
Comput Syst Sci & Eng (2018) 3: 169–185
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

A Risk Poker Based Testing Model
For Scrum
Siti Noor Hasanah Ghazali1, Siti Salwah Salim1∗ , Irum Inayat2, Siti Hafizah Ab Hamid1

1Department of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, Malaysia
2Department of Computer Science, FAST-National University of Computer and Emerging Sciences, Pakistan

In agile software development, project estimation often depends on group discussion and expert opinions. Literature claims that group discussion in risk
analysis helps to identify some of the crucial issues that might affect development, testing, and implementation. However, risk prioritization often relies
on individual expert judgment. Therefore, Risk Poker, a lightweight risk-based testing methodology in which risk analysis is performed through group
discussion that outperforms the individual analyst’s estimation is introduced in agile methods. Keeping in view aforementioned benefits Risk Poker can
offer, unfortunately, no study has been conducted to empirically prove its ability to improve the testing process to date. Therefore, this research is aimed
at closing this research gap by (i) deploying Risk Poker technique as a risk-based strategy in the agile development lifecycle, and (ii) empirically evaluating
improvement of the proposed test process. For this purpose, Risk Poker technique is coupled with test coverage for an innovated testing process in an agile
project following Scrum in order to provide adequate test coverage for testing activity. A case study was conducted with 6 teams of undergraduate students
to estimate test coverage using Risk Poker for an e-commerce system. Three teams estimated their user stories using Risk Poker, while the rest estimated
individually and used an average to obtain the statistical combination. The results showed that the proposed usage of Risk Poker for risk analysis and estimate
test coverage outperformed the averaged statistical estimation of risk analysis for user stories

Keywords: Software Engineering, Agile, Scrum, Risk Analysis, Software Testing, Estimation, Risk Poker

1. INTRODUCTION

Agile has been a very popular choice for the ever-changing soft-
ware projects in the software industry. It is reported that Scrum
is the most followed agile method, as reported in a survey that
around 58% of the respondents working on agile projects used
Scrum [1]. Therefore, in this research, we explore within the
scope of Scrum management process for agile projects.

Agile methods explicitly practice risks-based strategies for
prioritizing, estimating and analyzing tasks. However, in most
of the situations, prioritization and analysis often rely on in-
dividual expert opinions. In spite of this, the most important
characteristics of an agile team are that it is self-managed and
emphasizes on group discussions or team decision in carrying out
software development activities. Therefore, we aim to propose
a testing model that makes use of group discussion to achieve
consensus in prioritizing and analyzing tasks in Scrum method-
ology. Our proposed model is based on a technique called Risk
Poker derived from one of the popular techniques used to com-

∗Corresponding Author. E-mail: salwa@um.edu.my

bine expert opinions in order to determine planning estimation,
called Planning Poker [2], which is widely being used in the
scrum methodology [3, 4]. In reality, even without a formal risk
assessment strategy, agile processes are managing risks and at-
tempting to mitigate some risks implicitly, but since they are not
organized or structured, those risks might be left untreated [5].
Thus, a structured technique that supports agile environment is
needed to properly address and control risks identified in agile
development.

Risk Poker technique proposed by [6] utilizes characteristics
of Planning Poker i.e. group discussion in providing lightweight
risk analysis technique. Risk Poker is designed to identify and to
analyze risks for user stories (requirements) by achieving group
consensus. It is a team-based activity in which decisions are
made by achieving an agreement between team members. Thus,
by acknowledging that Risk Poker and test coverage will pro-
vide adequate testing in agile, this research demonstrates the
implementation of Risk Poker in planning meetings in Scrum.
Therefore, this concept is utilized in this research study and Risk
Poker technique is combined with test coverage to provide es-
timation on how much testing is adequate. Assuming that the

vol 33 no 3 May 2018 169



A RISK POKER BASED TESTING MODEL FOR SCRUM

specified test coverage estimated by Risk Poker is able to pro-
vide adequate testing, which is crucial for small iteration-based
agile projects, the estimated test coverage can be used as one of
the acceptance criteria in claiming that adequate testing has been
performed for the agile product.

Following research questions are answered accordingly
throughout this research:

RQ1: Is the test coverage provided by Risk Poker-based
proposed model adequate as compared to the statistical
combination of individuals?

RQ2: How does Risk Poker-based proposed model esti-
mation differ from the averaged statistical combination of
individual estimations?

