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Many Domain-Specific Modelling Languages (DSML) can not formally define their semantics, which inevitably brings many problems, such as accurate
description and automatic verification of model properties. In this paper, we propose a formal description method of the structural semantics of DSML for
verifying consistency of models built based on DSML. Firstly, domain indicating structural semantics of DSML is formally defined based on algebra, and
then, we briefly describe our framework for formalizing DSML and verifying consistency of DSML and its models and use a classic case to illustrate our
approach; based on this, we construct an automatic translator for formalizing DSML and its models. Finally, many successful experiments on automatic
translating and automatic verifying show feasibility of our formal approach
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1. INTRODUCTION

As one of essential components of model-driven architecture
(MDA) [1], DSML is a modelling language for specific domain
system modelling (DSM) [2] and can be used to build specific do-
main models, and it is an instance built based on Domain-Specific
Metamodeling Languages. We describe DSML’s abstract gram-
mar and structural semantics by one metamodel that is a special
model used for describing the constraints that all models built
based on DSML must adhere to. That is to say, the metamodel is
a semantic-based representation of Domain-Specific Modelling
Languages.

In the paper, regardless of behavioural semantics that concern
dynamic features during execution, we only consider structural
semantics of DSML that describe static structural constraints
imposed on relationship between model elements [3].

To be fair to say, DSML differs from any traditional program-
ming language that uses an eBNF to define its syntax [4] and
has a type-system. The first difference between the two is that
DSMLs use metamodels to define their specification. Metamod-
els characterize rich layered architecture and various semantic
relations between modelling entities by using a model similar

to UML class diagram. Different from the BNF syntax, meta-
models regard all modelling entities as same level concepts. The
second difference lies in that we can apply DSMLs in varied ways
such as model transformations used to translate from domain-
specific syntaxes to different formal languages, and analysis and
reasoning on models properties and so on.

There are some important aspects for formalizing DSML.
First, there must be an algebraic definition for structure of
DSML. Second, we can obtain formal specifications which are
independent on tools from tool-dependent models. Third, we
can analyze and automatically reason about many properties of
DSML and its models such as consistency based on the for-
mal foundation. But up to now, these problems have not yet
been well solved. We illustrate it with the following several
instances. VMP [5] is a visual, precise and multilevel meta-
modeling framework, but It can’t express constraint rules bound
to the language itself very well. The mature metamodelling
Environment (GME) [6] can express rich constraints, but its for-
mal specifications is not independent of implementation code
of complex tools. Standards such as the UML superstructure
[7] and Meta-Object Facility (MOF) [8] define the syntax and
process via a group of metamodels and express semantics by us-
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ing expanded Object Constraint Language [9], so it is difficult to
precisely analyze and automatically reason about UML models.

Different from those top-down approach using the meta-
metamodel to drive metamodels that drives models. We use a
bottom-up method to formalize structural semantics of DSML.
We start with models and ends with metamodeling through mod-
elling. That is to say, first, we define a simple mathematical
structure called a domain to describe the rich syntaxes and struc-
tural semantics of DSML. Next, we define one mapping that map
one domain to the first-order logic formulas set, which is called
domain mapping. Third, we redefine domain using the same ba-
sic mathematical structure based on first-order logic and propose
an analysis method on domain properties using logical reasoning
and illustrate it by a classic case. Our formal approach is flexible
enough to adapt to not only DSML named XMML (XML-based
Domain-Specific metamodelling language) designed and devel-
oped by ourselves [10] but also other DSMLs.

In order to fully apply our formal method, we construct an
automatic translator for formalizing DSML and its model called
LTtranslMSS (Logical translator on DSML and models Based
on structural semantics) to perform translation of XML format
metamodels or models built based on XMML. Finally, we ex-
ecute automatic mapping experiment on DSML and its models
using LTtranslMSS to illustrate the practicability of our formal
method, and perform automatic verification test to illustrate au-
tomatic theorem prover’s restrictions on size of the metamodel
and its models.

