
Comput Syst Sci & Eng (2018) 5: 309–316
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

ADL-RAID: Energy-saving data
layout for dynamic loads
Youxi Wu1,2, Shengyuan Shi1,2, Jingyu Liu1,2∗, and Huaizhong Zhu1,2

1(School of Computer Science and Engineering, Hebei University of Technology, Tianjin, 300130)
2(Hebei province key laboratory of big data calculation, Tianjin, 300130)

With the rapid development of information technology and the explosive growth of data, the scale of storage equipment is growing rapidly. The high
energy consumption storage devices have become a serious problem for data centers. For data storage, the model of sequential data access a storage
system is commonly used. Aiming at the characteristics of a sequential data storage system, this paper, we propose a structure, named Adapted to Dynamic
Load based on Redundant Array Independent Disks (ADL-RAID) which is an effective energy-saving data layout for dynamic loads based on the existing
Semi-Redundant Array Independent Disks (S-RAID). ADL-RAID inherits the local parallel energy-saving strategy, uses an address mapping mechanism, and
allocates storage space to satisfy the performance requirements for the user requested application. By sensing different loads, ADL-RAID allocates storage
space for its dynamic loads with the appropriate parallelism. One or several data disks are used when the load is minimized, and all the data disks are used
in parallel when the load is maximized. Experimental results show that, for 100% continuous write request, ADL-RAID saves 33.6% energy consumption
than S-RAID5 and improves write performance than S-RAID5 by 34.3%. Thus, ADL-RAID has higher availability and is ideal for sequential data storage
applications

Keywords: Disk array; sequential data access; energy-saving storage; data layout; dynamic load

1. INTRODUCTION

With the advent of the internet age, big data [1] has become a
popular topic in the computing industry. The surge of data has
led to a dramatic increase in storage devices, and the Internet
Data Center predicts that the global amount of data will reach
44ZB by 2020 [2] Thus, the problem of data storage becomes the
most concerned about the data center. Disk storage is currently
the most popular data storage method with regard to research.

Research on saving energy in the storage system has attracted
wide attention. Energy-saving research for the early storage sys-
tem mainly focused on the disk level, and the hardware of the
disk is improved according to the operating principle and phys-
ical characteristics of the disk. For example, Li et al proposed a
workload awareness scheme (WAS) [3] that writes different hot
data blocks into different areas of the Solid-State Drive Redun-
dant Array Independent Disk (SSD-RAID) to improve the per-
formance and durability of the SSD-RAID. Sun et al proposed
a high-performance disk array for sequential storage systems:

∗Corresponding author. E-mail: liujingyu@scse.hebut.edu.cn

Ripple-RAID [4], which uses a new local parallel data layout to
improve the write performance. However, multi-speed disk and
parallel technology is still in the theoretical stage of research,
and large-scale deployment remains to be seen.

The energy-saving research of the disk-level is limited for
large-scale storage systems. In recent years, energy-saving re-
search has focused on the node level, such as the grouping strat-
egy based on the disk, MAID [5] - the energy-saving program
based on the data layout, Popular Data Concentration (PDC) [6]
- the update algorithm based on the parity, BPU [7] - using queue
length awareness, line up according to the order of arrival of the
load, trying to reduce the average response time. Sun et al [8]
proposed the EPU algorithm as a typical representation, analyz-
ing which is better in the scaling scenario for read-change-write
and read-reconstruct-write to reduce the request of the user for
scaling time. In addition, Zhan et al [9] designed a two-level
cache algorithm to improve performance bottlenecks. Cai et al
[10] removed code and used other techniques to improve the
write performance. Zhang designed a parallel encoding algo-
rithm, called Equation Oriented Parallel Coding (EOPC) [11] to
reduce the computational complexity.

vol 33 no 5 September 2018 309

ADL-RAID: ENERGY-SAVING DATA LAYOUT FOR DYNAMIC LOADS

In addition, Liu et al proposed a mixed S-RAID structure [12]
consisting of a Solid-State Drive (SSD) and a Hard Disk Drive
(HDD), placing a small amount of random read and write data
including super blocks in the SSD and, placing sequential data
on the S-RAID composed of the HDD disk groups in an idle state
are turned off to improve the energy efficiency and performance.
To further enhance the system performance they proposed a write
optimization strategy [13].