2. LITERATURE REVIEW

2.1 Software Testing

Software testing in a software development lifecycle is meant to
expose defects of product development and coding errors. Soft-
ware testing is an essential activity in the software development
lifecycle to determine and improve software quality over time.
In overall, software testing helps to achieve the final goal of a
software development process which is to produce high-quality
software in an attempt to satisfy the requirements and meet the
user’s needs. International Software Testing Qualification Board
(ISTQB) [7] has defined some characteristics of software testing
to be adhered to; 1) To ensure the program is meeting the business
and technical requirements agreed for the program’s design and
development architecture, and 2) To deliver a program that will
work as expected [7]. Studies reveal that agile projects success
rate depends on effective software testing process [8–10].

Unfortunately, software testing is often mistakenly treated as
a single activity to be executed after coding to reveal code de-
fects. The truth is that software testing is a process that runs
continuously in parallel with other software lifecycle processes.
It comprises of planning phase, analysis and design phase, ex-
ecution phase, exit criteria evaluation phase and ends with re-
porting. The planning phase is to determine scope, analyze and
review test items, assign resources and estimate required effort,
to identify test approach to design test case and to execute the test.
The most commonly adopted approaches are risk-based strategy,
requirement-based strategy, and model-based strategy. The risk-
based strategy involves test planning,estimating, and prioritizing
tests based on the risk analysis performed using project docu-
ments and stakeholder’s inputs. On the other hand, requirement-
based strategy involves test planning, estimating, and design tests
based on the analysis performed using the requirement specifica-
tion documents. Lastly, model-based strategy involves building
mathematical models of the critical system behaviors and then
executing tests to confirm whether the system is working as pre-
dicted by the model. While in analysis and design phase, a test
item is designed and reviewed before execution. The test item
is then tested in execution phase according to the test technique
or test strategy defined in the planning phase. Afterward, exit
criteria are evaluated based on the test coverage defined in the
planning phase and the testing activity is concluded with a test re-

port that contains evaluation on how testing activity is performed
and lessons learned for future release.

Software testing can be directly implemented in a traditional
software methodology, in the design and requirement phase,
where static testing is carried out to review or inspect the de-
sign and requirement of the project to prevent early mishaps of
design and data flow. Following, dynamic testing such as unit
testing, integration testing, and system testing is executed on the
code to uncover defect using a set of techniques and test cases.
In order to carry out dynamic testing, test leaders define and
plan the software test design technique and test coverage for the
tester. Once testing activity is executed as planned, defects de-
tected will be fixed by the developers and regression testing is
carried out to unmask any hidden defects. Lastly, the code under
test is evaluated to make sure that the tested program has met the
completion criteria and to decide whether the program is ready to
be delivered to customer. However, literature reveals that most
of the times agile teams modify existing process, strategies or
techniques to fit in agile environment [11]. Likewise, there is
not much work done on identification of software test strategies
that work best for Scrum. Therefore, following are the research
motivations for this paper:

1. The agile environment has budget constraint and follows
time-boxed iterations that push team members to prioritize
level of testing needed for testing activity and prioritization
of testing level is actually a risk-based testing strategy [12],

2. A research by [13] has surveyed 31 software industry orga-
nizations and interviewed 36 software professionals from
12 focus organizations in determining the preferred test se-
lection strategy whether it is risk-based or design-based
selection. The development approach for this focus group
varies from plan-driven methodology to agile methodology
and mixes of these two methodologies in which has pro-
duced result that most of the agile methodology practices
adopted risk-based strategy.

3. Agile process implicitly applies risk-driven strategy when
sprints are defined and tasks are assigned [14] which have
the commonality with risk-based testing strategy method.

4. Even though agile process itself is a risk-driven process,
it does not explicitly include risk management phases as
in how to identify, analyze and mitigate risk [15], thus a
risk-based testing strategy could support risk management
efficiently during project execution.

Therefore, based on the evidence listed above, risk-based test-
ing as a software test strategy is best adopted in agile project since
it is the nature of testing activity that there is always never enough
time to test everything, especially in a time-boxed iteration like
agile projects. Moreover, it is common that testing team often
puzzled on how to assess user stories’ business value, analyze
technology risks and achieve consensus on certain decisions on
their own [16]. The following section describes risk manage-
ment in software development project and risk-based testing as
software test strategy to help understanding how risk analysis is
conducted throughout a software project.

170 computer systems science & engineering



S. S. SALIM ET AL

 
Identify Risks 

Analyze Risks 

Prioritize Risks 

Control Risks 

Figure 1 Risk Management Process.

