are briefly
introduced. In Section 3, we define, as the basic components of
our number system, three classes of numbers: exact numbers,
proper intervals, and unwarranted numbers, as shown in Table 1.
Based on these classes, we define a set of arithmetic operations
and coercion rules among these three classes in Section 4. In
Section 5, we define logical operations (e.g., equalities and order
relations) between them using three-valued logic. We present a
prototype implementation in Python in Section 6 and finally we
give a conclusion in Section 7.

Table 1 Three classes of numbers
Class Exactness Guarantee
exact numbers exact location on the

number line
proper intervals approximated possible range
unwarranted numbers approximated none

2. RELATED WORKS

To detour errors resulted from number systems with limited pre-
cision such as IEEE 754 arithmetic [4], many efforts have been
done so far. These efforts can be roughly classified into several
groups according to their goals and directions.

Several studies [1, 7] have aimed for complete liberation from
the limits of precision, under the name of exact arithmetic. Typ-
ical examples of these include virtually unbounded integers and
rational numbers. A number of modern computer algebra sys-
tems and programming languages already have these numeric
data types built-in.

Symbolic computation have also played important role in this
area, guaranteeing that numeric objects can preserve their math-
ematical semantics without any loss during various arithmetic
operations. Mathematica [8] is a typical example of systems
utilizing symbolic computation, whereas MATLAB [9] primar-
ily utilizes numerical analysis. The NumPy [10] also provides
various algebraic methods to symbolically manipulate numbers
and matrices.

Some other studies have aimed for sufficiently fine control
of necessary precision. The GNU Multiple Precision (GMP)
arithmetic library [11] and MPFR [12] based on it are well known
examples of arbitrary precision systems. The Decimal library of
Python also provides a number system whose precision can be
controlled by programmers exquisitely.

The interval arithmetic [3] is another tool to manipulate ap-
proximated numbers within required precision, guaranteeing
that quantities of any errors are completely under control even
when the error diverges. Many aspects of intervals have been
studied, though exact numbers have not been used as the ends
of intervals. Three-valued logic [6] itself has also been studied
intensively, but it has not been used as a tool to control the se-
mantics of intervals which include “unknown position” on the
number line.

To the best of our knowledge, there is no work which com-

bines these techniques together, especially for the sake of for-
mal guarantee where the exactness of numeric operations and
logical operations play important role, e.g., cyber-physical sys-
tems [13, 14, 15]. Our work makes use of the three-valued logic
to ensure the formal correctness of an interval arithmetic system.

3. NUMERIC DATATYPES

In our number system, all the numbers are conceptually catego-
rized into three classes as follows. A number n is:

• an exact number if its location on the number line can be
determined as a point and represented exactly. The class of
exact numbers is actually a representable subset of algebraic
numbers, i.e., countably infinite set of numbers each ele-
ment of which has its unique normal form. In our prototype
implementation, exact numbers consist of all the rational
numbers and some portion of algebraic surd numbers.

• a proper interval if its exact location on the number line is
unknown but its possible range can be strictly bounded as
a line segment and represented exactly. Two distinct ends
of a proper interval should be exact numbers, and can be
either open or closed.

• an unwarranted number if its bounds or possible range of
location cannot be guaranteed. Even when we conceptually
know its bounds, if we cannot represent them exactly with
our exact number, then it also is an unwarranted number.
A number in this class contains only blurred, unreliable
information about its location on the number line.

Mathematically, the set RelNum of all the reliable numbers is
a union of three mutually disjoint sets E , I and U , which denote
the set of exact numbers, intervals and unwarranted numbers,
respectively.

3.1 Exact numbers

From a theoretical point of view, the main goal of our number
system is to provide reliability on the arithmetic exactness and
logical certainty, and hence we are concerned with rather formal
guarantee than usability. For this main goal, any set E ⊂ R is
sufficient as the set of exact numbers for our number system,
provided that:

• E is countably infinite, i.e., |E | = |N|,
• for any r ∈ R, there exists a, b ∈ E such that a ≤ r ∧r ≤ b,

and

• there exists a canonical form in which every element in E
can be represented uniquely. Formally, there exists a posi-
tive natural number n, and a set D ⊆ Zn , and a decidable
n-ary predicate over Zn which determines any n-tuple of
natural numbers is an element of D or not, and an n-ary
bijective constructor function from D to E .

For example, simply the set Z of all integers, {3z +1 | z ∈ Z}, or
even {±10z | z ∈ Z} can be soundly adopted as the set of exact
numbers.

448 computer systems science & engineering



R. CHA ET AL

From a practical point of view, on the other hand, choosing a
set as the set of exact numbers needs a few more considerations
since the arithmetic precision and conservative force for exact-
ness of our number system depends on the set we choose; the
arithmetic precision of our number system strictly depends on
the density of the chosen set of exact numbers. The density of a
countably infinite subset of R is the counterpart of the arithmetic
density (asymptotic density) of a subset of N. For example, the
set Q of all rational numbers is more dense than Z even though
|Q| = |Z|, since there exist infinitely many elements in Q which
are not in Z while any element in Z is also an element of Q.

