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In the Content-Centric Networking (CCN) architecture, popular content can be cached in some intermediate network devices while being delivered, and
the following requests for the cached content can be efficiently handled by the caches. Thus, how to design in-network caching is important for reducing
both the traffic load and the delivery delay. In this paper, we propose a caching framework of Prefix-based Popularity Prediction (PPP) for efficient caching
in CCN. PPP assigns a lifetime (in a cache) to the prefix of a name (of each cached object) based on its access history (or popularity), which is represented as
a Prefix-Tree (PT). We demonstrate PPP’s predictability of content popularity in CCN by both traces and simulations. The evaluation results show that PPP
can achieve higher cache hits and less traffic load than traditional caching algorithms (i.e., LRU and LFU). Also, its performance gain increases with users
of high mobility
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1. INTRODUCTION

The Internet traffic has been explosively growing with the
increasing demand for massive content distribution and large
amounts of media resources. The growth of the traffic load
poses a significant burden and thus challenges the current Inter-
net infrastructure while users often suffer from severe network
congestions and delays. To solve this problem, Content-Centric
Networking (CCN) [1] [2] [3] [4] [5], has been proposed and
gained much attention due to its attractive advantages, such as
(1) content is located by name instead of by location, and (2)
while forwarding contents, every CCN node can cache the re-
quested content.

In CCN, the name of a (content) object is of a hierarchical
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structure and human readable [6], and a content delivery is real-
ized by the request of the corresponding object. For this, each
CCN node maintains three data structures: Forwarding Infor-
mation Base (FIB), Pending Interest Table (PIT) and Content
Store (CS). The details of the FIB, PIT and CS can be referred
to [7], and the workflows are illustrated in Fig. 1 The name-
based forwarding and routing make CCN quite different from
the current TCP/IP architecture. Thus, designing new caching
strategies becomes crucial in the research community, and this
new challenge should take into account the characteristics of
content popularity, the users, and the CCN nature.

The prior studies in this area mostly focus on the caching
decision algorithm,and the caching replacement algorithm ,such
as Least Recently Used (LRU) and Least Frequently Used (LFU),
the latter of which are originated from the computer architecture
literature. The rationale behind LRU and LFU is that most of the
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Figure 1 CCN Workflow

popular objects are consumed many times once they are used,
and their popularity generally follows Zipf distribution, which
reflects the “power-law” effect [8], That is, a relatively small
number of popular objects are requested by a large number of
users, which account for the majority of the Internet traffic.

Thus, our conjecture is that, if the in-network caching can
detect and cache popular objects more timely (i.e. faster than
other schemes), the dissemination of popular objects will be
much more efficient. We also note that the names of pop-
ular objects may often belong to and start with the same
domain name (and often the same overlapping pathname as
well); for instance,cnn.com/news/asia/news1.jpg and
cnn.com/news/asia/news1.avi can be popular simul-
taneously. Every possible string from the beginning charac-
ter (of a name) to a character right before any slash can be a
prefix: e.g. cnn.com/news and cnn.com/news/asia in
the above examples. Hence, content names may have various
lengths and levels of prefixes, which is detailed in [9]. Note
that LRU and LFU do not consider the relationships among the
name prefixes of the popular objects, and thus they cannot recog-
nize the popular prefix of a newly generated object until it will
be sufficiently requested over some duration. It is well-known
that popular publishers tend to make popular objects, and they
can also explosively increase the popularity of unpopular objects
(from not-so-popular publishers) merely by publishing them un-
der their names [10], [11]. Therefore, we are motivated to pro-
pose a more efficient caching policy that can consider the above
practice of popular objects and popular publishers. That is, we
seek to cache objects faster that could be popular with the higher
popularity.

In this paper, we propose a Prefix-based Popularity Prediction
(PPP) algorithm for CCN. The central idea of PPP is that if
popular objects share the same prefix, that prefix will be even
more popular due to aggregation. For instance, suppose that
multiple objects of the same domain name are popular. Then
we guess that a new object with the same domain name can be
popular with a high probability. Considering the hierarchical tree
structure of ï¿½ï¿½names and their prefixesï¿½ï¿½ of content
objects, we build a tree structure, called a Prefix Tree (PT) to

handle prefixes and their lifetimes. At a CCN node, PPP can
maintain a PT for popular objects; the PT is used to analyze
the popularity of not only the individual objects but also the
hierarchical groups of objects (who share the same prefix). PPP
then allocates a suitable lifetime for each prefix that may include
not-yet-generated objects. PPP operates compatibly within the
current CCN architecture and adds no functional requirements.
We develop a new tool named CCN Caching Simulator to test and
improve the caching policy. We test two trace datasets with this
tool, which shows that PPP outperforms the traditional caching
policies (e.g. LRU and LFU).