2. RELATED WORKS

Let’s take a look at the UML community first. In Shan L’s pa-
per [11], she defines the modelling language by a metamodel in
UML class diagram and characterizes the metamodel’s seman-
tics via the mapping from metamodels to corresponding sets of
first-order logic formulas over the first order languages and im-
plement a mapping tool called LAMBDES to translate metamod-
els and models into first order logic formulas. There are several
differences between Our approach and Shan L’s. Our XMML is
mainly used to build Domain-Specific models such as software
architecture, network topology and so on, but Shan L’s focuses
on UML class diagram models, state machine models and other
UML models. Because core modelling elements and main re-
lationship between elements contained in the two languages are
different, the former includes entity and the relationship such as
refinement, containment and so on, the latter consist of elements
such as classes, generalization, realization and dependency and
so on, their concrete syntax and structural semantics have to
be different, which inevitably leads to the different formaliz-
ing method and translating rules and automatically reasoning
mechanisms. Next, our formalization of XMML involves meta-
modelling language layer, and Shan L’s focuses on modelling
language layer, so abstraction level of the two is different.

Mustafa Al-Lail et al propose an approach for directly analyz-
ing UML Class Models’ temporal properties expressed in TOCL
and show the feasibility of the approach via an example based
on the Steam Boiler Control System [12]. Without considering
formalization of class metamodel, the approach can not achieve
precise and systematic model validation.

Ruzhen Dong et al propose a formal model-driven engineering
method rCOS for formally modelling software architectures to
bridge the gap between formal techniques and their latent support
for developing practical software. The focus of the approach
is composition and refinements of components rather than the
automated reasoning of models [13].

Look at DSM community again. Faiez Zalila et al use a lan-
guage called TOCL to formally express system requirements
and interpret verification results in order that system designers
need not learn more formal method. They have integrated the
verification tools on a DSML in order to assist developer verify-
ing many properties on executable models. Different from our
method, it can not realize automated reasoning because there is
no automatic mapping mechanism [14].

Ethan K. Jackson and Wolfram Schulte design a new speci-
fication language based on model theory and develop the FOR-
MULA program for dealing with search problems and recursive
definitions on basis of automated formal analysis via constraint
solving [15]. As a novel formal specification language for ef-
ficient reasoning and fast verifying based on open-world logic
programs and behavioral types, FORMULA is based on Horn
logic [16], rather than first-order logic used in our method.

But using our method, we can implement automatically rea-
soning on consistency of DSML and its models by automatically
translate XML format DSML and its models into the correspond-
ing first-order logic system based on our automatic translating
mechanism for formalizing DSML. This is very important for
formalizing DSML and verifying models.

3. DOMAIN

In my another published paper, we have created a mathematical
description of domain structure based on algebra and discussed
domain emptiness, domain equivalence and domain mapping
mechanism. Here, we only give the brief description of domain,
and its details can be seen in [17], based on this, we discuss prop-
erties of domain mapping and establish a definition of DSML.

A domain R consists of 5 sets such as domain signature set
Sindicating name of modelling element, constraint signature set
Sc as an extended set of S, alphabet set � indicating name of
model element, constant set O indicating domain attributes and
constraints formulas set C denoting a group of well-formedness
rules on domain models.

Representing structural semantics of the DSML using domain
can unify DSML and its models built based on it in the domain
so that we can discuss domain properties better.

After defining domain structure and discussing domain prop-
erties based on algebra, we cannot reason about consistency of
DSML and its models, so we have to create a translating mech-
anism called domain mapping to translate one domain into first-
order logic system, and its details can be seen in [17]. Properties
of domain mapping are discussed in the following.

Theorem 1 Domain mapping δ is a one-to-one and onto function
from domain R = < S, Sc, �, O, C > to first-order logic system
TR .