The closure property of the set of exact numbers also matters
due to the conservative force for exactness. If the chosen set E
of exact numbers is closed under an n-ary arithmetic operation
f on En , then the value of f is always in E regardless of its
operands, conserving its exactness. On the contrary, if E is not
closed under f , then the value of f may be downgraded into a
proper interval or even an unwarranted number, according to its
operands. For instance, suppose that Z is chosen as the set of
exact numbers. In this setting, 5÷3 cannot conserve its exactness
any more even though 5 and 3 are exact numbers, since Z is not
closed under division and 5 ÷ 3 	∈ Z. In this case, the result
has no choice but to be downgraded into an open interval (1, 2),
using integral (i.e., exact) ends. Even when multiplied by 6,
this number cannot revive as an exact number and remains as an
interval, (6, 12). If the chosen set was Q at first, on the contrary,
then this “downgrade” would not happen since 5

1 ÷ 3
1 = 5

3 and
5
3 × 6

1 = 10
1 .

In our previous work [16], the set Q = {n/d | n ∈ Z, d ∈
N+, n⊥d} of all rational numbers was adopted as the set of exact
numbers, where ⊥ denotes co-prime. In this paper, we extend
this set by adding some portion of surd numbers, so-called “i -th
root.” Note that there exist not only irrational surd numbers but
also rational surd numbers (e.g.,

√
4), and that there are irrational

numbers which are not surd (e.g., π). As a result, the set

E =
{

n

d
· i

√
x

y

∣∣∣∣n ∈ Z, d, i, x, y ∈ N+,

(n⊥d) ∧ (x⊥y) ∧ (norm(i, x, y))

}

is adopted as the set of exact numbers in this paper. The char-
acteristic function of this set is actually the constructor of the
canonical form for our exact numbers. The sign of n decides
the sign of the corresponding exact number. The root-index i

cannot be zero since it is a kind of denominator, i.e., i
√

r = r
1
i .

It does not need to be negative since for every positive k and r ,
−k
√

r = k
√

1
r . We do not need to consider r

k
i since it is the same

with
i
√

rk . The radicand x
y does not need to be zero, since if it

is zero then the exact number itself is zero and should have the
form of (0/1) · 1

√
1/1. We do not consider any negative radicand,

since we only deal with real numbers. Finally, norm(i, x, y)

denotes whether i
√

x/y is fully normalized, i.e., there is no ra-
tional number q 	= 1 and positive numbers j, a, b such that
i
√

x/y = q · j
√

a/b. In this paper, we sometimes denote an exact
number e simply as a quintuple 〈n, d, i, x, y〉.

3.2 Proper intervals

We define the set I of all proper intervals based on the set E of
exact numbers as follows:

I = {〈emin, emax, cmin, cmax〉 | emin,

emax ∈ E, cmin, cmax ∈ {,⊥}, emin < emax}
where emin and emax denote the two ends of an interval, and cmin
and cmax denote the closedness of those ends, respectively.

Here, the condition emin < emax ensures that we do not take
degenerate intervals into consideration, since degenerate inter-
vals denote the same concept as exact numbers. This condition
also implies that we do not take empty intervals into consid-
eration, either. The condition emin, emax ∈ E ensures that we
consider neither unbounded intervals nor half-bounded intervals.
Although these empty, unbounded, half-bounded intervals along
with the concept of multiple intervals may also be useful in some
specific examples such as calculating reciprocal of a proper in-
terval containing zero, we have decided to exclude these aspects
of intervals since they are beyond the main contribution of this
work. From now on, whenever the term ‘an interval’ is used
without any modifier, it means a proper interval.

3.3 Unwarranted numbers

Unlike exact numbers and intervals, unwarranted numbers do
not need any fixed canonical form. The set U of unwarranted
numbers is just a set of any numeric element which is not in E
nor in I . “Any numeric element” here means any element of our
set RelNum of all the reliable numbers. In other words, U is the
relative complement of E ∪ I with respect to RelNum.

U = (E ∪ I )�

Owing to this flexible definition of U , RelNum can embrace
any existing foreign numeric data types when implemented in
an existing programming language such as Python.

4. ARITHMETIC OPERATIONS AND TYPE
CONVERSIONS

In this section, we explain arithmetic operations on three classes
defined in Section 3. In addition, we present how foreign
datatypes are converted into our number system and we explain
explicit type conversion of our number system.

4.1 Operations on exact numbers

The set E of exact numbers is closed under multiplication. It
is also nearly closed under division, with one exception that
division by zero is undefined.