The rest of this paper is organized as follows: Section II briefly
introduces some previous studies on caching in CCN; In Section
III, we describe details of the Prefix-based Popularity Predic-
tion (PPP) algorithm; We verify the PPP framework by traces in
Section IV; The paper is concluded in Section V.

2. RELATED WORK

It is estimated that trillions of contents exist on the Internet
nowadays, and it is known that the probability distribution of
requests for different content objects is very skewed [8] [12]. Z.
Ming et. al., [14] show that top 5% of videos contribute over
80% of views in Youku (which is the Youtube of China). The
implication is that caching can be very efficient by storing only
5% to 10% of popular videos.

Then there have been some studies focusing on the popularity-
based caching policies and performance in CCNs. Z. Ming et
al., [14] present the aged-based cooperative caching policy, by
which the replica is stored near the network edge; the more
popular a replica is, the longer (caching) lifetime it has. The
study in [12] also discusses the similar popularity-based dynamic
cache management. W. Zhang et al., [9] consider the popularity
of IP prefixes at border routers with the power law distribution.
J. Li et al., [12] consider the popularity skewness over a range
from 0.5 to 2. Also Z. Li et al., [15] propose to use collaboration
between caches, and the LRU/LFU policy is tested in this paper.

Furthermore, regarding the object popularity, the caching at
the network edges is essential and important. A. Ghodsi et
al., [16] have suggested that most of the benefit of CCN is
achieved at edge routers/gateways and fast decreases as caching
places become distant from edges. G. Tyson et al., [17] have
tested the simulation to show the effectiveness of a simple edge
cache of 10,000 packets. It would allow 11% of Interests to
serve the requests from the same Autonomous System (AS).
Also,CCN concept can be extended to device-to-device (D2D)
offline sharing frameworks, where mobile devices cache popular
content files and share with others while roaming [18] [19], and
effective caching policy and algorithm are also highly needed.

3. PPP DESIGN

In the current TCP/IP networking, an ISP caches and shares
content objects to improve the utilization of their facilities. In
CCN, routers need to consider more economical incentives and
scenarios for caching and sharing content objects efficiently. In
this section, we present the details of our PPP algorithm design.
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Figure 2 Prefix Tree’s structure is illustrated

3.1 Prefix Name

Fig. 2 illustrates the structure of prefix names with 5 levels.
The root on the first level is not associated with any particular
name or prefix; it is similar to the root server in the DNS. The sec-
ond level corresponds to the domain names. The administrator of
a domain (or the publisher) provides and broadcasts her domain
name across the whole network like BGP. A CCN node adds the
domain name into its routing table (FIB), and forwards it to other
nodes. All the CCN nodes can update their FIBs in case of the
network changes (like link up/down in BGP). The third level of
the tree refers the top level directory of the path name of an object;
for instance, news in cnn.com/news/asia/logo.jpg.
Thus, there can be multiple levels of content names; however,
we illustrate up to 5 levels here.

3.2 Prefix Tree Architecture

To keep track of the popularity of prefixes in content names, we
further construct one more data structure, called prefix tree (PT).
Thus the PT is to maintain the prefixes, their popularity poten-
tials, and their lifetimes. That is, if some objects are recognized
as popular ones, CCN nodes will keep them alive in the CS longer
than the others, in order to achieve a higher cache hit ratio. PPP
finds popular objects by counting the matched prefixes for each
Interest being forwarded. Fig. 2 shows an instance of the PT’s
structure. For instance, once there is an incoming Interest whose
content name is “http://www.tju.edu.cn/tanklab/talk/ccn.pdf”,
the CS will increase the counters of the matching prefixes as
follows:
Cp[2](“www.tju.edu.cn”)++
Cp[3](“www.tju.edu.cn/tanklab”)++
Cp[4](“www.tju.edu.cn/tanklab/talk”)++
Cp[5](“www.tju.edu.cn/tanklab/talk/ccn.pdf”)++

where Cp[i ] is the counter for the i th prefix level. Then, the
lifetime of each content object is calculated by the following
equation:

tl = tu ×
5∑

i=2

(
w[i ] × Cp[i ]

)
(1)

where tu is a lifetime unit variable detailed below, and w[i ] is
the weight of Cp[i ] determined empirically. (We found that
PPP performs well by setting w[i ] to be proportional to i .) Our
conjecture is that high cache hit ratio will be achieved as popular
objects are located in the CS longer. At the CS refreshing time,
if the CS still has free space to store more content objects, it will

not delete any content object even if the lifetime of the object is
already over.