According to analysis of the load characteristics and access
patterns of sequential data storage, an energy-saving disk array
S-RAID [14] is proposed to satisfy the performance require-
ment, and a local parallel data layout is used to achieve energy-
saving. For typical sequential data storage applications, S-RAID
achieves significant energy saving. Whereas S-RAID’s local par-
allel data layout [15] is static, it is suitable for smoother work-
loads, its adaptability is poor for strong fluctuating loads or burst
loads. Thus, the energy-saving effect still has some limitations.

In this study, an effective energy-saving data layout for dy-
namic loads structure is developed which is called Adapted to
Dynamic Load based on Redundant Array Independent Disks
(ADL-RAID). ADL-RAID can be a good solution for high-
intensity fluctuations or the sudden load problem, and cleverly
avoid the problem that S-RAID [16] only applies to a smooth
load. Because the data layout is dynamically adjusted according
to the load, ADL-RAID only needs to use one or several data
disks when the load is in a stable period. It can also open the
corresponding disk on demand according to the load size when
a sudden load arrives. It is a good solution for the problem of
excess performance, thus, ADL-RAID can not only ensure that
most of the disk keeps long-time standby, but also provides the
appropriate local parallelism. Thus, it has higher availability and
energy efficiency than S-RAID.

2. IMPLEMENTATION OF ADL-RAID

2.1 Basic data layout

We suppose that the disk array consists of N disks, each divided
each disk into N storage areas. The same offset forms a stripe
in the disk storage area, which comprises a total of N stripes.
Each stripe contains a parity area and an N − 1 data area. The
parity area in stripe r is denoted by p(r) and is located on disk
N−1−r . The data disks are denoted D(r , c, where r represents
the stripe number, c represents the disk number, and 0≤ r < N ,
0 ≤ C < N − 1). Now, we consider ADL-RAID composed of
five disks as an example. The overall structure of ADL-RAID
is shown in Figure 1 below.

The storage area continues to be subdivided, and each storage
area is divided into M equal size band we name it Band, the Band
in the parity area is called PBand, each stripe in the same offset
of the Band form a Bank, PBand(v) is generated by N-1 band(v)

using exclusive OR operation in this stripe. This is expressed by
the following equation.

PBand(v) = Band(v1)⊕⊕ Band(vN−1) (1)

To achieve good parallelism and satisfy the performance re-
quirements, on the basis of in Figure1 RAID continues to be
subdivided in accordance with the ADL, as shown in Figure 2.

2.2 Dynamic mapping of storage space

For local parallel data layout, if the static address mapping is
used, local parallelism must be set according to the performance
requirements of the maximum value for stable load. In order
to meet the performance requirements, and more disks will be
dispatched to the running state, thus energy consumption will
be wasted. So for the strong fluctuations and the sudden load
situation, we need to schedule the size of the disk dynamically,
so that the written data of the upper application can be distrib-
uted to a different number of disks to meet the dynamic load
requirements.

The ADL-RAID should have the following conditions:

1. local parallelism, in order to achieve energy-saving;

2. the load distribution should ensure that the running time
of the disk is long enough and the disk state transition fre-
quency is low enough;

3. the local parallelism can be adjusted dynamically according
to the performance requirements;

4. when the storage space is filled, the old data are deleted in
chronological order and should not conflict with condition
3 when new data are written;

For condition 4), have a brief description: for a sequential data
storage system, when the storage space is full, delete the oldest
data by time generally, and then write the new data. we called
the order of deletion. Video surveillance, CDP and other storage
applications have this feature. The feature for order deletion
will conflict with condition 3) generally. Such as deleting data
(the earliest stored data) where the storage space has three disks
parallelism, and the current load needs six parallel disks,we need
to increase the three parallel disks, but the data on the candidate
disk (local parallel) may not be deleted but even is used recently.
In other words, the earliest stored data is located in the current
three disks of local parallel. It can not increase the three disks
to run on the condition of the order deletion

The specific process of the dynamic mapping algorithm for
storage space is as follows.

