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The fireworks algorithm features a small number of parameters, remarkable optimization ability, and resistance to a local optimum. Based on the graph
coloring model, the fireworks algorithm is introduced for the first time to solve the spectrum allocation problem for cognitive radio networks, thus maximizing
utility and fairness of spectrum allocation. Two-layer binary coding is adopted for individual fireworks. The first layer refers to the coding of cognitive users
used to determine channels that can be connected with the user. The second layer refers to the auxiliary coding of channels responsible for addressing
mutual interference among multiple cognitive users when they connect with the same channel at the same time. Explosion operator, mutation operator,
and the selection operation are designed to allocate the spectrum for the cognitive radio network. Simulation results demonstrate superiority and efficiency
of the proposed algorithm in terms of spectrum allocation
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1. INTRODUCTION

Rapid advances in wireless communications over recent years
have witnessed a growing demand of the wireless network for
spectral resources. Traditional spectrum allocation is inefficient
because the spectrum is allocated in a fixed manner, resulting
in a spectrum shortage. The cognitive radio technique is able
to sense and utilize idle spectrum resources based on changes
in the communication environment, thus improving the utiliza-
tion of spectral resources and providing an effective approach to
spectral shortages [1–2]. Hence, the cognitive radio technique
has become a popular research area in wireless communications.
It improves utilization of the spectrum by adaptively assigning
spectral resources to be shared according to sensing results from
the spectrum sensing module. The performance of the spectral
resource allocation scheme can determine the spectrum utiliza-
tion in the entire cognitive radio network.

Existing models for spectral resource allocation in cognitive
radio networks can be classified into four types: graph-based
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coloring model [3–7], game-based model [8–11], auction model
[12–18], interference temperature model [19–22], and other
methods [23–30]. The first type of algorithm is more mature
than the others.

The graph-based coloring model aims to maximize system
utility or fairness. It is an NP-hard combinatorial optimiza-
tion problem that can be solved by the dynamic programming
method, branch-and-bound method, enumeration method, and
other exact algorithms. For a large-scale combinatorial opti-
mization problem, it is theoretically possible to obtain an opti-
mal solution, but exact methods are too computationally inten-
sive to be feasible in practice. Other options include inexact
algorithms, like the heuristic method and intelligent optimiza-
tion method. Greedy algorithms include the coloring method
[31], color-sensitive graph-based coloring method [32–34], and
distributed local bargaining method [35]. But these methods
are challenged to formulate appropriate greedy rules and thus
cannot guarantee an optimal solution. The swarm intelligent
algorithm is able to search for an optimal solution in parallel
and provides a remarkable optimization ability and robustness.
Given these reasons, many swarm intelligent methods, such as
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the genetic algorithm, particle swarm algorithm, and ant colony
algorithm, are widely used to effectively address the spectrum
allocation problem. However, they are limited in terms of global
optimization and convergence.

The fireworks algorithm is a swarm intelligent method that is
gaining popularity in recent years. Compared with other meth-
ods, it features a small number of parameters, remarkable opti-
mization ability, and resistance to a local optimum [36–37]. In
this paper, we pioneer the use of the fireworks algorithm for spec-
trum allocation. Simulation results indicate that the algorithm is
able to satisfactorily avoid a local optimum and greatly improve
allocation utility, system fairness, and convergence speed.

The rest of this paper is organized as follows. The related work
is reviewed in Section 2. We propose the fireworks explosion
algorithm for cognition radio spectrum allocation in Sections
3, respectively. In Section 4, extensive simulation experiments
are conducted to evaluate the performance of the proposed algo-
rithm. Finally, we conclude the paper in Section 5.

2. RELATED WORK

Allocating the spectrum for cognitive radio networks is a non-
linear discrete and multi-objective optimization problem. The
focus of this paper is to find a solution to the graph coloring model
using the swarm intelligent algorithm. We propose a method to
solve the graph coloring model using the fireworks algorithm.
Therefore, swarm intelligent approaches for spectrum allocation
are reviewed in detail.