Proof Let x is an arbitrary domain. The mapping δ consists of
several identical mappings or equivalence mappings, so domain
x must return to itself by the mapping δ and then the inverse
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mapping δ−1, that is, δ−1(δ(x))=x , to δ(x)=δ(y), after adding
δ−1 on both sides of =, we can get δ−1(δ(x))=δ−1(δ(y)), thus
x = y,so δ is one-to-one function. Additionally, there must
be a domain x that makes δ(x) = TR for any first-order logic
system T R . Thus, M is one-to-one and onto function, so we can
conclude that domain mapping δ and its inverse mapping δ−1are
both bijections.

After domain mapping have been proved to be a bijection, we
can reason about domain consistency via T R . On the basis of
the domain, we give the formal definition of DSML as follows.

Definition 1 (DSML). A DSML LRis 2-tuple consisting of domain
R =< S, Sc, �, O, C > and its domain mapping H, that is,
L R =< R, H >.

4. FORMALIZING DSML AND ITS MOD-
ELS

4.1 A Formal Framework of DSML

We use a metamodel to represent DSML’s structural semantics,
thus, once having completed formalization on a metamodel, we
complete formalization on DSML.

According to the definition about domain, we add symbols
sets consisting of symbols signature set S, constraint signature
set Sc and constant set O and constraints formulas set C into
first-order logic formalized system called Q predicate calculus
[18], thus, we establish a metamodel formalized system based
on first-order logic called TQ(M) (M denotes one metamodel).
According to first order logic semantic theory, any model in-
stance created using metamodel M can be seen an interpretation
of formalized system TQ(M), and a collection of all entity type
elements in the instance can be regarded as universe of discourse
of interpretation, so power set of the term algebra TS(� ∪ O)

over S generated by �∪O can be equivalent to set of all models
MS built based on M , denoted MS = P(TS (�∪O)), where P
means power set of set. At the same time, MS is also a collec-
tion of all possible interpretations of TQ(M). Based on this, we
can use determination rule of satisfaction relationship to verify
well-formedness of any model as an instance of metamodel M .

uniqueness of XMML makes it possible for us to formalize
XMML by artificial derivation and logical proving. But meta-
models built on basis of XMML are many and varied, similarly,
models built on basis of DSML are also many and varied, thus
it is impossible for us to perform a manual derivation for every
metamodel or each model, which inevitably lead to full artifi-
cial reasoning on properties of metamodels or models, so an
automatic mapping mechanism for formalizing any metamodel
and its models has to be created. With improvement to UML
mapping mechanism in the literature [11], and combined with
first-order logic theory,we establish a framework for formalizing
any metamodel and its models.

To build a metamodel formalized system, the key is to estab-
lish a first-order language symbol set and a group of constraint
formulas based on symbol set. We can derive a first-order lan-
guage symbol set

∑
from abstract syntax of a metamodel, which

consists of a set of predicate symbols, so the mapping from meta-
models to

∑
called symbol mapping L has to be firstly estab-

lished. Set of constraint formulas can be derived from structural

semantics of a metamodel, which consists of uniqueness of clas-
sification of entity type elements, type constraints and multiple
constraints of association type elements and so on, thus we then
establish the formula mapping C∑ based on

∑
. Upon com-

pletion of formalizing any metamodel, we can analyse logical
consistency of itself. In addition, to verify consistency of models
built based on any metamodel, the mapping from a model to a
corresponding first-order logic statements set based on

∑
called

model mapping S∑ has to be established to determine whether
a model as an interpretation of a metamodel formalized system
can satisfy a metamodel. Thus, a framework for formalizing
any metamodel consists of symbol mapping L, formula map-
ping C∑, model mapping S∑, metamodel consistency verifica-
tion and determination of satisfaction of a model to a metamodel
and so on. The architecture of the framework is shown in Figure
1.

First-order language symbol set
∑

(M) generated via symbol
mapping is a union set of constant symbol set C∑(M) and pred-
icate symbol set P∑(M), that is,

∑
(M) = C∑(M) ∪ P∑(M).