The storage space is allocated as the k band according to the
load performance parameter k (the number of disks required to
be parallel). First, the function GetMaxBank () is executed, to
select the bank having the largest free band in the current Stripe
(CurStripe) as the current bank (named CurBank). If the number
of free bands is 0 (CurBank.len=0), the current bank has no free
bands to write data, and we need to further determine the number
of free bands that can be mapped in the next stripe (NextStripe).
Then, the next stripe will be recognized as the current stripe and
reacquire the current bank. The next stripe will be moved back
in order.

When the number of free bands is not 0 in the current bank or
its number of free band is enough to meet the load requirements,
GetBand () is execute, and k bands are required in order. Oth-
erwise, we first remove all the free bands in the current bank,
and then remove the remaining free band from the next bank,
forming k free bands in all. Storage space will be recovered if
the next bank does not have enough free band to carry out and
re-acquire the free bank in the next bank. The function GetBand

310 computer systems science & engineering

J. LIU

Figure 1 Overall structure of ADL composed of five disks.

Figure 2 Five disk ADL-RAID subdivision structure.

() receives the specified number of free bands from the bank, and
changes the number of free bands.

The execution of the data writing is described by Example 1

Example 1: Figure 3 shows the address mapping process. Nine
kinds of loads-A to J-are written to the disks. The disk array
is assumed to consist of five disks, as previously mentioned,
and P represents the parity data. We select the first two stripe
blocks as an example. To explain clearly, we assume that each
stripe is divided into five banks, and the mapping granularity
size is the band size. The numbers of the loads A to J requiring
a parallel block are 2, 3, 4, 3, 3, 3, 4, 2, 1, 1, respectively,
followed by numbers representing different time numbers (1-
14), for example, C4 indicates that the load C is written to the
disk at the 4thtime.

The above example, illustrates that when the load accesses the
disk, the data are written to the current disk first. If the current
active disk can satisfy the request, the standby disk will not be
accessed, thus, not only good parallelism can be guaranteed, but

also we can allocate the appropriate disks dynamically according
to the load requirements.

2.3 Strategy for avoiding conflict

The strategy for avoiding the conflict when the same load is
written to a different strip is illustrated by Example 2.

Example 2: From Example1, we see that there is an access
violation problem in the storage space mapping process. When
the bands from two stripes are parallel, they access the same disk
simultaneously, which is called an access violation. As shown
in Figure 4, when the load E is written to the disk at the 6th

time(E6), owing to the requirement of producing parity data,
disks 2, 3, and 4 in stripe0 run at the same time, and disks 0 and
3 in stripe1 need to run at the same time. We see that disk 3 is
accessed at the same time. Thus, the disk3 is a bottleneck for
performance. The same problem exists with loads F8 and F9

vol 33 no 5 September 2018 311

ADL-RAID: ENERGY-SAVING DATA LAYOUT FOR DYNAMIC LOADS

Algorithm 1: AddMapping():
1. CurBank←GetMaxBank(CurStripe);
2. if CurBank.len=0 then
3. Get the free band of the next bank;
4. end if
5.if NextBank=0 then
6. CollectBank(NextStripe); //recycle storage space
7. end if
8. CurStripe←NextStripe;
9. NextStripe←NextStripe.Next;
10. CurBank←GetMaxBank(CurStripe);
11. if CurBank.len>= k then //Band within the CurBank is
enough to map
12. p←GetBand(CurBank,k);
13. else
14. p1←GetBand(CurBank,CurBank.len); //Band is not
enough to map
15. NextBank←GetMaxBank(NextStripe);
16. if NextBank.len<k-CurBank.len then
17. recover surplus space;
18. end if
19. NextBank←GetMaxBank(NextStripe);
20.p2←GetBand(NextBand,k-CurBank.len);
21. p←link(p1,p2); //Connect to Band
22. end if
23. AddMap(p);
24. return k;

The problem of access violation significantly affects the sys-
tem performance. We must take appropriate measures to resolve
the conflict. In this study, we found that the sufficient condition
for avoiding the conflict is K ≤ N/2. Of course, K is the num-
ber of bands that load needs to cross, and N is the total number
of disks.