Mustafa et al. introduced the genetic algorithm (GA) for spec-
trum allocation [38] and optimized spectrum allocation using
the greedy ability of GA to find an optimal solution iteratively.
Although the final result was better than the traditional graph
algorithm, it was inefficient and prone to get stuck in a local
optimum. ZHAO et al. proposed a scheme for spectrum allo-
cation using the quantum genetic algorithm (QGA) [39], where
the quantum mutation and updating operation were introduced
to improve the swarm’s diversity and convergence. Although
spectrum allocation utility and efficiency were enhanced, it was
still prone to get stuck in a local optimum. In [40], ZHONG et al.
introduced the adaptive genetic algorithm for spectrum alloca-
tion where the crossover and mutation operators were automat-
ically adapted to the number of generations and convergence.
Although the algorithm avoided a local optimum, optimization
performance was poor and system overhead was heavy. Based
on the diversity of spectrum allocation objectives in cognitive ra-
dio networks, YAO et al. [41] proposed to allocate the spectrum
using the multi-objective genetic algorithm,finding a balance be-
tween system utility and fairness. In order to address the problem
of the traditional genetic algorithm that it is prone to get stuck in
a local optimum and is computationally intensive when used for
spectrum allocation, YANG et al. introduced a hybrid adaptive
idea to GA [42], where crossover and mutation operations were
adapted to the number of generations. Moreover, the golden
mean was used to compute the probability of crossover and mu-
tation during spectrum allocation, resulting in greater allocation
efficiency and utility. In [43], LI et al. proposed to combine
GA with the ant colony algorithm for spectrum allocation in
cognitive radio networks. System utility was improved, but al-

location efficiency was low. In [44], ZHENG et al. attempted
to allocate the spectrum by combining simulated annealing with
GA. Although allocation utility was maximized, system over-
head was heavy and system fairness was poor. In [45], WU et
al. combined GA with the ant colony algorithm and randomly
generated original solutions that were dispersed widely through
GA. Afterwards, the set of original solutions was converted into
the original distribution of pheromones that were processed by
the ant colony algorithm. Finally, an optimal allocation scheme
was determined using continuous positive feedback of informa-
tion, which improved spectrum allocation utility and fairness.
However, GA is a random algorithm that uses the greedy opti-
mization strategy, thus its performance is unstable and is prone
to get stuck in a local optimum.

In [46], ZHANG et al. proposed a spectrum allocation method
based on the particle swarm algorithm, which determines an op-
timal solution based on the optimization of individual and the
swarms. Given these properties, it greatly improves system per-
formance, but is heavily dependent on the original solution and
is prone to get stuck in a local optimum. In order to address
the problem that the binary particle swarm spectrum allocation
algorithm, REN proposed a PSO-based power and spectrum col-
laborative allocation algorithm [47],where PSO parameters (i.e.,
original position and speed of particles) were optimized. Power
and channel allocation of the system could be updated in parallel
during iterations, resulting in improved system throughput and
convergence speed. In [48], QIAO et al. altered the original
swarm through chaotic logistic mapping, and improved conver-
gence speed by mutating the highly concentrated particles. De-
spite its ability to remember, the particle swarm algorithm finds
the optimal solution based on local and global extreme points.
Given this reason, it is highly dependent on the original solution
and is prone to get stuck in a local optimum.

Other swarm intelligent algorithms include the method in [49]
based on an ant colony, the method in [50] based on a leapfrog,
and the method in [51] based on an artificial bee colony. These
methods are not effective. Although synergy can be achieved by
combining two or more algorithms, it is complicated to do and
makes it a challenge to find a balance between system perfor-
mance and fairness.

In this paper, the spectrum is allocated for cognitive radio
networks by addressing the graph coloring model through fire-
work explosion optimization. Block-based two-layer structures
(i.e., master coding and auxiliary coding), an explosion opera-
tor, a mutation operator, and a selection strategy are designed
based on characteristics of the problem. The proposed method
maximizes spectrum allocation performance and fairness in the
non-interference scenario and improves convergence speed.

3. MODEL AND ALGORITHM

3.1 Spectrum Allocation Model

According to spectrum allocation characteristics based on the
graph coloring model, the problem of spectrum allocation is
modeled as a graph coloring problem, i.e., coloring the graph
G = (U, EC , L B), where Udenotes the set of vertices in G
that represent the set of cognitive users; L B denotes the set of
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vertex colors and their weights; and EC denotes the set of edges
determined by the set of interferences. If cn,k,m = 1 , color m
cannot be allocated to vertices n and k at the same time in order
to avoid interference.