The rate of arrival of Interests ( freq ) is an important metric
that strongly effects the replacement algorithm. But it may be
fluctuating as the number of users varies over time in practical
scenarios. We adapt to dynamic request rates from users by
controlling a lifetime unit tu . The tu value is adaptively adjusted
every period (say, 60 seconds) based on measuring the number
of arriving Interests. When freq value becomes higher, the CS
will be replaced faster. To avoid LRU/LFU deleting popular
objects, we decrease tu as freq increases. Decreasing tu helps to
reduce the lifetimes of all the cached objects. Then, unpopular
objects can be found faster and be replaced before new objects
arrive. When freq value is low, we increase tu value to keep
objects in the CS as long as possible. Therefore, tu × freq can
be a constant.
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Figure 3 The flowchart of the PPP algorithm is shown

3.3 PPP Algorithm

Upon receiving an Interest, the CCN node applies the PPP
algorithm. The process is illustrated in Fig. 3, and its steps
are merged into the CCN forwarding algorithm. If the Interest
makes a completely match with a PT entry, it means that the
requested content (RC) is cached in the CS and can be directly
delivered; otherwise, we should check whether the RC exists in
the CS, because the RC might be unpopular but still stored in the
CS. The Interest will be forwarded to the next router if the RC
is not on the current router. When the RC is fetched from other
nodes, it will be delivered back and the RC’s information will
be inserted to the PT by automatically updating relevant prefix
entries. As time goes on, popular objects will keep attracting a
lot of requests, and thus their lifetimes will be longer. Also, even
a newly generated object that has a common popular prefix with
the legacy popular objects can be quickly cached, which helps
to achieve more efficient caching.

4. TRACE PERFORMANCE EVALUATION

To evaluate the effectiveness of PPP, we select two trace
datasets, BitTorrent trace (B-trace) and IRCache trace (I-trace),
which are publicly available trace datasets that contains both user
activity records and prefix of content objects. We implemented
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Figure 4 CCN Caching Simulator architecture

a new tool named CCN Caching Simulator (CCS), which eval-
uates and validates the performance of PPP, to compare it with
LRU.

4.1 CCN Caching Simulator

We implemented CCS with C programming on ubuntu (ver-
sion 12.04 LTS) following the specifications in the previous sec-
tions. B-trace and I-trace datasets are embedded in CCS module.
There are two components in CCS, PT control module and CS
control module. We discuss the following submodules in CCS
structure design:

• Prefix name Analysis Module: The new coming request
should be separated by prefix names. In each prefix level,
the prefix name is recognized as popular when it is matched
in PT.

• PT Update Module: While the prefix of coming request
is recognized as popular, it will be updated into PT and all
the content objects related to this prefix will be updated in
order to maintain the lifetime.

• Replacement Policy Module: The lifetime of new content
objects will be compared with other existing objects by
caching policy settings. The policy can be modified or
replaced conveniently and there is no influence on other
modules.

• CCN Cache Update Module: Based on the replacement
policy module, the content objects in CCN cache can be
automatically updated.

There are three benefits of CCS: (1) Convenience, the new
cache policy can be replaced easily in CCS; (2) Compatibility,
varied trace datasets can be used in CCS; (3) Scalability, func-
tions as required can be improved in CCS.

4.2 BitTorrent Trace

In this experiment, our simulation is based on using B-trace
which is obtained from real server measurement in [20].

The B-trace dataset is collected for 77 days from Feb.14th to
May.1st, 2011. The information of the B-trace consists of user
IP, folder’s name in each prefix level, request time and file size.
Based on the B-trace, we study 2 kinds of replacement caching
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Figure 5 The relationship of Threshold, PT size and Hitting Ratio for Bit-Torrent
trace

policies, which are LRU and PPP. We use 100,000 content ob-
jects with over 8 million requests, the total size of content objects
is over 120 TB. The cache size of a CCN node is set from 1 TB
to 10 TB. A metric parameter named threshold is used to restrict
and adjust the total number of content objects in the cache, con-
tributing to obtain the impact of cache size on the performance
for various replacement caching policies. The value of threshold
is set from 1000 to 10000.

We measure the hitting ratio with varied cache size, as shown
in Fig. 5(a) where PPP outperforms LRU with the higher cache
hit ratio when the cache size is smaller than 6∗106MB. With the
increase of the cache size, the performance gap between LRU
and PPP is reduced. With such a trend, it’s easy to understand
that all of the replacement caching policies seldom perform con-
tent replacement when the cache size is large, causing similar
performance in terms of the cache hit ratio. As Fig. 5(b) shows,
the curve of the cache hit ratios with the varied threshold are sim-
ilar. The PT size is related to the threshold’s value. The Fig. 5(c)
clearly shows that the PT size is reduced while the threshold in-
creases, because the most of content objects are stored in the
cache, and thus decreasing the advantage of building the PT
while introducing tree-construction overhead.