Constraint formulas set A∑(M) based on
∑

(M) generated via
formula mapping contains the following three sets: typed con-
straints set ACU (M) used to define classification completeness
and uniqueness of entity type elements, type constraints set
AT (M) used to establish type constraints of entity elements lo-
cated on both sides of the association and multiple constraints
set AM (M) used to describe numbers of entity elements that are
allowed at two endpoints connected by an association edge, so
A∑(M) = ACU (M) ∪ AT (M) ∪ AM (M).

Based on the framework, we can establish corresponding au-
tomatic mapping rules for finishing symbol mapping, formula
mapping and model mapping, currently, these rules can only
support translation of XML format metamodels or models built
based on XMML, without supporting other DSMLs, and its de-
tails can be seen in my another paper [19].

4.2 Consistency of Metamodel and its Models

We find it very difficult to find an satisfiable interpretation for
constraint axiom set A∑(M) of any metamodel formalized sys-
tem TQ(M) manually, so we can only use automatic theorem
prover to automatically prove logical consistency of constraint
formula sets A∑(M). logical consistency of metamodel has
been defined in my another paper [19].

After metamodel formalized system called TQ(M) is proved
to logically consistent, metamodel M has to exist a satisfiable
interpretation, that is to say, there are legal models built based
on metamodel M , thus we can analyse many models’ properties
such as consistency in the domain represented by metamodel
M . At the point of first-order logic [18], a legal model S as an
instance of metamodel M is an interpretation that satisfies all
constraint formulas of A∑(M) of metamodel formalized sys-
tem TQ(M). Similarly, an illegal model S is an interpretation
that cannot satisfies A∑(M). An interpretation of TQ(M), sat-
isfaction relationship of the interpretation of TQ(M) to TQ(M)

and logical consistency of model are formally defined in [19].
According to equivalence relationship of satisfaction and logi-
cal consistency, reference to the literature [11], we can deduce
determination method of model consistency. Please refer to the
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Figure 1 A formal framework of metamodel.

literature [19].

4.3 Case Study

We illustrate our formal method by using software architecture
metamodel WS A shown in Figure 2 as an example.

The metamodel WS A consists of modeling elements of en-
tity type such as SoftwareArchitecture, Component, Connec-
tion, Interface and modeling elements of association type
such as AttchInfToCom andAttchInfToCon denoting attach-
ment relationship, ComRefSA denoting refinement relationship
andInfAssociation denoting association relationship, it denotes
that software architecture consists of component and connection,
and also builds constraint rules on all models in the domain that
interfaces have to be a part of component or connection and com-
ponents or connections cannot be directly interconnected and
components or connections must be interconnected through the
interface and any component can be refined into a new software
architecture model.

According to symbol mapping rules, constant
symbol set generated via WS A is empty, that is,
C∑(WS A) = ∅, predicate symbol set generated via WS A

is P∑(WS A) = {SoftwareArchitecture(x), Component(x),
Connection(x),Interface(x), AttachInfToCom(x ,y), Attach
InfToCon(x ,y), InfAssociation(x ,y),ComRefSA(x ,y), Software
ArchitectureContainment(x ,y)}.

Typed constraints set generated by applying formula mapping
rules on W S A is: ACU (W S A) = {

∀x .SoftwareArchitecture(x)?Component(x)?Connection(x)?
Interface(x),
∀x .SoftwareArchitecture(x)→ ¬Component(x),
∀x .SoftwareArchitecture(x)→ ¬Interface(x),
···
∀x . Connection(x)→ ¬Interface(x)}, with a total of 7 for-

mulas; and type constraints set generated via WS A is: AT (WS A)

= {
∀x ,y. AttachInfToCom(x, y)→Interface(x)∧Component(y)

∀x , y,z. AttachInfToCom(x, y)∧AttachInfToCom(x,z) →

(y = z)
∀x ,y. AttachInfToCon(x ,y)→Interface(x)∧Connection(y)

