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Support Vector Domain Description (SVDD) is an effective kernel-based method used for data description. It was motivated by the success of Support Vector
Machine (SVM) and thus has inherited many of its attractive properties. It has been extensively used for novelty detection and has been applied successfully
to a variety of classification problems. This classifier aims to find a sphere with minimal volume including the majority of examples that belong to the class
of interest (positive) and excluding the most of examples that are either outliers or belong to other classes (negatives). In this paper we propose a new
approach to improve the classification accuracy of SVDD. This objective will be achieved by exploiting the existence of negative examples in the training
step, without increasing the computational time and memory resources required to solve the quadratic programming problem of that classifier. Simulation
results on two challenging artificial problems, namely chessboard and two spirals, and four benchmark datasets have successfully validated the effectiveness
of the proposed method.
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1. INTRODUCTION

Data domain description aims to characterize a given set of ob-
jects by modeling the boundary enclosing them [1], [2]. A good
description covers all target data but includes no superfluous
space or negative examples. Support Vector Domain Description
is one of data domain description methods. It has been developed
by Tax et al. [2], [3], [4] to solve one-class classification prob-
lems basing on Vapnik’s Support Vector Machine learning theory
[5], [6]. In contrast to SVM, which discriminates between two
classes by fitting a hyperplane with maximum margin between

the examples of the opposite classes, SVDD tries to find a min-
imal enclosing sphere around the target class. Thus, it provides
the best representation of the class of interest and offers infer-
ences that can be used to detect outliers. This classifier has many
interesting and desirable properties. It’s based on an elegant and
rigorous mathematical foundation from optimization and statis-
tical learning theory. It’s derived from the structural risk min-
imization principle as opposed to empirical risk. It can model
arbitrarily distributions without the need to make assumptions
concerning data distribution. Training SVDD involves solving a
constrained convex quadratic programming problem (QP) which
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can get unique global minimum [7], [8]. As a nonlinear kernel
based method, this classifier can map hardly separable data of
opposite classes into a high-dimensional feature space in which
they become separable through a hyper-spherical surface. The
transformation is performed implicitly by using kernel functions
[9], [10].The nature of this classifier makes it suitable to be used
in outliers detection problems to detect samples that are different
from a learned dataset or it can be used as one-class classifier
when the training data of one class is well sampled while the
data of the other classes are not. This classifier uses few exam-
ples of the training dataset named Support Vectors to describe
the boundaries between different classes. This process accel-
erates heavily the computational time required to classify new
instances. Both Support Vector machine and Support Vector Do-
main Description have been applied successfully to a variety of
research fields such as: Event and novelty detection [11], [37],
Fault Diagnosis [12], [13], [14], credit ratings [15], [16], [17],
image classification [18], [19], Computer and network security
[20], [21], [22], etc.

Support Vector Domain Description can be used in two dif-
ferent ways: Firstly, when negative examples are not available,
this case is called Normal Data Description or one-class SVDD.
Secondly, when negative data are available, this case can be con-
sidered as an extension of the first one and is named two-classes
SVDD. In the last case this classifier searches the minimal sphere
that includes the majority of positive examples and excludes the
most of negative ones. This approach improves the classification
accuracy of Normal Data Description but increases drastically
the space and time complexities required to solve the latter’s QP,
because negatives samples participate also in the training task.
Thus, the major problem of training SVDD with negative exam-
ples is the requirement of large memory and enormous training
time especially for large-scale applications.

In this paper we propose a new approach to extend Support
Vector Domain Description from one-class to two-classes by
using negative examples. We aim to reach this goal without
increasing the space and time complexities of Normal Data De-
scription. The rest of this paper is organized as follows: Section
2 presents both conventional versions of this classifier (One-
class and Two-classes), Section 3 gives a detailed description of
our approach and the last section contains several experimental
results to demonstrate the validity of the proposed method.