For any two exact numbers e1 = 〈n1, d1, i1, x1, y1〉 and e2 =
〈n2, d2, i2, x2, y2〉, e1 + e2 ∈ E if i1 = i2 ∧ x1 = x2 ∧ y1 = y2,
since each of them is in its fully reduced form. For example,
2
√

3 + 7
√

3 = 9
√

3. If at least one of those three components
i , x , and y mismatches between two exact numbers e1 and e2,

vol 33 no 6 November 2018 449



RELIABLE APPROXIMATED NUMBER SYSTEM WITH EXACT BOUNDS AND THREE-VALUED LOGIC

then e1 + e2 should be downgraded to an unwarranted number,
or to an interval if possible. The same goes for the subtraction.

For any exact number e = 〈n, d, i, x, y〉 and for any positive
exact numbers b 	= 1, be ∈ E if e is rational (i.e., i = x =
y = 1). If e is not rational, be should be downgraded to an
unwarranted number, or to an interval if possible.

It is very hard to find a set which is denser than Z and is
closed under addition, subtraction, multiplication, division and
exponentiation at once. We design E to be closed under mul-
tiplication rather than under addition and exponentiation, since
multiplicative closure is easier to implement.

4.2 Operations on intervals and exact numbers

For any elementary arithmetic operation such as addition,
subtraction, multiplication, division and exponentiation, if its
operands are either exact numbers or intervals and at least one
operand is an interval, then the operation is processed using the
rules of the basic interval arithmetic [3]. These rules are basi-
cally operations between the ends of intervals, regarding inclu-
sion of zero and negative numbers as some additional consider-
ations. Hence, these are, in turn, the exact arithmetic described
above since we used exact numbers for the ends of intervals.

The key character of our number system is the fact that “errors
invade.” In this point of view, exact numbers are more recessive
than intervals, which are again more recessive than unwarranted
numbers. If at least one operand is an interval and all the remain-
ing operands are exact numbers, then the result falls back to an
interval. For example, 3 + [2.4, 2.6) is not 5.5 but [5.4, 5.6).

Note that this example does not mean an implicit coercion
happens. In arithmetic operations where every operands are ei-
ther exact numbers or intervals, implicit coercion never happens.
This is a small difference between our number system and the
basic interval arithmetic. In the basic interval arithmetic, the
exact number 3 in the expression 3+[2.4, 2.6) would be implic-
itly coerced into an interval [3, 3] and then would be added to
[2.4, 2.6) using only ‘interval addition.’ In our number system,
we cannot coerce 3 into [3, 3] since we exclude degenerate in-
terval. Instead, we define every combination of an interval and
an exact operand for every binary operations separately.

4.3 Implicit coercions for foreign datatypes

The implicit coercion happens only when at least one operand has
a type other than exact number and interval. For any operand
which is neither an exact number nor an interval, our number
system first tries to convert it into an exact number. In some
programming languages, there exist some data types which can
be regarded as exact numbers. For example, the unbounded
integers long and int in Python can be safely converted into
exact number without loss of their mathematical exactness.

If the operand of concern fails to be converted into an exact
number, then we check whether it can be converted into an inter-
val. For instance, Decimal class in Python is an approximation
with additional information about error-range. Any number of
type Decimal can be safely converted into an interval.

Finally, if the operand cannot be converted into an exact num-

ber or an interval, then the operand is regarded as an unwarranted
number. In this case, all the other operands should be down-
graded to unwarranted numbers. For example, the sum of an
interval [5.4, 5.6) and an IEEE 754 floating-point number 0.8 is
not an interval [6.2, 6.4) but a floating-point number 6.3.

4.4 Explicit type conversions

Our number system basically does not supply any generalized
equipment for explicit type conversions, since most of them only
breaks the reliability of number systems. For example, our num-
ber system prohibits any floating-point number from being con-
verted to an interval or an exact number. This is the main dif-
ference between our number system and the Decimal class in
Python, where a floating-point number can disguise itself as an
exact decimal number.

5. LOGICAL OPERATIONS

In this section, we explain logical operations on three classes
(i.e., exact numbers, proper intervals, and unwarranted num-
bers) described in Section 3. However, since the result of logical
operations on intervals and unwarranted numbers is not always
be decided, we need a three-valued logic to resolve the uncer-
tainty. Hence, we first propose a three-valued logic. Based on
the three-valued logic, we present logical operations between
exact numbers and then logical operations between the rest of
them.

5.1 Three-valued logic

We propose a three-valued logic system, where we can explic-
itly declare that something is uncertain. The main purpose of
the three-valued logic is to resolve the problem that equalities
and order relations involving intervals or unwarranted numbers
cannot always be decided certainly. The set TTV of the three
truth values is defined as follows:

TTV = {True3,Uncertain,False3}
From a set-theoretic point of view, the set TTV clearly has

three distinct elements in it. However, from a philosophical
point of view, this set is different from ordinary sets with three
elements. Note that the valueUncertainmeans not that “This
is neither True3 nor False3,” but that “This is indeed one of
either True3 or False3.” In other words, the Uncertain
is not a completely distinct third value, but a not-yet-decided
possibility to become one of the other two values.