∀x ,y,z. AttachInfToCon(x ,y)∧AttachInfToCon(x,z)→ (y =
z)
∀x ,y. ComRefSA(x ,y)→Component(x)∧Software

Architecture(y)

∀x ,y,z. ComRefSA(x ,y)∧ComRefSA(x,z)→ (y = z)
∀x ,y.InfAssociation(x ,y)→Interface(x)∧Interface(y)

}, with a total of 7 formulas; and multiple constraints set
generated via W S Ais: AM(W S A) = {
∀x ,y,z. InfAssociation(y,x)∧InfAssociation(z,x) → (y =

z)
∀x ,y,z. InfAssociation(x ,y)∧InfAssociation(x ,z) → (y =

z)},

with a total of 2 formulas. Thus, Constraint formula set gener-
ated via W S A is union of above three sets, that is

A∑(W S A) = ACU (W S A)∪AT (W S A)∪AM (W S A).
After we add

∑
(W S A) and A∑(W S A) into predicate calcu-

lus Q to form metamodel formalized system T Q(W S A), for-
malization of W S Abased on first-order logic is finished. Af-
ter A∑(W S A) have been verified based on automatic theorem
prover, there is no contradiction in it, and we can conclude that
W S A is logically consistent in the domain, there exist an inter-
pretation that can satisfy metamodel W S A, so it makes sense to
perform consistency verification of models built based on W S A

in the domain.
Based on formalization of DSML, we discuss our method of

models’ consistency verification by using two models in software
architecture domain named S1(W S A) and S2(W S A) shown in
Figure 3 and Figure 4 as examples. Both S1(W S A) and S2(W S A)

describe a client/server two-tier architecture connected by mid-
dleware. In addition, some elements such as P1, P2and so on
in Figure 4 indicate interfaces attached to a component or a con-
nection.

According to model mapping, a group of first-order
predicate statements corresponding to S1(W S A) gener-
ated by applying model mapping rules on S1(W S A)

is: T L(S1) = {Component(ClientA)(S11),Component(ClientB)
(S12),Component(Server) (S13),
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<<Model>>
SoftwareArchitecture

<<Entity>>
Component

<<Entity>>
Connection

<<Entity>>
Interface

<<Relationship>>
InfAssociation

<<SRoleAssignRela>>0..1 << >>

<<TRoleAssignRela>>0..1 << >>
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<<Refinement>><< >>
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AttchInfToCom

<<Attachment >><< >>

AttchInfToCon

<<Attachment>><< >>

<<Containment>>

<<Containment>><< >> <<Containment>><< >>

Figure 2 Software architecture metamodel WS A.

Middleware

ClientA

ClientB

Server

 
Figure 3 Model S1(W S A) built based on W S A .

Middleware

ClientA

Server

P0

P2 P4

P3P1

ClientB

P5

Figure 4 Model S2(W S A) built based on W S A .

Connection(Middleware) (S14),InfAssociation (ClientA,
Middleware) (S15),InfAssociation(ClientB, Middleware)
(S16),InfAssociation (Middleware, Server) (S17)}. Union of
A∑(W S A) and T L(S1) is contradictory based on automatic
theorem prover, that is, A∑(W S A)∪T L(S1)+False, and we can
find that contradiction is generated by violating association type
constraint formula in AT(W S A) ∀x, y.InfAssociation(x, y)→
Interface(x)∧Interface(y) ,thus we can determine that S1(W S A)

is not consistent in the domain W S A by Inference 1.
Similarly, a group of first-order predicate statements

corresponding to S2(W S A) generated by applying model
mapping rules on S2(W S A) is: T L(S2)= {Compo-
nent(ClientA), Component(ClientB), Component(Server),