2. SUPPORT VECTOR DOMAIN DESCRIP-
TION

2.1 One-class Support Vector Domain Descrip-
tion

Suppose we are given a dataset S = {x1, x2, . . . , xN } where N
is the number of samples, one-class SVDD attempts to find the
smallest ball with a center a and a radius R, that contains most
of the patterns in S [4], [23], [24], [25]. This is an optimality
problem that can be formulated mathematically as follows:

Minimize:

R2

Subject to ||xi − a||2 ≤ R2 ∀i = 1, . . . , N
(1)

Where || · || is the Euclidean norm. To allow the presence of out-
liers a positive constant C was introduced, the latter determines
the tradeoff between the volume of the sphere to minimize and
the rejection of target objects. The optimization problem (Eq.
(1)) then becomes:

Minimize:

R2 + C
N∑

i=1

εi

Subject to ||xi − a||2 ≤ R2 + εi∀i = 1, . . . , N (2)

Where εi with i = 1, . . . , N are slack variables. The Lagrangian
reformulation of this problem can be written as:

L(R, a, αi , εi ) = R2 −
N∑

i=1

(R2 + εi − ||xi − a||2)αi

−
N∑

i=1

εiμi + C
N∑

i=1

εi (3)

Where αi ≥ 0 and μi ≥ 0 are Lagrange multipliers. Annulling
the partial derivatives of L gives the following constraints:

∂L

∂ R
= 0 ⇒

N∑
i=1

αi = 1 (4)

∂L

∂a
= 0 ⇒ a =

N∑
i=1

αi xi (5)

∂L

∂εi
= 0 ⇒ αi = C − μi (6)

Substituting the equations Eq. (4), Eq. (5) and Eq. (6) into Eq.
(3) gives the following dual problem:

Maximize:

W =
N∑

i=1

x2
i αi −

N∑
i=1

N∑
j=1

αiα j xi x j

Subject to 0 ≤ αi ≤ C and
N∑

i=1

αi = 1 ∀i = 1, . . . , N (7)

The main goal is to determinate each αi with i = 1, . . . , N by
maximizing the equation above with respect to the constraints.

2.2 Two-class Support Vector Domain Descrip-
tion

When negative examples are available, they can be incorporated
in the training to improve the description. In opposition to the
positive examples which should be within the minimal sphere,
the negative ones should be outside it. In the following, the
target objects are enumerated by the indices, i, j and the negative
examples by l, m. To allow some classification errors for both
classes (Target and Non-target) slack real positive variables εi

and εl are introduced [4]. The new optimization problem can be
formulated as follows:
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Minimize

R2 + C1
N∑

i=1

εi + C2
M∑

l=1

εl

Subject to ||xi − a||2 ≤ R2 + εi and ||xl − a||2 ≥ R2 − εl εi ,

εl ≥ 0 ∀ i = 1, . . . , N and l = 1, . . . , M (8)

Where C1 and C2 are constants real positives, C1
∑

i εi and,
C2

∑
l εl are penalty terms. By using Lagrange multipliers, αi ,

αl , γi , γl the equation (8) can be re-written as follows:

L (R, a, αi , εi , αl , εl) = R2 −
N∑

i=1

αi

(
R2 + εi − ||xi − a||2

)

−
N∑

i=1

γiεi + C1
N∑

i=1

εi

−
M∑

l=1

αl

(
||xl − a||2 − R2 + εl

)
−

M∑
l=1

γlεl + C2
M∑

l=1

εl

(9)

With αi ≥ 0, αl ≥ 0, γi ≥ 0, γl ≥ 0 are Lagrange multipliers.
Setting the partial derivatives of L to zero gives the following
constraints:

∂L

∂ R
= 0 ⇒

N∑
i=1

αi −
M∑

l=1

αl = 1 (10)

∂L

∂a
= 0 ⇒ a =

N∑
i=1

αi xi −
M∑

l=1

αl xl (11)

∂L

∂εi
= 0 and

∂L

∂εl
= 0 ⇒ αi = C1 − γi and αl = C2 − γl

(12)

After substituting the equations Eq. (10), Eq. (11) and Eq. (12)
into the Eq. (9). The dual problem can be written as:

Maximize

W =
N∑

i=1

αi xi xi −
M∑

l=1

αl xl xl −
N∑

i=1

N∑
j=1

αiα j xi x j

+ 2
M∑

l=1

N∑
j=1

αlα j xl x j −
M∑

l=1

M∑
m=1

αlαm xl xm

Subject to 0 ≤ αi ≤ C1 and

0 ≤ αl ≤ C2 ∀i = 1, .., N , ∀l = 1, .., M

and
N∑

i=1

αi −
M∑

l=1

αl = 1

(13)

The main goal is to determinate the set of αi with i = 1, . . . , N
that corresponds to the positive examples and the αl with l =
1, . . . , M related to the negative examples by maximizing the
new dual problem.