In Fig. 6, we fix cache size to different values while vary-
ing threshold. The Fig. 6(a) shows that when the cache size

262 computer systems science & engineering



Z. JIA ET AL

2000 6000 10000
10

12

14

16

18

Threshold

H
itt

in
g 

R
at

io
 (

%
)

 

 

PPP
LRU

(a) Cache size is 2,000,000MB

2000 6000 10000
28

30

32

34

36

Threshold

H
itt

in
g 

R
at

io
 (

%
)

 

 

PPP
LRU

(b) Cache size is 4,000,000MB

2000 6000 10000
43

44

45

46

47

Threshold

H
itt

in
g 

R
at

io
 (

%
)

 

 

PPP
LRU

(c) Cache size is 6,000,000MB

2000 6000 10000
51

51.1

51.2

51.3

51.4

Threshold

H
itt

in
g 

R
at

io
 (

%
)

 

 

PPP
LRU

(d) Cache size is 8,000,000MB

Figure 6 The comparison of Bit-Torrent Trace between PPP and LRU with
multiple relative cache sizes

is 2,000,000MB, PPP can gain 16% higher cache hit ratio
than LRU. In Fig. 6(b), while the cache size increases to
4,000,000MB, PPP also obtains a higher cache hit ratio than
LRU but the difference value decreases. While the cache size
increases to 6,000,000MB, the Fig. 6(c) shows that PPP loses its
effectiveness while the cache size is large, As shown in Fig. 6(d),
PPP has no effect for cache utilization while the cache size is too
large.
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Figure 7 PPP with multiple relative cache sizes

For the impact of the cache size on cache hit ratio, we compare
the effectiveness of PPP with varied relative cache sizes. Fig.7(a)
shows that the cache size at a CCN node is set with 10%, 15%,
20% and 25%, the values of cache hit ratio at the final state are
38%, 44%, 52% and 53%, respectively. The results show that a
higher cache hit ratio can be obtained when we expand a cache
volume, and the growing of cache hit ratio does not linearly
increase with cache volume. Fig.7(b) illustrates the effect of
two replacement policies with 20% relative cache size. The
results show that PPP produces the higher cache hit ratio when
simulation time increases and the simulation approaches to a
stable state.

We analyze the impact of replacement policy on cache hit ratio
with various relative cache size. In Fig.8(a), when the relative
cache size increases to 10%, the difference of the maximum
value of the hitting ratio between PPP and LFU is up to 10%. But
the different value will reduce to 8% and 6% while the relative
cache size increases to 20% and 25%. That is, PPP yields higher
performance than LRU with varied cache size, but performance
increment reduces with the decrease of the relative cache size.
Fig.8(b) shows the performance of two replacement policies with
the 20% relative cache size. While the value of skewness is 80%,
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Figure 8 Final state of cache policies and impact of popularity skewness on
cache hit ratio

the curve of cache hit ratio pitches sharply and the value of cache
hit ratio obviously increases. That is, PPP always gains much
better performance than traditional algorithms and the cache hit
ratio is largely concentrated in the most popular objects while
the skewness factor increases.

4.3 IRCache Trace

We also carry out the same experiments with I-trace [21]. The
period of I-trace collection is from October 15th to October 17th,
2013. We use more than 70000 content objects with over 500000
requests. The total size of content objects is about 70TB. The
other settings are the same as in the experiments of B-trace.
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Figure 9 The comparison of IRCache trace between PPP and LRU with multiple
relative cache sizes

Fig. 9 shows a comparison of the performance metrics be-
tween PPP and LRU with varied cache size. In general, PPP
outperforms LRU with higher cache hit ratio when the cache size
is small. However, the different value between PPP and LRU
decreases due to the cache size increasing because the most of
content objects will be stored in the cache so that popularity pre-
diction will become less effective. Fig. 10(a) also shows that PPP
outperforms LRU when the cache size is small. In Fig. 10(b), the
PT size decreases with a larger threshold. The other performance
analysis is similar to the case of B-trace.
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Figure 10 The relationship of Threshold, PT size and cache hit Ratio for IRCache
trace

5. CONCLUSION

In this paper, we proposed a new approach for caching deci-
sion and replacement that can be applied for CCN. The proposed
algorithm PPP allows CCN nodes to keep track of the prefixes of
popular objects, so that CCN nodes can achieve higher efficient
caching. The simulation results show the great benefits of PPP
in terms of the cache hit ratio, low cost and reduced latency com-
pared to traditional LRU/LFU based policy. As the future work,
we are planning to investigate the PPP performance in various
settings: (1) to improve PPP in more complex environments, (2)
to design effective cooperation with neighbor caching by shar-
ing the whole prefix tree and even dynamic cache size allocation,
(3) to improve the graphic user interface of the CCS that allows
for designing a new caching algorithm in CCN, and (4) to ex-
tend PPP into device-to-device sharing in offline mobile social
networks [22] [23] [24].
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