Connection(Middleware), Interface(P0), Interface(P1),
Interface(P2), Interface(P3), Interface(P4), Interface(P5),
AttachInfToCom(P0,ClientA), AttachInfToCom(P1,ClientB),
AttachInfToCon(P2,Middleware),
AttachInfToCon(P3,Middleware), AttachInfToCon(P4, Middle-
ware), AttachInfToCom(P5,Server), InfAssociation(P0,P2),
InfAssociation(P1,P3), InfAssociation(P4, P5)}. Union
of A∑(W S A) and T L(S2) is logically consistent based on
automatic theorem prover, that is, A∑(W S A)∪T L(S2)+True,
thus we can determine that S2(W S A) is consistent in the domain
W S A.
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5. DEVELOP OF LTTRANSLMSS

Based on symbol mapping, formula mapping and model map-
ping, through the improvement and expansion of the original
system LTtranslMSS in my another paper [19], we design an
automatic mapping tool for formalizing DSML and its mod-
els called LTtranslMSS to automatically translate XML format
metamodels and models defined based on XMML grammar style
to the SPASS format predicate statements set [20], so we can au-
tomatically verify their many properties such as consistency.

LTtranslMSS is made up of automatic translating subsystem
that is used to formalize metamodel called TranslMBD (Trans-
lating of Metamodel Based on Domain) and translating map-
ping subsystem that is used to formalize model called TranslSBD
(Translating of inStances Based on Domain). TranslMBD im-
plements formalization of metamodel via symbol mapping and
formula mapping to finish verification of logical consistency of
T Q(M). TranslSBD implements formalization of model via
model mapping based on formalization of metamodel to finish
verification of logical consistency of model. TranslMBD will
generate metamodel logic system, andTranslSBD will generate
model logic system, and both have to be merged into one logic
system named domain logic system as input of SPASS.Logical
architecture ofTranslMBD andTranslSBD is shown in Figure 5.

Through improving the previous version named LMapMSS,
we construct an automatic translator for formalizing DSML and
its models named LTtranslMSS by using Visual C# as devel-
opment tool on windows platform, and then integrate it into our
visual metamodelling and modelling tool Archware. Thus, Arch-
ware becomes a complete platform including visual modelling,
automatically translating of metamodel and its models and au-
tomatically reasoning on models.

6. EXPERIMENTS AND ANALYSIS

6.1 Experiments on Automatic Translating

To verify the availability of the LTtranslMSS, we do many ex-
periments for automatically translating metamodels by using
TranslMBD. we conclude that there is a square relation between
cost of translation time on one metamodel Mand total number of
entity modeling elements contained in the Maccording to square
relation between traversal time on Msyntax tree and number of
nodes in M.

we also do many tests to verify whether there is a square
relation between the two by using TranslMBD. For instance,
we executed automatically translating on metamodel W S Ain 4.3
section by using TranslMBD. As a result, syntax tree code using
XML format X T ree(W S A) generated via XML parsing inter-
face is listed in Appendix A, and the SPASS format first-order
logic code T Q(W S A) created via translating interface is listed in
Appendix B. Because W S Acontains only 5 entity elements, we
only spend 0.06 second to complete the translation on W S A. In
addition, after we perform many automatically translating on dif-
ferent sizes of metamodel, such as the metamodel that includes
10, 15 or 20 entity elements and so on, we find that translation
time grows by square relation with the increase of the number of
elements contained in the W S A. Relationship between the two

is shown in Figure 6.
We can come to the conclusion that size of the metamodel that

we can useTranslMBD to translate is unrestricted, and transla-
tion time grows by square relation with the increase of the meta-
model size. The above conclusion can be equally applied in the
automatic translating of models using TranslSBD.

6.2 Experiments on Automatic Verification

According to research results of my another published paper
[21], there is a square relation between the total number of first-
order logic formulas generated by formalizing any metamodel
and number of entity modeling elements contained in the meta-
model; in addition, the time spent on completion of proof has an
exponential relationship with the number of logic formulas. So
as entity elements of any metamodel increase, the correspond-
ing logic formulas grow in square relation, which will lead to an
exponential increase in time spent for proving based on SPASS.