In real-world applications, datasets are rarely distributed
spherically [26]. In order to have a flexible data description,
a kernel trick k(xi , x j ) = φ(xi )φ(x j ) was introduced [4], [23],

Table 1 Some commonly used kernel functions.

Linear kernel k(xi , x j ) = xi · x j + c

Gaussian kernel k(xi , x j ) = e
(−||xi−x j ||2/2σ 2

)
Exponential kernel k(xi , x j ) = e

(−||xi−x j ||/2σ 2
)

Sigmoid kernel k(xi , x j ) = tanh(α(xi , x j ) + c)
Polynomial kernel k(xi , x j ) = (α · xi · x j + c)d

Laplacian kernel k(xi , x j ) = e(−||xi−x j ||/σ )

[27], [28]. The kernel function maps a dataset of hardly insep-
arables instances into a higher dimensional feature space where
they become easily separable. In this new feature space the dot
products are replaced by a suitable kernel function. In literature,
many kernels have been proposed. Table 1 lists some commonly
used ones.

As a conclusion, training a given dataset with Support Vector
Domain Description implies solving a quadratic programming
problem with constraints expressed by the equations (7) or (13)
that correspond respectively to the versions : one-class and two
classes. As said before, this process requires large amounts of
computational time and memory, specifically when dealing with
large datasets. Denote the number of training samples by N ,
the space complexity for solving the one-class QP is O(N2)

and its time complexity is O(N3) [29], [30]. By comparing the
equations (7) and (13) we remark that: When negative exam-
ples are incorporated in SVDD, the space and time complexities
required to solve the QP increase from O(N2) and O(N3) to
O((N + M)2) and O((N + M)3) respectively.

2.3 Multi-class Support Vector Domain De-
scription

To solve a K -classes classification problem, multiple minimal
hyperspheres (ak, Rk) with k = 1, . . . , K will be constructed.
In each training step the N samples of the kth class are con-
sidered as target while the M remaining samples that belong
to the other classes are considered as negatives. This strategy
is called one-against-all decomposition. To predict the mem-
bership of an unknown sample xz a similarity measure function
sim(xz, ak, Rk) has to be evaluated. This function can be ex-
pressed as follows:

class of xz ≡ arg max
k=1,...,K

sim(xz, ak, Rk) (14)

In literature, several similarity functions were proposed, the sim-
plest one is given by the following equation:

sim(xz, ak) = −||xz − ak||2 (15)

Using the function above with the equation (14) implies af-
fecting to xz the class where the center ak is the closest. Zhu et
al. [33] proposed a similarity function that considers not only
the distance between xz and the center of the kth class ak but
also the radius Rk :

sim(xz, ak, Rk) = R2
k − ||xz − ak||2 (16)
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Other similarity measure supposes that the training examples
from the class k are generated from a Gaussian distribution in a
high-dimensional feature space with the mean ak and the vari-
ance R2

k . Then, according to the Bayesian decision rule, the
similarity function can be expressed as follows:

sim (z, ak, Rk) = 1

Rk
exp

(
−||z − ak ||2

R2
k

)
(17)

In the same context, Wu et al. [34] focused on the position of
xz with respect the minimal hyperspheres. Then they proposed
similarity functions which involved three cases:

First case: When the test point xz is outside all the minimal
hyperspheres, they choosed the nearest one to xz:

sim(xz, Sk) = Rk − ||xz − ak|| (18)

Second case: When the test point xz is inside only one hyper-
sphere, they choose the corresponding class.