Suppose that the cognitive radio system has N cognitive
users (1 ∼ N) and M channels (1 ∼ M). The security dis-
tance of each cognitive user is dn (n = 1, 2, ..., N ), the utility
achieved by connecting authorized user n with channel m is
un,m (n = 1, 2, ..., N, m = 1, 2, ..., M), and the distance matrix
between cognitive users is BN×N . A cognitive user can sense
the nearby spectrum and make real-time adjustments by learning
and understanding the external environment in order to update
the non-interference matrix corresponding to each parameter.

1. Idle spectrum matrix (F): The idle spectrum consists of two
situations. If an authorized spectrum is idle, other cognitive
users regard this spectrum as idle and choose to connect.
Each authorized user has its safety distance. Connecting the
spectrum with other users within this distance causes inter-
ference for the authorized user. If the authorized spectrum
is in service, the cognitive user beyond this distance can
connect with the spectrum without causing interference for
the authorized user. In this case, the authorized spectrum
can be considered idle. That is, when fn,m = 0, cognitive
user n cannot connect to channel m; if fn,m = 1, cognitive
user n can connect to channel m. The idle spectrum matrix
is:

F = {
fn,m

∣∣ fn,m ∈ {0, 1}}N×M (1)

2. Utility matrix (U ): Utility is achieved when a cognitive
user is connected to the authorized channel. Since different
cognitive users may adopt different communication para-
meters, the connection of different cognitive users to the
same authorized spectrum that stays idle may produce dif-
ferent utilities. This generates a utility matrix of cognitive
users. Let un,m denote the maximum utility achieved when
cognitive user n is connected with idle channel m. The
utility matrix is:

U = {
un,m

}
N×M (2)

3. Interference matrix (G): Like the authorized user, each
cognitive user has a safety distance. When several cogni-
tive users intend to connect with an authorized spectrum at
the same time, we need to check whether these cognitive
users fall beyond the safety distance of the authorized user,
whether connecting them will cause interference for cogni-
tive users already connected with the channel, and whether
there is mutual interference among these cognitive users.
If gn,k,m = 1, connecting n and k to channel m at the same
time will cause interference. Hence, users n and k must
not be connected with m at the same time. If gn,k,m = 0,
there will be no mutual interference when n and k are con-
nected with channel m at the same time. Hence, n and k
are allowed to connect with m. The interference matrix is:

G = {
gn,k,m ∈ {0, 1}}N×N×M (3)

The interference matrix consists of idle spectrum matrix F ,
distance matrix B , and the safety distance of cognitive user
dn:

gn,k,m = 1, if fn,m = 0, or

fk,m = 0, or

fn,m = 1 and fk,m = 1, but bn,k〈min(dn, dk)

gn,k,m = 0, if fn,m = 1 and fk,m = 1 and
bn,k〉 max(dn, dk).

gn,k,m = 1 − fn,m , if n = k.

4. Interference-free allocation matrix (A): This represents
an interference-free allocation scheme of the system. If
an,m = 1, channel m is allocated to the cognitive user; if
an,m = 0, cognitive user n cannot be connected with chan-
nel m.

A = {
an,m

∣∣an,m ∈ {0, 1} , an,m ≤ fn,m
}

N×M (4)

5. Maximum utility matrix (Umax) of the spectrum: System
utility is an important measure of a radio network’s overall
performance. Different utility functions represent different
allocation objectives. In this paper, let U denote the utility
function. The function for maximizing system utility is
defined as:

Umax = max
A∈�N,M

N∑
n=1

M∑
m=1

an,m · un,m (5)

6. System fairness: Fairness is used to measure how fairly
the spectrum is allocated among cognitive users. Fairness
is measured by the bandwidth variance of cognitive users.
Let Ū denote the average utility of cognitive users. Our
objective is to minimize variance:

fairness = min
A∈�N,M

1

N

N∑
n=1

(

M∑
m=1

an,m · bn,m − Ū)2 (6)

3.2 Spectrum allocation in cognitive radio net-
works through firework algorithm

The fireworks algorithm (FWA) is a swarm intelligent algorithm
inspired by the beautiful explosion of fireworks in the night sky.
The basic principle of FWA is to regard the solution space of the
optimized problem as a firework explosion space, and to regard
candidate solutions of the optimized problem as the location of
sparkles generated by the explosion and the location where they
are set off. The fitness of sparkles and fireworks is evaluated us-
ing an objective function. The locations of well-fitted sparkles
or fireworks are considered the solution that approximates to the
optimal solution of the objective function. After comparing the
fitness of all sparkles and fireworks, the locations of well-fitted
sparkles and fireworks are selected as the locations where the
next fireworks are set off. Sparkles and fireworks concentrate
around the optimal solution during iterations. When the algo-
rithm completes, the location of the most fitted fireworks and
sparkles constitute the desired optimal solution to the objective
function.