TTV is a supertype of Bool since there exists an injection
from Bool to TTV:

{ �→ True3, ⊥ �→ False3}
which we can use as a coercion operation. Whenever a func-
tion over TTV is applied to a Boolean argument, that Boolean
argument is automatically coerced into TTV by the injection
above.

450 computer systems science & engineering



R. CHA ET AL

An element of TTV, however, is never converted into an el-
ement of Bool implicitly in any case. Any application of a
function over Bool to an element of TTV should be prohib-
ited as a type-error. For example, the ‘if’ clauses in almost all
programming languages should not accept TTV values as their
conditional arguments. The main purpose of this intentional
restriction is to avoid mistakes of programmers, especially by
confusing the meaning of else blocks of if statements; in this
case, else implies not only the falsity but also the uncertainty
of the given condition.

Instead, we define three predicates over TTV, namely surely,
vague, and never. In order for TTV values to be used in condi-
tional judgments such as if or while clauses, they should be
converted explicitly into Bool according to their accurate mean-
ings. Surely, vague and never maps only True3, Uncertain
and False3 to , respectively.

surely = {True3 �→ , Uncertain �→ ⊥, False3 �→ ⊥}
vague = {True3 �→ ⊥, Uncertain �→ , False3 �→ ⊥}
never = {True3 �→ ⊥, Uncertain �→ ⊥, False3 �→ }

Three-valued negation ¬3 : TTV → TTV is defined as fol-
lows:

¬3 = {True3 �→ False3, Uncertain �→ Uncertain,

False3 �→ True3}
Note that the negation ofUncertainisUncertain (i.e., “not
uncertain” here does not mean “certain.”) Since Uncertain
denotes the concept of being “true or false,” its negation denotes
just “false or true.”

Three-valued conjunction ∧3 : TTV × TTV → TTV is de-
fined as follows:

x∧3 y is

⎧⎨
⎩

True3 if both x and y are True3
False3 if at least one of x and y is False3
Uncertain otherwise

Other three-valued logical operators, namely disjunction ∨3, ex-
clusive or ⊗3, and implication →3 are defined as follows, using
the operators defined above:

x ∨3 y
def= ¬3(¬3x ∧3 ¬3y)

x →3 y
def= ¬3x ∨3 y

x ↔3 y
def= (x →3 y) ∧3 (y →3 x)

x 	↔3 y
def= ¬3(x ↔3 y)

x ⊗3 y
def= (x ∨3 y) ∧3 (x 	↔3 y)

5.2 Three-valued comparisons between two ex-
act numbers

For an overloaded comparison operator over reliable numbers,
there are nine non-overloaded cases according to the three classes
of its two operands. We represent non-overloaded operators
by the subscripts of two characters, each of which denotes the
class of their two operands. For example, for the overloaded

equality =RR: RelNum × RelNum → TTV, there are nine
non-overloaded equalities are follows:

=ee : E × E → TTV

=ei : E × I → TTV

=eu : E × U → TTV

=ie : I × E → TTV

=ii : I × I → TTV

=iu : I × U → TTV

=ue : U × E → TTV

=ui : U × I → TTV

=uu : U × U → TTV

where e, i and u denotes that the operand on the correspond-
ing side of the equality is an exact number, an interval, and an
unwarranted number, respectively.

Before defining overloaded comparison operators over reli-
able numbers, we first define non-overloaded operators over
exact numbers. Overloaded operators and other non-overload
cases involving intervals and unwarranted numbers will be de-
fined later on the following subsections, using the operators over
exact numbers defined here.

Though the common codomain of these operators is TTV, the
common range is actually {True3,False3} since every pair of
exact numbers can always be compared without any uncertainty.

In the first place, we define the equality =ee using only the
customary mathematical equality = between integers. For any

two exact numbers n1
d1

· i1

√
x1
y1

and n2
d2

· i2

√
x2
y2

,

n1

d1
· i1

√
x1

y1
=ee

n2

d2
· i2

√
x2

y2
is

⎧⎪⎪⎨
⎪⎪⎩

True3 if n1 = n2 ∧ d1 = d2
∧ i1 = i2∧
x1 = x2 ∧ y1 = y2

False3 otherwise

since every exact number is, by definition, in its canonical form
already. For any two exact numbers e1 and e2,

e1 	=ee e2
def= ¬3(e1 =ee e2)