Third case: When the test point xz is located in the space be-
tween a set of hyperspheres. Then they obtained the class of xz

by comparing the distance between this point and the center of
each of those hyperspheres. To eliminate the effect of different
spherical radii, a relative distance is applied:

sim(xz, ak, Rk) = −||xz − ak ||
Rk

(19)

In another work, Hao et al. [35] proposed a fuzzy membership
function to determinate the class that an unknown test example
xz belongs to. Their proposed similarity function is given by the
equation below:

sim(xz, ak, Rk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5 ×
[

1− ||xz−ak ||
Rk

1+λ1

(
1

Rk

)
||xz−ak ||

]
+ 0.5

if ||xz − ak|| ≤ Rk

0.5 ×
[

1
1+λ2(||xz−ak ||−Rk )

]
otherwise

(20)

Where λ1 and λ2 are user predefined parameters that satisfy:

λ2 = 1

Rk(1 + λ1)
(21)

The similarity functions described above are evaluated based on
the equations Eq. (22), Eq. (23), Eq. (24) and Eq. (25) given
by the following expressions:

In the case of one-class Support Vector Domain Description:

||xz − ak ||2 = xz · xz − 2
N∑

i=1

αki xi xz

+
N∑

i=1

N∑
j=1

αki αkj xi x j (22)

R2
k = xs · xs − 2

N∑
i=1

αki xi xs +
N∑

i=1

N∑
j=1

αki αkj xi x j(23)

With αki is the i th Lagrangian multiplier corresponding to the
kth class and xs ∈ SV . SV is the set of Support Vectors having
0 < αks < C .

In the case of two-classes Support Vector Domain Description:

||xz − ak ||2 = xz.xz − 2

(
N∑

i=1

αki xi xz −
M∑

l=1

αkl xl xz

)

+
N∑

i=1

N∑
j=1

αki αkj xi x j +
M∑

l=1

M∑
m=1

αklαkm xl xm

− 2
N∑

i=1

M∑
l=1

αkiαkl xi xl (24)

R2
k = xs.xs − 2

(
N∑

i=1

αki xi xs −
M∑

l=1

αkl xl xs

)

+
N∑

i=1

N∑
j=1

αki αkj xi x j +
M∑

l=1

M∑
m=1

αklαkm xl xm

− 2
N∑

i=1

M∑
l=1

αkiαkl xi xl

(25)

For any xs ∈ SV . SV is the set of support vectors having
0 < αks < C1 (with xs is a target object) or 0 < αks < C2
(with xs is negative object).

3. OUR APPROACH

As mentioned before, our objective is to improve Normal Data
Description by using negative examples without increasing the
complexity to solve the Quadratic Programming problem of this
classifier. In this section, mathematical model of this latter will
be changed as purposeful. Rather than excluding the negative
points outside the minimal hypersphere that surrounds the target
data, we propose to maximize the separability between the neg-
ative examples and the center of the minimal hypersphere. This
idea will be incorporated into the mathematical formulation of
SVDD. Our new criterion to maximize is given by the equation
below:

1

M

M∑
l=1

||a − xl ||2 (26)

Where M is the number of negative data. The Lagrangian func-
tion of this problem can be expressed as follows:

L(R, a, αi , εi ) = R2 − ρ

M

M∑
l=1

||a − xl ||2

−
N∑

i=1

(R2 + εi − ||xi − a||2)αi −
N∑

i=1

εiμi

+ C
N∑

i=1

εi (27)

Where C is a constant positive and real, C
∑

i εi is penalty
term, and αi are Lagrange multipliers. It can be seen that min-
imizing the cost function Eq. (27) will make the square of the
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radius R2 as small as possible and the term ρ
M

∑
l ||a − xl ||2 as

large as possible. The parameter ρ is a real strictly positive num-
ber, another condition on ρ is given later by the equations (29)
and (31), which implies that the value of ρ must be strictly lower
than one. This parameter plays a compromise between the mini-
mization of the radius of the hypersphere, and the maximization
of the separability between the center of the hypersphere and
negative examples. By annuling the partial derivatives of L with
respect to R, a, εi we obtain following constraints:

∂L

∂ R
= 0 ⇒

N∑
i=1

αi = 1 (28)

∂L

∂a
= 0 ⇒ a = 1

(1 − ρ)