3.2.1 Coding

The fireworks algorithm was originally proposed to address the
space optimization problem of continuous functions. In order
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to address discrete optimization problems more effectively, LI
et al. proposed a binary fireworks algorithm [49]. Unlike the
standard fireworks algorithm, their method encoded the problem
and solution space using binary bits 1 and 0. If a real number is
used for coding, mutated individuals may fall outside the range
of the solution space. Furthermore, the binary coding operation
is simple and shows remarkable optimization ability. Hence,
the problem space is encoded using the binary coding scheme.
We design a dual-layer binary coding scheme for spectrum al-
location based on graph coloring model. The first layer refers
to cognitive user-based code, which is the master code used to
solve our problem. The second layer refers to channel-based
code, which is a slave code used to control interference caused
by the connection of multiple users on the same channel. Both of
their code lengths is equal to the number of 1s in the availability
matrix F , i.e. l = ∑N

n=1
∑M

m=1 fn,m .
Figure 1 shows an example of coding and decoding of evolved

individuals given N = 5 cognitive users and M = 5 channels.
Figure 1(a) is the availability matrix,where channels with a value
of 0 are occupied by the master user and are unavailable to other
cognitive users within its range. Only channels with a value of
1 are available to cognitive users. Only locations with a value of
1 are taken into account when we encode. From Fig. 1(a) it is
observed that 13 elements are equal to 1 in the matrix. Therefore,
the evolved individual is a 1 − D vector with a length of 13 as
shown in Fig. 1(b). The corresponding interference-free matrix,
A, is shown in Fig. 1(c).

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 0 1 1
0 1 0 1

⎤
⎥⎥⎥⎥⎦

(a)

Pi = [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1]
(b)

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

(c)

Figure 1 Illustration of coding and decoding structures.

In what follows, we describe the coding method in detail.
The first layer is cognitive user coding, and its coding structure
is shown in Fig. 2. In order to distinguish between users, we
divide the master code into several blocks, each of which rep-
resents a cognitive user. The first row in Fig. 2 denotes the
block number (or the cognitive user number). The second row
represents the channels available to this user, and its value is
determined by the availability matrix. It corresponds to the code
of channel available to the user. The third row is the individual
code which consists of several blocks. The number of digits in
each block is determined by the number of channels available to
the corresponding user. If it is “1”, the corresponding channel

is chosen and allocated to the user. If it is “0”, the user does not
choose the corresponding channel.

In order to avoid interference among cognitive users who use
the same channel, we design a slave code. It is based on channel
coding, and shares the same length and similar structure with
the master code. The value of each digit in the slave code is
determined by the master code. Its structure is shown in Fig.
3. The first row denotes the channel code. The second row
represents the users that can be connected with the channel and
its value is determined by the availability matrix. The third row
is the individual code which consists of several blocks. The
number of digits in each block is determined by the number of
users that can be connected with the corresponding channel. If it
is “1”, the corresponding channel is allocated to the user. If it is
“0”, the corresponding channel is not allocated to the user. If two
or more digits in each block are “1”, it is necessary to guarantee
there is no interference among users who are connected with the
same channel.

3.2.2 Design of operators

The fireworks algorithm consists primarily of an explosion op-
erator, a mutation operator, and a selection strategy. The quality
of any of these three components has a direct impact on the
algorithm’s optimization performance.

(1) Explosion operator

Some fireworks are optimized in the solution space. The ob-
jective function is used to compute and evaluate the location of
fireworks. Fireworks should be managed so that well-fitted ones
are allocated more resources. In this way, they generate more
sparks in a smaller search range, thus providing a greater ability
to search the neighborhood. At the same time, fireworks with
small fitness are allocated fewer resources so that they gener-
ate fewer sparks in a larger region, thus providing the ability to
explore globally.