Similarly, the operator <ee is defined using only the customary
mathematical inequalities < and ≤ between integers. Let e1 and

e2 be exact numbers n1
d1

· i
√

x1
y1

and n2
d2

· k
√

x2
y2

, respectively. Then,

e1 <ee e2 is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

True3 if (n1 < 0 ∧ 0 ≤ n2)∨
(0 ≤ n1 ∧ 0 ≤ n2 ∧ |n1|ikdik

2 xk
1 yi

2
< |n2|ikdik

1 xi
2yk

1 )∨
(n1 < 0 ∧ n2 < 0 ∧ |n2|ikdik

1 xi
2 yk

1
< |n1|ikdik

2 xk
1 yi

2)

False3 otherwise

The operators ≤ee, >ee and ≥ee can be simply derived from
<ee and =ee. For any exact numbers e1 and e2,

e1 ≤ee e2
def= e1 <ee e2 ∨3 e1 =ee e2

e1 >ee e2
def= e2 <ee e1

e1 ≥ee e2
def= e2 ≤ee e1

vol 33 no 6 November 2018 451



RELIABLE APPROXIMATED NUMBER SYSTEM WITH EXACT BOUNDS AND THREE-VALUED LOGIC

5.3 Equalities between reliable numbers

The overloaded equality =RR over RelNum, in a set-theoretic
point of view, is a union of nine non-overloaded equalities:

=RR : RelNum × RelNum → TTV

=RR
def= =ee ∪ =ei ∪ =eu ∪ =ie ∪ =ii ∪ =iu ∪ =ue

∪ =ui ∪ =uu

since the set RelNum is partitioned into {E, I, U}. Note that the
binary function =RR is neither a relation nor a binary predicate,
since its codomain is not Bool but TTV. Among these nine non-
overloaded equalities,=ee was already defined in the Section 5.2.
We define remaining eight functions in this section.

Note that, though an interval is manipulated as if it is a line
segment on the number line, it does not actually means a set
of uncountably many numbers, but means a single number lo-
cated somewhere inside that line segment. As a consequence,
equalities involving intervals are matters of possibility and in-
evitability.

If an exact number resides within the boundary of an interval,
we cannot decide whether they are equal or not. They are surely
different, otherwise. Given an interval i , we denote its minimal
end and maximal end as e(i) and e(i), respectively. Also, the
closedness of its minimal end and maximal end are denoted as
C(i) and C(i), respectively. Let s : TTV → Bool be an alias of
the predicate surely defined earlier. Then,

x =ei y is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uncertain if (s(e(y) <ee x)∨
(s(e(y) =ee x) ∧ C(y)))∧
(s(x <ee e(y))∨
(s(x =ee e(y)) ∧ C(y)))

False3 otherwise

and =ie is directly derived from it:

x =ie y
def= y =ei x

Two intervals are inevitably equal if and only if they refer to
the same object. Two intervals cannot be equal if they do not
share even one point on the number line. If two distinct interval
objects share at least one point, then their equality is uncertain.
Note that, if two intervals are not the same object, then we cannot
say they are surely equal even when their ends and closedness
coincide pairwise. In other words, though two intervals [a, b]
and [a, b] have the same boundary notations, they may still be
different as two approximated numbers.

x =ii y is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

True3 if both x and y refer to the same object
False3 if s(e(x) <ee e(y))∨

(s(e(x) =ee e(y)) ∧ ¬(C(x) ∧ C(y)))∨
(s(e(y) =ee e(x)) ∧ ¬(C(y) ∧ C(x)))∨
s(e(y) <ee e(x))

Uncertain otherwise

Equalities involving at least one unwarranted number are al-
ways uncertain, since unwarranted numbers do not guarantee

their own boundary at all.

x =ue y is Uncertain

x =ui y is Uncertain

x =ua y is Uncertain

x =eu y
def= y =ue x

x =iu y
def= y =ui x

The operator 	=RR is defined as the three-valued negation of
=RR:

x 	=RR y
def= ¬3(x =RR y)

5.4 Orders between reliable numbers

We define four overloaded order relations, <RR, ≤RR, >RR and
≥RR. Among these, >RR and ≥RR can be simply derived from
the definitions of <RR and ≤RR respectively, since the latter are
the converses of the former.

a <RR b
def= b >RR a

a ≤RR b
def= b ≥RR a

Among the eighteen non-overloaded cases for the overloaded
<RR and ≤RR, we have already defined <ee and ≤ee in the Sec-
tion 5.2. We define remaining sixteen cases in this section. The
most notable characteristic of the orders involving intervals is
that ≤ei cannot be derived from <ei,∨3, and =ei. For example,
while [a, b] ≤ei b is surely true, ([a, b] <ei b) ∨3 ([a, b] =ei b)
is uncertain since both [a, b] <ei b and [a, b] =ei b are uncer-
tain. ≤ie and ≤ii cannot be simply derived from <ie and <ii

respectively, neither.
For any two intervals x and y, and for any exact number a,

a <ei y is⎧⎨
⎩

True3 if s(a <ee e(y)) ∨ (s(a =ee e(y)) ∧ ¬C(y))