To eliminate the accessing conflict, we propose a strategy for
avoiding conflict. The idea is expressed by algorithm 2.

Algorithm 2: AvoidClif() Strategy for avoiding conflict
1. q1←GetBand(CurBank,CurBank.len);
2. NextBank←GetMaxBank(NextStripe);
3. if NextBank.len<k+1-CurBank.len then
4. The free block of the current stripe is deleted;
5. NextBank←GetMaxBank(NextStripe);
6. q2←GetBand(NextBank, k+1-CurBank.len);
7. q←link(q1,q2); // Connect to K +1 Band
8. end if
9. pos←AccessConflict(q); // To determine the conflict
10. if pos=FFFF or pos=kthen // No conflict or end band has
conflict
11. Delete(p,k)

12. else
13. Delete(q ,pos) // the conflict band at pos
14. end if

When algorithm 1 is executed to line12, we must select k
bands across two stripes to map. We first select K +1 bands
(lines 1-7) and then check the access violation (line 8). If the

Figure 3 Example of storage space dynamic mapping.

Figure 4 Problem of access violation in Example 2.

current bank has no conflict or the end of the band has conflict,
we delete the end of the band. Otherwise, we delete the conflict
band according to the location parameter position. Finally, we
can find k parallel bands such that there is no conflict

Figure 5 shows the spatial distribution of the avoidance strat-
egy, where "/" represents the band that do not participate in ad-
dress mapping.

Figure 5 Storage space mapping after the avoidance policy is implemented.

312 computer systems science & engineering

J. LIU

We continue to explain the previous example in detail. When
load E is executed to the 6th time, it needs to open disks 2, 3, and
4, in stripe0, and we open disks 0, 3, and 4, when we write to
the next stripe. Disk3 is accessed at the same moment. Thus, an
access violation is generated. After implementing the avoidance
strategy according to algorithm 2, load E on the distribution of
disk 3 moves onto the next stripe and thus, does not participate in
mapping, which is a very good solution for avoiding the conflict.

2.4 Space-Saving Method (SSM)

The strategy for avoiding conflict has shortcomings. From Ex-
ample2, we see that a small amount of storage space is wasted
after the avoidance strategy is used. Thus, we also propose a
space–optimization strategy called the SSM for recycling wasted
space. The details of the idea are expressed by algorithm 3. Al-
gorithm 3 defines a structure CurNum and, a variable Curband
on behalf of the remaining number of bands in the current stripe.
The variable Curstripe represents the current stripe number, with
initial value of 0.

Algorithm 3: SSM
/* * curnum: The current disk number, the initial value is stripe0.
*curspt: A pointer to the current disk, initially pointing to
stripe0. */
1. while (curspt->next<>null) do
2. curspt->Curstripe++; // Add the stripe number to the first
column of the table
3. curspt->Curband = CurBand.len; // remaining band number
4. curspt->next = NextStripe;
5. end while
6. sort (Curnum); //remaining band number for the first priority,
stripe number for the second best, Prior to the Stripe sort;
7. while (k>0) do
8. if (findband (k,CurNum)>=0) Then
9. curnum.Curband=curnum.Curband-k;// Update remaining
band number
10. sort (CurNum);
11. end if
12. end while

We continue to discuss the above example, assuming that each
stripe is divided into five banks, the remaining band quantity is
divided into four cases: one , two, three, and four bands. Thus,
we can create a table to express the relationship between the
remaining bands and the number of stripes, as shown in Table 1.