We do a lot of experiments on automatic verification of meta-
models and its models based on SPASS and other automatic
theorem prover such as Otter [22]. We find through experiment
that the upper limit of the number of formulas generated via any
metamodel is about 1000. In particular, if a metamodel contains
less than 1000 formulas, SPASS or Otter only needs less than
10 seconds to complete proof; otherwise, it takes more than 10
seconds for SPASS or Otter to complete proof. On the other
hand, whether the metamodel contains contradictions is another
important factor to determine the proof time length. To any meta-
model with contradiction, proof time is relatively short, usually
not more than a few seconds, but if the metamodel contains no
contradictions, SPASS or Otter have to spend much longer time
to finish proof, sometimes it cannot normally stop running.

We also execute automatic verification experiments on the
constraint formula set A∑(W S A) generated by metamodel
W S Ashown in Figure 5 based on SPASS. There are only 21 for-
mulas contained in the W S Aandthere is no contradiction in it,so
it only takes 1 seconds to finish proof on A∑(W S A). We also
finish consistency verification of model S1(W S A) and S2(W S A)

built based on W S A. We find that it only takes less than 1 sec-
ond to finish proof on union of A∑(W S A) andT L(S1) gener-
ated byS1(W S A) due to contradictions contained in T L(S1),
but SPASS spends 2 seconds to complete proof on union of
A∑(W S A) andT L(S2) generated byS2(W S A) since T L(S2) is
logically consistent.

We can come to the conclusion that the number of formulas
generated via any metamodel should not exceed 1000,or we have
to spend much longer time to prove or cannot even terminate
running of SPASS due to undecidability of first-order logic, and
the above conclusion can be equally applied in the automatic
verification of models.

7. CONCLUSION

Many Domain-Specific Modelling Languages (DSML) can not
formally define their semantics, which inevitably brings many
problems, such as accurate description and automatic verifica-
tion of model properties. In order to solve this problem, we
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Figure 5 Logical architecture of TranslMBD andTranslSBD.

 

Figure 6 Square relationship between translating time and number of entity elements.

present a formal description method of DSML’s structural se-
mantics for verifying models’ consistency to unify DSML and
its models in the same domain. Based on this, we create our
framework for formalizing DSML and verifying consistency of
DSML and its models and illustrate it by a classic case. Finally,
we construct an automatic translator for formalizing DSML and
its models and do many experiments on automatic translating and
automatic verifying to confirm the practicability of our formal
approach.
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Appendix A XML document syntax tree of WS A − XTree(WS A)

<?xml version="1.0" encoding="utf-8" ?>
<Models>
<Model id = "Model-1" name ="SoftwareArchitecture" kind ="SoftwareArchitecture">
<Entities>
<Entity id = "Entity-2" name = "Component" kind ="Component">
<Refinement id="Refinement-3" name="ERefinedModel" kind="ERefinedModel" refinedmodel="Model-1">
</Refinement>
<Attachment id="Attachment-4" name="AttachInfToCom" kind="AttachInfToCom">
<AttachedEntity AttachedEntityID="Entity-8" ></AttachedEntity>

</Attachment>
</Entity>

<Entity id = "Entity-6" name = "Connection" kind ="Connection">
<Attachment id="Attachment-7" name="AttachInfToCon" kind="AttachInfToCon">
<AttachedEntity AttachedEntityID="Entity-8" ></AttachedEntity>

</Attachment>
</Entity>

<Entity id = "Entity-8" name = "Interface" kind ="Interface">
</Entity>

</Entities>
<Relationships>
<Relationship id = "Relationship-9" name = "InfAssociation" kind ="InfAssociation">
<Roles>
<Role name = "SRoleAssginRela" multilower="0" multiupper="1">
<targetitem itemid = "Entity-8"></targetitem>