For the graph coloring-based spectral allocation problem, we
design an explosion operator defined as the shift of 1 in the gene
block, i.e., the cognitive user switches to another feasible chan-
nel. The number of sparks generated by the fireworks and the
number of blocks converted by the explosion genes are deter-
mined based on the fitness of fireworks.

Si = M × f (xi ) − ymin + ε∑N
i=1( f (xi) − ymin) + ε

(7)

where ymin = min( f (xi )), (i = 1, 2, · · · , N) denotes the small-
est fitness of the current fireworks swarm, M is a constant that
adjusts the number of sparks generated during an explosion, and
ε denotes the machine-specific minimal value used to avoid di-
vision by zero. In order to prevent high-fitness fireworks from
generating too many sparks and low-fitness fireworks from gen-
erating too few sparks, the number of sparks in Equation (7) is
upper- and lower-bounded by thresholds:

Si =
⎧⎨
⎩

Smin, Si < Smin
Smax, Si > Smax
Si , others

(8)

The number of modified blocks in the explosion gene relates
to the number of generated sparks, and can be computed from
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Block number
(Cognitive
users)

1 2 3 4 5

Channel num-
ber

1 5 2 3 5 1 3 1 2 4 5 2 4

Individual
coding

1 0 0 1 0 1 0 0 1 0 0 0 1

Figure 2 Structure of the master code.

Block number
(Channel)

1 2 3 4 5

Cognitive
users

1 3 4 2 4 5 2 3 4 5 1 2 4

Individual
coding

1 1 0 0 1 0 1 0 0 1 0 0 0

Figure 3 Structure of the slave code.

Equation (9). Let Ai denote the number of mutated gene blocks:
if 1, a gene block is randomly selected from the individual for a
“1” shift operation; if 2, two gene blocks are randomly selected
from the individual for a shift operation; otherwise, three gene
blocks are randomly selected for a shift operation.

Ai =

⎧⎪⎪⎨
⎪⎪⎩

3, Si ≤ Smin + 1/3(Smax − Smin)

2, Smin + 1/3(Smax − Smin) < Si

≤ Smin + 2/3(Smax − Smin)

1, Si > Smin + 2/3(Smax − Smin)

(9)

(2) Mutation operator

Consider randomly selecting a gene bit and computing the com-
plement probabilistically. To this end, a random number in the
range 0-1 can be generated, and if the number is less than 0.5, the
gene bit remains the same. Otherwise, compute the complement
of the bit and the values of relevant bits may need to be adjusted
accordingly.

(3) Selection strategy

The fireworks algorithm is expected to eliminate undesirable in-
dividuals and pass desirable individuals to the next generation.
After the explosion process produces exploded sparks and mu-
tated sparks, the algorithm computes the fitness of these sparks
and fireworks using the objective function. Individuals with
good locations will be selected from the population as the loca-
tions for the next round of fireworks explosions.

Let K denote the set of candidates and N denote the size of the
fireworks population. Individuals with the highest level of fit-
ness are selected from the candidates (mutated sparks, exploded
sparks, and fireworks) as the next generation of fireworks. The
remaining N −1 fireworks in the population are selected through
a roulette process. Hence, the probability that candidate xi is se-
lected can be computed as:

p(xi ) = R(xi )∑
x j ∈K x j

(10)

R(xi ) =
∑

x j∈K

d(xi − x j ) =
∑

x j ∈K

∥∥xi − x j
∥∥ (11)

Where denotes the sum of distances from the current individual
to each element in K . For any individual in the set of candidates,
if the nearby density of individuals is high, the probability that
this individual is selected decreases.

3.2.3 Fitness Function

The fitness function is computed as shown in Equations (5) and
(6).

3.2.4 Algorithm Process

In order to simulate a real-world environment for spectrum al-
location in a cognitive radio network and to evaluate algorithm
performance accurately, we generate the spectrum availability
matrix (F), utility matrix (U ), cognitive user distance matrix
(B), and safety distance using a random process. The steps of
the algorithm are shown in Fig. 4. Details are provided as fol-
lows:

1. Initialization: Randomly initialize the spectrum availabil-
ity matrix (F), utility matrix (U ), cognitive user distance
matrix (B), and the vector of safety distances (D).