2.2 Risk Management and Risk-Based Testing

In a software development project environment, risks are ad-
dressed in risk management discussion. Risk management is
usually linked with project management planning which is car-
ried out by project managers and stakeholders for a software
development project. It is always emphasized how important
it is to identify risks in software project management and act
towards it in order to prevent disasters, cancellation, and frus-
tration [17]. The effect of project failure, which is caused by
unidentified and unmanageable risks, can be controlled or min-
imized by having risk management composed of a collection of
risk control methods. In general, risk management involves risk
identification, risk analysis, risk prioritization and risk control
[18] which is illustrated in Figure 1. In planning phase, any pos-
sible risks to the project are identified and this action is called
risk identification. Following, an estimation of the probabil-
ity of the risks happening and the consequence should the risk
happens are analyzed [19]. Once the risk analysis is complete,
the risks are prioritized according to their importance. The risk
prioritization allows project manager and the team to execute
actions described previously starting from the highest risk item
first [20]. Afterward, risk control is discussed; as an example,
what are the strategies to deal with the risks and the risks res-
olution plan should any of the risks predicted occurred during
project execution.

Similar to a software project risk management, ISTQB [7]
has summed up that risk-based testing would help testing team
to perform risk management, identify hazards that would lead to
potential project risk, describe the risk that would threat project’s
objective, distinguish between project risks and product risks,
use risk management element for test planning and define how
testing would be carried out. From the testing point of view,
risk-based testing strategy guides how many testing activities
and how much effort to spend based on the risks assessment
where; high-risk items will need serious testing compared to the
low-risk items [21]. In short, the goal of a risk-based testing
is to uncover the costliest and most important defects or faults
as early as possible so that when a test is required to stop, risk-
based testing has ensured that testers have spent the budget in a
well-organized approach [12].

Risk management in this testing strategy requires the testing
team to continuously assess what might possibly go wrong that
would lead to risks and identify which are the important risks
to deal with, followed by the strategies to deal with those risks.
Hence, from all these risk-based testing characteristics, a study
[17] has concluded that risk analysis would improve estimation
and reduce duplication of effort for the team.

Thus, in relation to the details explained about risk manage-
ment and risk-based testing above, this research agrees with a
study by [5] which shows that it is effective and important to
manage risks explicitly in an agile structure development so that
everyone in the team is aware and understands every risk identi-
fied, understands and contributes to the risks mitigation strategy
and be able to execute it as planned. They also reported in
their research that, many agile projects implicitly managed risks
which have left team members hanging without knowledge and
awareness of the possible risks, so when any of the risks hap-
pen, team members are unable to control the risk which leads to
project failure or increased project cost. Hence, the need to pro-
pose a testing model with a risk-based testing strategy that could
overcome this issue. In accordance with identifying a suitable
risk-based strategy for the proposed testing model, the following
section explored on previous research about risk-based strategy
techniques for comparisons.

Risk-based testing has proven its practicality in managing and
mitigating risks but [22] has made a good point by concerning on
how to merge the lightweight process of agile with the standard
industrial process without damaging the agility characteristics.
Moreover, [23] also agrees that in practice, many organizations
faced difficulties in integrating risk-based testing into an exist-
ing test process. Thus, from this point of view, this research has
narrowed down the focus to adopt existing technique which has
been proved successful in agile project and has been used widely
in industrial project specifically Scrum methodology. This has
led to an effort estimation technique used in Scrum called Plan-
ning Poker which has been identified as popular to Scrum project
for staffing effort estimation [24] and following its popularity,
a risk-based technique has been derived; which is called Risk
Poker, as mentioned in the previous section. The existence of
Risk Poker as a risk-based technique which provides lightweight
risk analysis technique described by [6] could fit agile project
following Scrum perfectly. The following section discussed how
Risk Poker technique could perform as a software test strategy
for an agile project in detail.

2.3 Risk Poker Technique

Literature reveals one of the main challenges faced in agile soft-
ware testing is the difficulty in estimating the testing activities
[25]. In addition, developing test strategy and test plan for the
agile project is also a problem because task development is given
higher priority compared to testing of tasks. Hence, there is a
need for risk and priority-based testing to overcome this issue in
an agile project [26].