False3 if s(e(y) ≤ee a)

Uncertain otherwise

a ≤ei y is⎧⎨
⎩

True3 if s(a ≤ee e(y))

False3 if s(e(y) <ee a) ∨ (s(e(y) =ee a) ∧ ¬C(y))

Uncertain otherwise

x <ie a is⎧⎨
⎩

True3 if s(e(x) <ee a) ∨ (s(e(x) =ee a) ∧ ¬C(x))

False3 if s(a ≤ee e(x))

Uncertain otherwise

x ≤ie a is⎧⎨
⎩

True3 if s(e(x) ≤ee a)

False3 if s(a <ee e(x)) ∨ (s(a =ee e(x)) ∧ ¬C(x))

Uncertain otherwise

x <ii y is⎧⎪⎪⎨
⎪⎪⎩

True3 if s(e(x) <ee e(y))

∨ (s(e(x) =ee e(y)) ∧ ¬(C(x) ∧ C(y)))

False3 if s(e(y) ≤ee e(x))

Uncertain otherwise

452 computer systems science & engineering



R. CHA ET AL

x ≤ii y is⎧⎪⎪⎨
⎪⎪⎩

True3 if s(e(x) ≤ee e(y))

False3 if s(e(y) <ee e(x))

∨ (s(e(y) =ee e(x)) ∧ ¬(C(x) ∧ C(y)))

Uncertain otherwise

The remaining ten cases where at least one unwarranted num-
ber takes part in always return Uncertain.

x <eu y is Uncertain

x <iu y is Uncertain

x <ue y is Uncertain

x <ui y is Uncertain

x <uu y is Uncertain

x ≤eu y is Uncertain

x ≤iu y is Uncertain

x ≤ue y is Uncertain

x ≤ui y is Uncertain

x ≤ua y is Uncertain

6. PROTOTYPE IMPLEMENTATION IN
PYTHON

We implement the number classes and the three-valued logic
described in Section 3, 4 and 5, as a module in Python. With
this module, we can easily make operations on numbers and
judgments on the conditions involving numbers more reliable.
We also demonstrate a few cases where this module successfully
prevents erroneous results.

6.1 Exact numbers

The class exact implements the set E of exact numbers. Five
data attributesexact.n,exact.d,exact.i,exact.x and
exact.y of the class exact correspond pairwise to the five

components n, d , i , x and y of the canonical form n
d

i
√

x
y of an

exact number. Recall that we assume we already have a set Z of
unbounded integers along with its subset N+, when we defined
the set E of exact numbers in Section 3.1. Since the components
n, d , i , x and y above are unbounded (positive) integers, the cor-
responding data attributes should also be stored as unbounded
integers internally. In Python, the built-in type long provides
unbounded integers. Another built-in type int, though being
the type of bounded integers basically, can also be regarded as a
type of unbounded integers since int is automatically coerced
into long whenever an overflow occurs. Hence, every data at-
tribute of exact has type int or long in our implementation.
From now on, we will call any value of type int or long an
integral value, collectively.

The constructor of the class exact expects at least zero and
at most five arguments:

class exact(object):
def __init__(self, n=0, d=1,

i=1, x=1, y=1):

The last 0 ≤ k ≤ 5 arguments omitted are replaced with their re-
spective default values. For example, exact(2,3) is equiva-
lent toexact(2,3,1,1,1). Note that if no argument is given

at all, i.e., exact(), it constructs an exact number zero, 0
1

1
√

1
1 :

this complies with the convention of Python saying “nullary call
of a constructor should construct the zero-like element in that
type.”

The arguments supplied to the constructor are normalized
before stored into their corresponding data attributes. This
normalization ensures the condition which the set comprehen-
sion of E claims. For example, exact(4,6) constructs the
same value with exact(2,3) since 4

6 = 2
3 . For another ex-

ample, exact(5,1,2,18) constructs the same value with
exact(15,1,2,2) since 5

√
18 = 15

√
2.

The constructor can also be applied to non-integral arguments,
especially well-formed strings and other exact numbers: first,
every well-formed string is, if any, parsed and translated into
a corresponding exact number. Then, every exact number is
integralized automatically.

If any non-integral argument is supplied to the constructor
of exact (i.e., if there exists any argument of type exact
or str), then the constructor automatically convert it into an
integral value, through a process as follows. First, every argu-
ment of type str, if any, is checked whether it is syntactically
well-formed or not. If not, the construction stops and it raises
ValueError. Then, every well-formed string, if any, is parsed
and translated into the corresponding exact number. Finally,
every argument of type exact, if any, is resolved into a poly-
nomial expression of integral values and rearranged with other
arguments.