</Role>
<Role name = "TRoleAssginRela" multilower="0" multiupper="1">
<targetitem itemid = "Entity-8"></targetitem>

</Role>
</Roles>
</Relationship>

</Relationships>
</Model>
</Models>

Appendix B First-order logic system in SPASS format of WS A − TQ(WS A)

begin_problem(class).
list_of_symbols.
functions[
% ————- (S.1) constants: Attribute values
(commerce,0),
(open-source,0),
(self-develop,0),
(DblTrue,0) ,
(DblFalse,0)
% ————- (S.2) EntityType And RelationshipType Predicates
].
predicates[
(SoftwareArchitecture,1),
(Component,1),
(Connection,1),
(Interface,1),
(RefComponent,1),
(AttachInfToCom,2),
(ComType,2) ,
(ComPrice,2),
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(AttachInfToCon,2),
(InfAssociation,2),
(ComRef,2) ].
end_of_list.
list_of_formulae(axioms).
%==============(A.1) Completeness of classification
expression (forall([x],or(SoftwareArchitecture(x),or(Component(x),or(Connection(x),or(Interface(x),RefComponent(x))))))).
%==============(A.2) Disjointness of classification
expression(forany([x],contains(SoftwareArchitecture(x),not(Component(x))))).
expression(forany([x],contains(SoftwareArchitecture(x),not(Connection(x))))).
expression (forany([x],contains(SoftwareArchitecture(x),not(Interface(x))))).
expression (forany([x],contains(SoftwareArchitecture(x),not(RefComponent(x))))).
expression (forany([x],contains(Component(x),not(Connection(x))))).
expression (forany([x],contains(Component(x),not(Interface(x))))).
expression(forany([x],contains(Component(x),not(RefComponent(x))))).
expression(forany([x],contains(Connection(x),not(Interface(x))))).
expression(forany([x],contains(Connection(x),not(RefComponent(x))))).
expression(forany([x],contains(Interface(x),not(RefComponent(x))))).
%==============(A.3) Enum Attribute Type Constraint
expression(forany([x,y],contains(and (ComType(x,y),Component(x)),or(equal(y,commerce),or(equal(y,open-source),equal(y,self-

develop)))))))).
%==============(A.4) Not Enum Attribute Type Constraint
expression(forany([x,y],contains(and (ComPrice(x,y),Component(x)),equal(y,DblTrue)))).
%==============(A.5) Not Association Type Constraint
expression(forany([x,y],contains(AttachInfToCom(x,y),and(Interface(x),Component(y))))).
expression(forany([x,y,z],contains(and( AttachInfToCom(x,y),AttachInfToCom(x,z)),equal(y,z)))).
expression(forany([x,y],contains(AttachInfToCon(x,y),and(Interface(x),Connection(y))))).
expression(forany([x,y,z],contains(and( AttachInfToCon(x,y),AttachInfToCon(x,z)),equal(y,z)))).
expression(forany([x,y],contains(ComRef(x,y),and (RefComponent(x),Interface(y))))).
expression(forany([x,y,z],contains(and ( ComRef(x,y),ComRef(x,z)),equal(y,z)))).
%==============(A.6) Association Type Constraint
expression(forany([x,y],contains(InfAssociation(x,y),and (Interface(x),Interface(y))))).
%==============(A.7.-A.8) Multiplicity Constraint
expression(forany([x,y,z],contains(and(InfAssociation(y,x),InfAssociation(z,x)),equal(y,z)))).
expression(forany([x,y,z],contains(and(InfAssociation(x,y),InfAssociation(x,z)),equal(y,z)))).
%==============(A.9.) EnumNotEqual Constraint
expression(not(equal(commerce,open-source))).
expression(not(equal(commerce,self-develop))).
expression(not(equal(open-source,self-develop))).
%==============(A.10.) NotEnumNotEqual Constraint
expression(not(equal(DblTrue ,DblFalse))).
end_of_list.
end_problem.
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