Table 1 Relationship between remaining bands and number of stripes

Stripe number Number of remaining
0 1
1,4 2
2 3
3 4

The list presents the quantity of remaining bands in each bank,
sorted from low to high. If the load needs to open two disks to

satisfy the performance requirements, we first look for the re-
maining band quantity of 2, and check the stripe number. When
the remaining band quantity is 2, the stripe number is 1 or 4. This
means that the disks1 and 4 both have two free bands, because
we regard the number of remaining bands for the first priority,
that’s when the load comes, the corresponding data are written to
disk1 in order first, after which the remaining band is re-sorted.
Thus, we make full use of the space that has been deleted. When
we write the data full of disk each time, we can delete the earli-
est data in order. As above mentioned (deleted in order). Thus,
when the load arrives each time, we first find the table, in order
to confirm where the free band is and then locate the physical
address on the disk. Finally, the data are written in the free band.
The performance is greatly improved because of the recovery of
space, and the storage space is fully utilized.

3. EXPERIMENTAL RESULTS AND
ANALYSIS

3.1 Performance comparison

To test the energy consumption, we built ADL-RAID and S-
RAID5 for comparison under Linux Kernel 3.1. We set the
stripe size as 256k. We open one disk when the load size is
between 0k and 256k, two disks when the load size is between
256k and 512k, and three or more disks when the load size is
between 512k and 1024k. The hard disk and server parameters
used in the experiment are presented in Tables 2 and 3.

Table 2 Disk parameters.

Description Value
Model WD10EZEX
Interface STAT3.0
Rotational speed 7200rpm
Size 1TB
Active Power 6.8W
Idle Power 6.1W
Standby Power 1.2W
Spin up time 1.5s

Table 3 Server parameters.

Description Value
Model Power Edge R730
CPU Xeon E5-2603 v3
Interface SAS/STAT3.0
Memory type RDIMM
Memory Size 16GB

Iometer is the most widely used tool for measuring and test-
ing I/O subsystems. In the experiment, we used the Iometer tool
to generate different write requests. The test results of the sys-
tem regarding the performance and response time are shown in
Figures 6 and 7.

vol 33 no 5 September 2018 313

ADL-RAID: ENERGY-SAVING DATA LAYOUT FOR DYNAMIC LOADS

16 32 64 128 256 512 1024 2048 4096

50

100

150

200

250
 80% ADL-RAID
 80% S-RAID5
 100%ADL-RAID
 100% S-RAID5

Request Length (KB)

Tr
an

sf
er

 S
iz

e
(M

Bp
s)

Figure 6 The comparison of the transfer size between ADL-RAID and S-RAID5.

16 32 64 128 256 512 1024 2048 4096
0

10

20

30

 80% ADL-RAID
 80% S-RAID5
 100% ADL-RAID
 100% S-RAID5

Request Length (KB)

Av
er

ag
e

W
rit

e
R

es
po

ns
e

Ti
m

e(
m

s)
 (m

s)

Figure 7 The comparison of the response time between ADL-RAID and S-RAID5.

Figure 6 shows the ADL-RAID and S-RAID5 transmission
rates of the contrast for different load requirements, under the
condition of 100% and 80% continuous write request. Because
ADL-RAID is proposed for dynamic load,and the disk is divided
into different areas. When the load size is less than 256K, the
write performance of S-RAID5 is superior to that of ADL-RAID.
The reason is that the ADL-RAID only needs to open a disk to
meet the performance requirements at this time, and S-RAID5
need to open two parallel disks to execute tasks. So the overall
performance of S-RAID5 is better than ADL-RAID. Until the
load size is between 256k and 512k, in this case ADL-RAID also
began to open two parallel disks to perform tasks, so the data of
transfer size has no big difference compared to S-RAID5. From
the experimental data we can also see that when the load size
is 512k, the data transfer rate of ADL-RAID is 138.27MB/s,
the data transfer rate of S-RAID5 is 139.86MB/s, the data is al-
most flat. However, when the load size is from 512k to 4096K,

ADL-RAID opens three disks. Thus, the write performance is
significantly increased. When the load is 4M, two system struc-
tures have the greatest performance. Under the condition of 80%
continuous write request, the average transfer rate data for ADL-
RAID and S-RAID5 are 220.05MB/S and145.62MB/S, respec-
tively. Hence, the write performance is improved by 33.8%. For
100% continuous write request the average transfer rate data for
two structures are 230.56MB/S and 151.43MB/S, respectively.
Therefore, the write performance is improved by 34.3% which
verifies that ADL-RAID can adapt to dynamic load characteris-
tics.