A well-formed string argument should have one of the follow-
ing forms:

• digit�(.digit�(_digit+)?)?

• <digit�>digit�(.digit�(_digit+)?)?

• digit�(.digit�(_digit+)?)?<digit�>digit�(.digit�(_digit+)?)?

where

• digit is [0-9],

• the underscore ‘_’ means the start-point of the recurring
part for a recurring decimal, and

• <digit�> means the base of root.

For example, the string "1.33_428571" denotes
1.334̇28571̇ which is an exact (recurring) decimal represen-

tation of an exact number 467
350

1
√

1
1 . The string "<3>1._6"

denotes
3√

1.6̇, an exact decimal representation of an exact

number 1
1

3
√

5
3 . Likewise, "5<2>3" denotes 5

√
3, an exact

number 5
1

2
√

3
1 .

Once there remain only integers or exact numbers in the argu-
ments, arguments of type exact are processed. For example,

exact(exact(nn, dn, in, xn, yn), d, i, x, y)

is rearranged into

exact(nn, dnd, ini, xi
nx in, yi

n yin)

vol 33 no 6 November 2018 453



RELIABLE APPROXIMATED NUMBER SYSTEM WITH EXACT BOUNDS AND THREE-VALUED LOGIC

since
nn
dn

in

√
xn
yn

d
i

√
x

y
= nn

dnd
in i

√
xi

nx in

yi
n yin

There is one restriction in this process for the third argument,
i.e., the index of the root. Since we do not regard a number to
the power of an irrational number, e.g., 3

√
2 as an exact number,

the third argument should be rational. If it is irrational, then the
construction stops and it raises ValueError.

6.2 Intervals and unwarranted numbers

The class interval implements the set I of proper inter-
vals. Every instance i of the class interval has four data
attributes i.minend, i.maxend, i.mincls, and i.maxcls,
which correspond to emin, emax, cmin, and cmax described in Sec-
tion 3.2, respectively. Two flags of closedness i.mincls and
i.maxcls should have type bool. Two ends i.minend and
i.maxend should be instances of the class exact.

The constructor of the class interval expects at least two
and at most four arguments, which correspond to the four data
attributes described above.

class interval(object):
def __init__(self, minend, maxend, \

mincls=True, maxcls=True):

The first two arguments are mandatory,and should be exact num-
bers or other types which can be automatically converted into
exact numbers such as int, long, and string. The maximal
end must be greater than the minimal end. The remaining two ar-
guments should have the type bool. These optional arguments
default to True if omitted, regarding that the corresponding end
of the interval is closed.

We do not need any class for unwarranted numbers since in
this version all the number types in Python exceptint andlong
are automatically regarded as unwarranted numbers in our im-
plementation.

6.3 Three-valued logic

The class ttv implements the set TTV of three truth values
defined in Section 5.1. Every instance t of the class ttv has
only one data attributes t.val, which is one of −1, 0, or 1.
Three constants are also defined as three instances of this class
as follows:

True3 = ttv( 1)
False3 = ttv( 0)
Uncertain = ttv(-1)

We never define the reserved special method
__nonzero__() in the ttv class, and hence implicit
conversions from ttv to bool are strictly prohibited, in order
to implement the restriction described in Section 5.1. Instead,
three predicates on TTV are also implemented as follows:

def surely(t):
return t.val == 1

a

v

h = √
a2 + v2

h

Figure 1 Area of the square whose edge is a hypotenuse of a right triangle.

def never(t):
return t.val == 0

def vague(t):
return t.val == -1

6.4 Case study

In Python, built-in floating-point numbers should be handled
with great care since they do not behave as in the elementary
mathematics. For example, the summation of ten floating-point
0.1’s is not exactly 1. The program below cannot escape from
the while loop, since the count does not exactly hit 2 but
1.999 · · · .

count, offset = 1, 0.1
while True:

count += offset
if count == 2: break

The while loop above can be rewritten using our module as
follows. The new program can escape from the loop since the
summation of ten exact 0.1’s is exactly 1, and the value of count
is exactly after ten iterations.

from relnum import *
count, offset = 1, exact("0.1")
while True:

count += offset
if surely(count == 2): break

The exactness of surd numbers are important especially in
many geometry problems. We also demonstrate a simplified ex-
ample of this issue in Fig. 1; suppose that we already know a
certain fixed length a, and that we repeatedly receive the mea-
surement of variable length v from a sensor. In the example,
the goal is to calculate the area of a square whose edge is the
hypotenuse h of the right triangle whose remaining two edges
are a and v.

In a mathematical point of view, the perfect answer for the area
is simply a2 + v2 since it is equal to h2. In computer programs,
however, lots of calculations are modularized and each of those
modules cannot guarantee the exactness of some operations such
as exponentiation and n-th root. The following program cannot
escape the loop at v = 5.0 ± 0.000001 due to the error of square
root involving built-in floating point numbers.