(
N∑

i=1

αi xi − ρ

M

M∑
l=1

xl

)
(29)

∂L

∂εi
= 0 ⇒ αi = C − μi (30)

The dual problem is then:
Maximize:

W = −1

(1 − ρ)

N∑
i=1

N∑
j=1

αiα j xi x j

+
N∑

i=1

αi

(
2ρ

(1 − ρ) M

∑
l

xi xl + x2
i

)
T erm I

− ρ2

(1 − ρ) M2

M∑
l=1

M∑
m=1

xl xm − ρ

M

M∑
l=1

x2
l

T erm I I

Subject to 0 ≤ αi ≤ C and
N∑

i=1

αi = 1 ∀i = 1, . . . , N

(31)

The optimization problem described by the Eq. (31) is equiva-
lent to a convex quadratic problem with global minimum, when

−1
(1−ρ)

< 0, we conclude that ρ must belong to the interval ]0, 1[.
The objective is to find the values of Lagrange multipliers

that maximize the Eq. (31); in this case the second term of
the equation is just a constant, it doesn’t contains any Lagrange
multipliers, as consequence it’s not concerned by the maximiza-
tion. By contrast, the first term contains N Lagrange multipliers
(α1, . . . , αN ) labeled by the indexes i and j (which refer only
to the target examples). By comparing Eq. (7) and the first term
of Eq. (31) we remark that: Solving both QPs requires the same
space and time complexities: O(N2) and O(N3) respectively.

To classify a test point xz , we apply the same strategy quoted
in the previous section basing on the following equations:

||xz − ak ||2

= xz .xz − 2

(1 − ρ)

(
N∑

i=1

αki xi xz − ρ

M

M∑
l=1

xl xz

)

+ 1

(1 − ρ)2

( N∑
i=1

N∑
j=1

αki αkj xi x j − 2ρ

M

N∑
i=1

M∑
l=1

αki xi xl

+ ρ2

M2

M∑
l=1

M∑
m=1

xl xm

)

︸ ︷︷ ︸
constant

R2
k = xs.xs − 2

(1 − ρ)

(
N∑

i=1

αki xi xs − ρ

M

M∑
l=1

xl xs

)

+ 1

(1 − ρ)2

( N∑
i=1

N∑
j=1

αki αkj xi x j

+ 2ρ

M

N∑
i=1

M∑
l=1

αki xi xl + ρ2

M2

M∑
l=1

M∑
m=1

xl xm

)

︸ ︷︷ ︸
constant

(32)

With αki is the i th Lagrangian multiplier corresponding to the
kth class and xs ∈ SV a Support Vector having 0 < αs < C .

The equation (32) is used to classify a new unknown sample xz,
it contains three terms: the two first ones depend on xz and must
be evaluated for each new sample xz , by contrary the last one is
a constant that must be evaluated just one time and still available
for each new xz . This is an advantage because it minimizes the
time to classify a new instance. The equation (33) is used to
evaluate the radius of the hypersphere corresponding to the kth

class, based on an example xs belonging to the set of Support
Vectors. The example xs appears just in the first two terms of
the equation, while the last term doesn’t depend on xs and can
be evaluated just one time and stills available whatever the value
of xs .

4. EXPERIMENTS AND RESULTS

4.1 Datasets and experimental setting

The performance of our new method is evaluated using three
challenging classification problems: Two- spirals, Checker-
board, and four benchmark datasets namely: Fertility, Libras
Movement, Blood Transfusion Service Center, and Tic-Tac-Toe
Endgame available from the UCI repository of machine learning
data [36].

The goal behind the first experiment is to show graphically the
classification effectiveness of our method compared to normal
data description and to highlight the effect of the parameter ρ.
To achieve this objective we chose to describe a highly nonlinear
separating surface. This test will be performed on two-spirals
dataset represented in 2 dimensions. Spiral shape exists in sev-
eral natural and physical domains such as: The motion of par-
ticles in cyclotrons, the classic double helix in DNA, the spiral
feed in manufacturing. Spiral forms are particularly interest-
ing because of their high levels of nonlinearity and resistance to
shape transformation under translation, rotation or other scalar
operations. Spirals structures are also attractive for their tem-
poral properties and are found to be particularly hard to classify
for pattern recognition purposes.