2. Data pre-processing: Generate a valid utility matrix using
the spectrum availability matrix (F) and utility matrix (U ).
Generate the interference matrix (G) using the spectrum
availability matrix (F), cognitive user distance matrix (B),
and safety distance of each cognitive user.

3. Define algorithm parameters: Set up fireworks algorithm
parameters T _ max andS, where T _ max is the maximum
number of iterations and S is the number of fireworks, i.e.,
the original size of the population.

4. Randomly generate a population of S fireworks and process
all individuals in a constrained manner through auxiliary
coding.

5. Use the objective function to compute the fitness of individ-
uals that are to be optimized in the solution space. Check
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whether the algorithm’s termination condition is met. Out-
put the optimal solution if the termination condition is met.
Otherwise, proceed to the next step.

6. Compute the number of sparks and the number of trans-
formed blocks in the explosion gene based on Equations
(7), (8), and (9). Let the fireworks explode.

7. Let the fireworks mutate.

8. Compute the fitness f (Xi ) of the original fireworks in the
population and the sparks generated from the explosion.
Select the spark or firework with the highest fitness from
the solution space as the location of the next generation of
fireworks. Next, select N −1 sparks (fireworks) as the next
generation of individuals and return to Step 5.

Termination condition: reach the maximum number of iter-
ations or the optimal solution remains no variation in over five
consecutive rounds.

4. SIMULATION AND ANALYSIS

Simulations are performed to evaluate the spectrum allocation
performance of the fireworks algorithm. Results are compared
with those obtained using the genetic algorithm and particle
swarm algorithm. In order to ensure the conclusiveness of sim-
ulation results, algorithm performance is measured by system
utility and fairness. Simulation parameters are provided in the
following table.

Parameter Value
Size of distribution space
/mˆ2

Varies

Number of master users Varies
Number of cognitive users Varies
Number of spectrums in sys-
tem

Same as number of master
users

Protective range of master
user /m

2

Maximum transmission ra-
dius of slave user /m

4

Minimum transmission ra-
dius of slave user /m

1

The topological structure of the cognitive radio network is as-
sumed to remain unchanged throughout an allocation cycle. In
other words, the spectrum availability matrix F , utility matrix U ,
and interference matrix G do not change during an allocation cy-
cle. These matrices are generated randomly in the simulation in
order to compare algorithm performance more intuitively. Each
of the compared matrices share the same F , U , and G for each
round of simulation.

The parameter settings for the proposed algorithm are as
follows: population size M = 10 and number of itera-
tions T _ max=300. For the particle swarm method, c1=c2=2,
r1=r2=rand, and the weight of the population size w=0.5. For
the genetic algorithm, crossover probability pc1=0.8, mutation

probability pc2=0.01, number of iterations is 300, and the orig-
inal number of fireworks is 30.

First, 20 rounds of independent simulations were performed
on the fireworks algorithm (FWA), particle swarm optimization
(PSO) algorithm, and genetic algorithm (GA). Let the abscissa
denote the serial number of experiments and the ordinate denote
system utility. Figure 5 shows that the system utility of FWA
is higher than PSO and GA, except for some points where the
system utility is close to one another. This demonstrates the
superiority of the proposed algorithm over the other methods in
terms of system utility.

In order to further evaluate the ability of FWA to converge
when it is used for spectrum allocation, we assume 10 mas-
ter users and 10 cognitive users. Let the abscissa denote the
serial number of experiments and the ordinate denote system
utility. Figure 6 shows the variation of system utility over 300
rounds of iterations. The proposed algorithm converges faster
than the other methods and provides the highest system utility.
This demonstrates the superiority of the proposed algorithm over
the other methods in terms of system utility and convergence
speed.

The number of cognitive users and channels in the cogni-
tive radio network changes in real time due to variations in the
communication environment. In order to emulate a real-world
cognitive radio network, we study the variation in system utility
with the number of master users and cognitive users. First, we
set the number of cognitive users to 10 and assume the num-
ber of master users (M) ranges from 10 to 30, as shown in Fig.
7. There are fluctuations in the increase in system utility be-
cause there are as many spectrums as master users. Given the
same number of cognitive users, adding one more master user
to the cognitive radio network means there is one more poten-
tial spectrum resource available. Given this reason, the system
utility allocated to cognitive users increases with the number of
master users. Furthermore, the proposed method yields more
system utility than the other two algorithms with an increase in
the number of master users.