454 computer systems science & engineering



R. CHA ET AL

def hypotenuse(x, y):
return ((x ** 2) + (y ** 2)) ** 0.5

def area_square(x):
return x ** 2

while True:
v = read_sensor_foo()

# value from CPS sensor
if area_square(hypotenuse(4, v))

> 25.0: break

The following program, however, succeeds to escape at the
same v, since the error inherent in the interval is controlled pre-
cisely during the operations. The hypotenuse and area are cal-
culated as and compared with intervals rather than floating-point
numbers, and the comparison ensures that the judgment does not
leave any uncertainty:

from relnum import *

def hypotenuse(x, y):
return ((x ** 2) + (y ** 2))

** exact(1, 2)
def area_square(x):

return x ** 2

while True:
v = read_sensor_foo()

# value from CPS sensor
if surely(area_square(hypotenuse(4, v))

> \
interval(25 - exact(0.001),

25 + exact(0.001))): break

7. CONCLUSION

We have designed and implemented a reliable number system to
distinguish and separate any inexactness from the exactness. To
guarantee certainties excluding any uncertainties resulted from
the inexact numbers, we have also developed a corresponding
three-valued logic. Our prototype implementation presents that
we can avoid serious program errors,especially at the conditional
branches where incorrect judgment of the equalities or orders of
numeric values can occur.

For the future work, we want to develop this system further
to include multiple intervals so that we can deal with reciprocals
of intervals which contain zero. Moreover, the next implemen-
tation would be ported to Haskell [17] in order to type-check
inappropriate numeric operations at compile time, and would be
formalized in Coq [18] with dependent types.

Acknowledgements

This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Re-
search Center) support program (2015-0-00445) supervised by
the IITP (Institute for Information & communications Technol-
ogy Promotion).

REFERENCES

1. P. Gowland and D. R. Lester, “A survey of exact arithmetic imple-
mentations,” in Int’l Workshop on Computability and Complexity
in Analysis, pp. 30–47, 2000.

2. D. H. Bailey, “High-precision floating-point arithmetic in scien-
tific computation,” Computing in Science and Engineering, vol. 7,
pp. 54–61, 2005.

3. T. J. Hickey, Q. Ju, and M. H. van Emden, “Interval arithmetic:
From principles to implementation,” Journal of the ACM, vol. 48,
no. 5, pp. 1038–1068, 2001.

4. D. Hough, “Applications of the proposed IEEE-754 standard for
floating point arithmetic,” Computer, vol. 14, no. 3, pp. 70–74,
1981.

5. Python Software Foundation, “Python v2.7.3 documentation.”
http://docs.python.org/, 2012.

6. H. Putnam, “Three-valued logic,” Philosophical Studies, vol. 8,
pp. 73–80, 1957.

7. C. Yap and T. Dube, “The exact computation paradigm,” Comput-
ing in Euclidean Geometry, Lecture Notes Series on Computing,
vol. 4, pp. 452–492, 1995.

8. S. Wolfram, The MATHEMATICA ® Book, Version 4. Cambridge
University Press, 1999.

9. MathWorks, “MATLAB The language of technical computing.”
http://www.mathworks.com/help/matlab/, 2012.

10. S. van der Walt, S. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation,” Computing in
Science Engineering, vol. 13, pp. 22 –30, march-april 2011.

11. T. Granlund, “GNU MP: The GNU Multiple Precision Arithmetic
Library, Edition 5.0.5.”http://gmplib.org/gmp-man-5.
0.5.pdf, 2012.

12. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with
correct rounding,” ACM Trans. Math. Softw., vol. 33, June 2007.

13. R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the
47th Design Automation Conference, DAC ’10, (New York, NY,
USA), pp. 731–736, ACM, 2010.

14. W. Yan, S. Shi, Z. Liu, and G. Li, “Investigation on remote monitor-
ing system for hybrid electric bulldozer,” International Journal of
Computer Systems Science and Engineering, vol. 30, no. 5, 2015.

15. B. Jin, Q. Bai, H. Zhang, D. Wang, and Y. Gao, “Design and
analysis of communication scheduling applied in water inrush per-
ception layer of mine internet of things,” International Journal of
Computer Systems Science and Engineering, vol. 30, no. 5, 2015.

16. R. Cha, W. Nam, and J.-Y. Choi, “Reliable integration of exact
and approximated arithmetic with three-valued logic in python,” in
Proceedings of International Conference of Software Technology
(SoftTech 2012), pp. 104–109, 2012.

17. S. Thompson, Haskell: the craft of functional programming. In-
ternational computer science series, Addison Wesley, 1999.

18. Y. Bertot and P. Castéran, Interactive Theorem Proving and Pro-
gram Development: Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series,
Springer, 2004.

vol 33 no 6 November 2018 455