The second experiment has the same objectives as the first
but with another dataset. This latter was chosen to be hard to
describe as the first. Namely checkerboard [31], [32], it consists
81 black and white points in 2 dimensions taken from nine black
and white squares.
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Table 2 Description of the datasets used in the experiments.

Dataset name Number of
instances

Subsets Number of
classes

Number of
attributes

Training
subset

Testing subset

Fertility 100 80% of
samples/
class

The remaining
samples/ class

2 9

Libras Movement 360 80% of
samples/
class

The remaining
samples/ class

15 90

Blood Transfusion Service Center 748 80% of
samples/
class

The remaining
samples/ class

2 4

Tic-Tac-Toe Endgame 958 80% of
samples/
class

The remaining
samples/ class

2 9

Figure 1 Classification of chessboard dataset using SVDD with negative examples and = 100, σ = 1.25.

Figure 2 Classification of Two spirals dataset using SVDD with negative examples and = 100, σ = 1.5.
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(a) 
 

(b)       
 

(c)  

Figure 3 The average recognition rates and runtimes to minimize the QPs pb of One-class, Two-classes and the proposed SVDD using Fertility dataset.

The third experiment aims to compare three versions of Sup-
port Vector Domain Description which are : One-class, two
classes and the proposed one. This comparison regards: Learn-
ing performance, generalization ability, and the computational
time required to solve the QPs problems represented by the equa-
tions Eq. (7), Eq. (13) and Eq. (31). Four datasets described
in Table 2 were used to perform those experiments: In each test
we split randomly each dataset into two disjoints subsets that

serve for training and testing with respect to the rates indicated
in this table. To evaluate the average and the standard deviation
the training and testing processes are repeated 20 times.
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(a) 
 

(b) 

(c) 

Figure 4 The average recognition rates and runtimes to minimize the QPs pb of One-class, Two-classes and the proposed SVDD using Libra Movement dataset.

4.2 Experimental Results

The two first experiments (Figure 1 and 2) aim to determinate
the effect of the new parameter ρ on the classification accuracy
of one-class SVDD (ρ = 0) compared to our new approach
(0 < ρ < 1). To show the effectiveness of our approach, we
plot the classification result in 2D with three colors. The red,
green, and blue represent respectively the first class, the second
one, and the overlaps areas (when the samples belong to both

classes). The regularization parameter C is equal to 100, the
Gaussian width σ is fixed at 1.25 (Chessboard) and 1.5 (Two-
spirals) and the new parameter ρ is increased gradually in the
sets {0, 0.55, 0.85, 0.87, 0.97} and {0, 0.2, 0.3, 0.4, 0.5} corre-
sponding respectively to Chessboard and two spirals.

Figures 1 and 2 show that: When using the conventional One-
class version the smallest hypersphere encloses not only the nor-
mal examples but also a large number of negative data (blue
color). This could be due to the fact that this classifier does not
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(a) 

 

 
(b) 

 
(c) 

Figure 5 The average recognition rates and runtimes to minimize the QPs pb of One-class, Two-classes and the proposed SVDD using Blood Transfusion Service
Center dataset .

take into consideration the negative data during training. When
we switch to our approach by increasing the value of ρ, we re-
mark that the description become more tightening, i.e blue color
is disappeared progressively and is replaced by the right one.
This shows that the proposed method, under the same condi-
tions of the conventional one-class SVDD (i.e the same values
of the parameters C and ρ, and the same calculation complexity)

gives higher precision rates.
The third experiment is performed using a Gaussian kernel

with the similarity function described in [34]. The parameter ρ

is varied in the set {0.3, 0.6, 0.9} the regularization parameters
C , C1 and C2 are fixed at 100. The Figures 3, 4, 5 and 6 show the
average recognition rate and the standard deviation calculated in
the training and testing processes also they provide the average
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(a) 

(b) 

(c) 

Figure 6 The average recognition rates and runtimes to minimize the QPs pb of One-class, Two-classes and the proposed SVDD using Tic-Tac-Toe Endgame dataset.