In order to evaluate the variation of system utility with the
number of cognitive users, we assume 10 master users. Let
the ordinate denote system utility and the abscissa denote the
number of cognitive users, which ranges from 2 to 10. Fig. 8
shows the variation in system utility with the number of cognitive
users. System utility is shown to decrease with the number of
cognitive users. This could be attributed to the fact that the fixed
number of master users means that spectrum resources are fixed
in the system. In this context, the increasing number of cognitive
users causes a worsening shortage of spectrum resources and
fierce competition among cognitive users, resulting in reduced
system utility. Despite this, the proposed algorithm decreases
more slowly and outperforms the other methods.

Extensive simulations were performed above to demonstrate
the superiority of the proposed method in terms of system utility.
We also evaluate algorithm performance with system fairness as
the objective function. Let the abscissa denote the serial number
of experiments and the ordinate denote system fairness. Fig. 9
shows the variation of system fairness over 20 rounds of sim-
ulations. The proposed algorithm is vastly superior to GA and
outperforms PSO by a small margin.

In order to further evaluate the ability of the methods to con-
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Begin
Randomly generate the matrixes F,U,B and the vector D
Compute the valid utility matrix and interference matrix
Generate the initial population

Compute the fitness of each firework in the population
Is the termination condition satisfied ? Output the results

EndCompute the number of sparks of each firework and the number of transformed blocks 
Explode
Mutate

Compute the fitness of fireworks and sparks in the population
Select the next generation of fireworks

yes

no

 

Figure 4 Steps for spectrum allocation based on the fireworks algorithm.

verge when system fairness is defined as the objective function,
we assume 10 master users and 10 cognitive users. Let the ab-
scissa denote the serial number of experiments and the ordinate
denote system fairness. Fig. 10 shows the variation of system
fairness over 300 rounds of iterations. The proposed algorithm
provides the fastest convergence and greatest system fairness,
thereby being superior to the other methods.

Suppose there are 10 cognitive users and that the number of
master users ranges from 10 to 30. Next, we study the variation
of system fairness with the number of master users. As shown
in Fig. 11, system fairness increases with the number of master
users. More master users in the system means that more spec-
trum resources are available. Thus, competition among users and
interference are alleviated, resulting in greater system fairness.

Also note that the proposed algorithm provides the greatest sys-
tem fairness when master users change, further demonstrating
superiority of the proposed method.

In order to further study the variation of system fairness with
the number of cognitive users, we assume 10 master users and
that the number of cognitive users ranges from 2 to 10. Simula-
tion results in Fig. 12 show that given the same number of master
users, system fairness decreases with the number of cognitive
users. This is due to the fact that more cognitive users results in
more fierce competition for spectrum resources. Hence, spec-
trum resources are allocated in an unbalanced manner, leading
to reduced system fairness. In this regard, the performance of
the proposed algorithm is similar to the other methods.
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Figure 5 Variation of system utility with the serial number of experiments.
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Figure 6 Variation of system utility with iterations.
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Figure 7 Variation of system utility with the number of master users.
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Figure 8 Variation of system utility with the number of cognitive users.

0 2 4 6 8 10 12 14 16 18 20
1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64
GA
PSO
FWA

Number of experiments

Sy
st

em
 fa

irn
es

s

Figure 9 Variation of system fairness with the serial number of experiments.
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Figure 10 Variation of system fairness with iterations.
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Figure 11 Variation of system fairness with the number of master users.
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Figure 12 Variation of system fairness with the number of cognitive users.

5. CONCLUSION AND FUTURE WORK

Traditional swarm intelligence algorithms are prone to get stuck
in a local optimum and to converge slowly when used to allo-
cate the spectrum for cognitive radio networks. The fireworks
algorithm has fewer optimization parameters, is less likely to
get stuck in a local optimum, and provides excellent global opti-
mization. Given these reasons, the fireworks algorithm is intro-
duced for the purpose of spectrum allocation. Simulation results
demonstrate the superiority of the proposed method in terms of
convergence speed, system utility, and fairness. However, the
time overhead of the proposed method is heavier than GA and
PSO. This problem will be studied in the future.
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