Figure 7 shows the change in the response time with the load
changes. When the load size is between 512K and 4096k, the
average write response time for ADL-RAID and S-RAID5 is
10.51ms and 12.21ms. So the write response time of ADL-
RAID is far shorter than that of S-RAID5, Thus, for the response
time, ADL-RAID has significant advantages compared with the

314 computer systems science & engineering

J. LIU

Figure 8 The test structure of energy consumption.

0 500 1000 1500 2000 2500 3000 3500

5

10

15

20
 S-RAID5
 ADL-RAID5

Runing time(S)

C
on

su
m

pt
io

n(
W

)

Figure 9 The comparison of the energy consumption of S-RAID5 and ADL-RAID.

previous S-RAID5.

3.2 Comparison of energy consumption

Follow the energy consumption structure of S-RAID5, we add
ammeter between power supply and disks, formed the energy
consumption test structure of ADL-RAID. As shown in Figure
8.

The voltage for the disk array storage media is provided by
power supply (5v/12v). The value of electric current is used to
record by ammeter between power supply and disks, The server
side samples the current value at regular intervals.

In the experiment, we calculate the total energy consumption
of the disk using the following formula(2):

W =
n−1∑

i=0

V i × I i (2)

Where, “n” represents the number of disks, "W" represents the
total energy consumption of the disk array, “Vi ” represents the
real-time voltage of the disk, ”Ii ” represents the real-time current
value, and "i" represents the number of disks in the array.

To obtain stable experimental data, we let the storage system
run for 0.5 h first. In the test process, the video data stream
(64 road, 128 road, 256 road of D1 format) was simulated re-

spectively by C language data generator, to produce 256MB,
512MB, and 1024MB data of traffic. We tested 1 h of energy
consumption. The results of the test are shown in Figure 9.

As shown in Figure 9, at the beginning of the system oper-
ation, because S-RAID5 is a fixed group structure, its energy
consumption is flat. But as far as ADL-RAID concerned, ADL-
RAID open the disk according to dynamic load. When the load
less than 256k, open one disk, in this case the energy consump-
tion is lower than the S-RAID5. With the load size increasing,
ADL-RAID can not meet the load requirements when open one
disk, so it will open two disks at this time to meet the load’s
requirement. During this time the energy consumption about
two storage structures are almost the same. We can see it clearly
in figure9. When the bigger load comes, ADL-RAID needs
to open three disks to meet the load requirements. Therefore,
the energy consumption will increase obviously. The average
energy consumption of S-RAID5 is 9.528W. Compared with
S-RAID5, ADL-RAID has an average energy consumption of
6.325W, which is 33.6% lower. Thus, the energy consumption
exhibits an obvious decline in the condition where the write per-
formance is improved and the write response time is reduced.

vol 33 no 5 September 2018 315

ADL-RAID: ENERGY-SAVING DATA LAYOUT FOR DYNAMIC LOADS

4. CONCLUSION

To realize energy-saving in continuous data storage applications,
such as video surveillance, CDP and VTL, we propose an energy-
saving data layout for dynamic loads called, ADL-RAID, that is
proposed based on S-RAID [17], which is a static local parallel
data layout. According to the perceived load performance re-
quirements, ADL-RAID uses an address mapping mechanism to
allocate storage space dynamically with appropriate parallelism
for the load. Finally proved by experiment, in condition of 80%
and 100% continuous write request, compared with S-RAID5
the write performance improve 33.8% and 34.3% respectively,
energy consumption saves 33.6%. So ADL-RAID can adapt to
high-intensity fluctuations in the load and burst load, with higher
energy efficiency and availability than S-RAID.