computational time required to solve the QPs of each classifier
in seconds. All experiments are conducted on a PC with 64 bit
operating system, having 8 GB of RAM and a Core 5 processor.
Table 3 analyses the figures and gives the maximum and the
minimum values found in the experiments, the best values are
highlighted. From the Figures 3, 4, 5, 6 and the Table 3 we
observe that:

• In the training step: When using our approach, the recog-
nition rate presents high accuracy compared to One-class

and Two-classes SVDD. This means that each minimal hy-
persphere found by our method encloses successfully the
target samples of the corresponding class. The performance
of our method depends heavily on the choice of the value
of the regularization parameter ρ ∈]0, 1[ and it reaches its
maximum when ρ equals to 0.90. These promising results
must be reevaluated to check against over-fitting.

• In the testing step: When using our method, the novelty
detection (the generalization ability) rate gives the best re-
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Table 3 Analysis of the experimental results obtained from applying One-class, Two-classes and the proposed SVDD on the four datasets.

Dataset name Fertility Libras Blood Transfusion Tic-Tac-Toe
Movement Service Center Endgame

One class
SVDD

Training [Min, Max] [98.64, 99.38] [95.00 100.00] [81.27, 82.00] [95.67, 100]

Testing [Min, Max] [88.42, 88.95] [25.33, 80.83] [62.95, 66.61] [65.44, 89.9]
Duration [Min, Max] [0.00, 0.01] [0.01, 0.01] [8.96, 11.49] [0.10, 4.14]

Two Classes
SVDD

Training [Min, Max] [99.01, 99.01] [92.13, 100.00] [79.55, 84.72] [66.66, 97.86]

Testing [Min, Max] [88.95, 88.95] [29.17, 82.33] [67.62, 70.97] [64.97, 90.58]
Duration [Min, Max] [0.05, 0.16] [2.70, 3.56] [34.51, 37.26] [46.13, 52.81]

The pro-
posed ap-
proach

Training [Min, Max] [99.01, 99.38] [95.57, 100] [81.26, 91.84] [97.29, 100.00]

Testing [Min, Max] [88.42, 88.95] [25.17, 83.17] [63.12, 74.40] [65.44, 92.04]

Duration [Min, Max] [0.00, 0.01] [0.01, 0.01] [9.17, 11.77] [0.10, 4.45]

sults in the majority of cases as compared to One-Class and
Two-Classes SVDD. Also the recognition rate depends on
the values taken by ρ and almost grows with increasing val-
ues of this latter. This improvement can be explained by
the fact that when increasing the value of ρ, the distance be-
tween the center of the minimal hypersphere that encloses
each target class and the negative samples increases which
gives a tight description of the classes of interest.

• The duration to solve the Quadratic Programming prob-
lems: In the first two experiments, the duration to min-
imize the QPs problem of our method is equals to that of
One-class SVDD and is lower compared to Two-classes ver-
sion. In the second two experiments the duration to solve
the QPs of our method grows little (by fractions of second)
compared to the version One-class but still very lower than
Two-classes.

As a result, the proposed approach outperforms both One-
Class and Two-Classes SVDD in terms of learning performance,
generalization ability and training time especially when choosing
a good couple of the variables ρ ∈]0, 1[ and σ .

5. CONCLUSION AND FUTURE WORK

In this paper, a novel approach to improve Support Vector Do-
main Description by using negative examples was proposed and
successfully incorporated with the mathematical formulation of
this classifier. The proposed method retains the same space and
time complexity of One-class version and improves its classi-
fication accuracy. The performance of this new version was
evaluated empirically on two challenging artificial problems and
four benchmark datasets. The experimental results show that our
method has achieved high classification accuracy with low train-
ing time compared to both One-class and Two-Classes SVDD.

In future, we plan to make a complete experimental study
regarding the mutual dependencies between the regularization
parameter ρ, the choice of the kernel function and its parameter
(s), and the constant C of Support Vector Domain Description

classifier. Also, we intend to found a function that can generate
automatically the optimal value of the new parameter ρ. This
function will take into consideration principally the distribution
of the training dataset points in the feature space.
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