Acknowledgement

The work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61673159, in part by
the Natural Science Foundation of Hebei Province under Grant
F2016202145, and in part by the Science and the Technology
Project of Hebei Province under Grant 15210325.

REFERENCES

1. Meng Xiaofeng, Ci Xiang. Big data management: concepts, tech-
nologies and challenges. Journal of Computer Research and De-
velopment, 2013, 50(01):146-169

2. Chen Shimin. Big data analysis and data velocity. Journal of Com-
puter Research and Development, 2015, 52(02): 333-342

3. Li Yongkun, Shen Biaobiao, Pan Yubiao, Xu Yinlong, Li Zhipeng.
Workload-Aware Elastic Striping With Hot Data Identification for
SSD RAID Array. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2017, 36(5): 815-828

4. Sun Zhizhuo, Zhang Quanxin, Tan Yuan, Li Yuanzhang. Ripple-
RAID: A high - performance disk array for sequential data storage.
Journal of Software, 2015, 26(07): 1824-1839

5. Colarelli D, Grunwald D. Massive Arrays of Idle Disks for Stor-
age Archives. Proceeding of the 2002 ACM/IEEE Conference on
Supercomputing, 2012, 1-11

6. Xie Tao. SEA: A String-Based Energy-Aware Strategy for Data
Placement in RAID-Structured Storage Systems. IEEE Transac-
tions on Computers, 2008,57(6):748-761

7. Chen Youxu, Xu Yinlong, Li Yongkun, Xu Jun. Balanced Parity
Update Algorithm with Queueing Length Awareness for RAID
Arrays. 2016 IEEE 22nd International on Parallel and Distributed
Systems, 2016, 818-825

8. Sun Dongdong, Xu Yinlong, Li Yongkun, Wu Si, Tian Chengjin.
Efficient Parity Update for Scaling RAID-like Storage Systems.
2016 IEEE International Conference on Networking, Architecture
and Storage, 2016, 1-10

9. Zhan Ling, Men Yong, Tang Chenlei, Xu Peng, Wan Jiguang.
SHGA: Design and Implementation of Two - level Cache Algo-
rithm Based on. Small microcomputer system, 2017, (05): 1152-05

10. Cai Jieming, Fang Pei, Jia Siyi, Dong Huanqing, Liu Zhenjun, Liu
Guoliang. Research on Hybrid RAID System with Multiple Strip
Layout. Small microcomputer system, 2017, (05): 1143-09

11. Zhang Wenhui, Cao Qiang. A parallel codec algorithm based on
XOR based RAID6 code. Computer research and development,
2015, 52(S2): 90-95

12. Dong Yong-Feng, Liu Jing-Yu, Yan Jie, Liu Hong-Pu, Wu You-Xi.
HS-RAID2: Optimizing Small Write Performance in HS-RAID.
Journal of Electrical and Computer Engineering, 2016

13. Liu Jingyu, Tan Yuan, Xue Jingfeng, Ma Zhongmei, Zheng Jun,
Tan Yuan. S-RAID5: An energy-efficient disk array for data access.
Journal of Computer Science, 2013, (06): 1290-1302

14. Li Xiao, Tan Yu-An, Sun Zhi-Zhuo. Semi-RAID: A reliable
energy-aware RAID data layout for data access. 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies, 2011,
1-11

15. Li Yuanzhang, Sun Zhizhuo, Ma Zhongmei, Zheng Jun, Tan Yuan.
S-RAID5: An energy-efficient disk array for data access. Journal
of Computer Science, 2013, (06): 1290-1302

16. Liu Jingyu, Zheng Jun, Li Yuanzhang, Sun Zhizhuo, Wang Wen-
ming, Tan Yuan. Mix S-RAID: An energy-efficient data layout
for sequential data storage. Computer Research and Development,
2013, (01): 37-48

17. Li Xiao, Tan Yu-an, Sun Zhizhuo. Semi-RAID: A reliable energy-
aware RAID data layout for sequential data access. Proceeding of
IEEE Symposium on MASS Storage Systems and Technologies.
IEEE Computer Society, 2011: 1-11

316 computer systems science & engineering