Risk Poker is held in a planning meeting to discuss risks asso-
ciated with the requirement for the sprint and prioritize the risks
for the sprint. The prioritized risks define the intensity of the
development and testing required for the sprint. When the items
are prioritized according to the risk, it could ensure that nearly

vol 33 no 3 May 2018 171



A RISK POKER BASED TESTING MODEL FOR SCRUM

50% of the feature developed is sufficient to meet the goal, and
consequently, project manager or product owner could opt to
drop the remaining requirements if necessary [29].

Risk Poker is also considered as risk assessment activity as
team members analyze and identify risks related to the user sto-
ries and prioritize the development task and testing task from the
highest risk component to the lowest. The risk analysis is also
used to estimate the required testing effort for the product. The
output of the risk poker session is a list of risk assessment where
related risks of the requirement for the iteration discussed are
identified and prioritized according to its importance.

2.4 Test Coverage

Test coverage could be a good indicator to measure software
quality by giving information of coverage adequacy for the sys-
tem under test, thus making it an important step in software
testing process [30]. When test coverage is defined correctly, it
ensures that testing is executed effectively according to the cov-
erage criteria without missing the important areas of the system
under test [31] also quoted that test coverage has become a way
to relate how much testing needs to be carried out. Furthermore,
inadequate testing has become a major problem and it is an area
that is still given much focus amongst researchers to explore [32].

Adequate test coverage is a testing execution which is con-
sidered as “good enough” when it meets the defined criterion.
Generally, when a test suite is able to detect every defect and ver-
ify the correct behavior of the program, it is considered “good
enough” and effective in measuring software quality. Unfortu-
nately, in reality, it is impossible to detect all defects in a program
and claim the program is defect-free. Therefore, we need to de-
fine a test criterion which is a set of requirements to be fulfilled or
achieved which acts as a stopping rule to mark when it is enough
to stop testing [33]. Apart from becoming a stopping rule, test
criterion could also be defined to determine the observations that
should be made during the testing process [34].

There are many test coverage techniques that have been de-
veloped such as;

1. Counting how much program blocks are covered in state-
ments, branches, conditions, and a number of dead mutants
in mutation testing for structural source code testing.

2. Data-flow transition coverage in state machines and path
coverage to satisfy all program’s behavior from entry node
to exit node [35].

3. Structural testing coverage measurement works well with
incomplete requirements as in the agile environment. This
type of testing is also useful in exposing unwanted program
code or functionality since such testing inspects program
codes; looks for statements not executed by any test cases
[36].

Much research focuses on how to measure the degree of cover-
age achieved by a test set and how much more is needed instead
of determining how much is enough to be declared as stopping
rules. A research by [37] for ASM specifications provides a for-
mula called test predicate which is defined for coverage criterion
to determine if a particular testing goal is reached when each of

the test predicates is true. This formula is good to determine and
measure which specification and testing goal are not covered yet
and summarize test coverage percentage, however, it is unable
to serve as stopping rule to indicate when to stop testing.

On the other hand, [33] has introduced the concept of a span-
ning set of entities for coverage testing where the generated size-
reduced test suite set could guarantee the coverage needed. They
have provided a method to derive a spanning set that is parame-
terized in the inclusion relation between entities which is useful
for reducing and estimating the number of test cases as well as
evaluating test-suite thoroughness more effectively.

Nevertheless, all these techniques are not lightweight tech-
niques to be applied in a real software project as it takes some
time for the tester to learn how to formulate these techniques
into test coverage criterion in order to determine test adequacy,
especially in a short time-boxed iteration such as agile project.
Therefore, a comprehensive study of test coverage by [34] par-
ticularly for code coverage in unit testing is used as guidance in
this research in order to define test coverage criterion for unit
testing as it could serve as a stopping rule criterion for testing
activity closure. This research has chosen to couple risk-based
testing with test coverage adequacy measurement because it is
observed that the number of failures revealed in testing is also
related to how much coverage is set by the current test set [38].

3. PROPOSED TESTING MODEL

3.1 Foundations of The Proposed Testing
Model

A detailed literature analysis led us to use risk-based strategy
as software test strategy for Scrum. Furthermore, the literature
analysis helped us to reach a conclusion that Risk Poker tech-
nique should be implemented as a risk-based testing strategy
combined with test coverage technique in the proposed testing
model. Table 1 summarized the literature finding that became
the basis for this work.

3.2 Risk Poker as a Risk-Based Testing Tech-
nique

In Risk Poker technique, risks are identified, discussed with the
team members, and prioritized through group consensus. In
a traditional risk prioritization, risks exposure is calculated to
prioritize risks. The formula is as follows: RE = P × C ,
where;

• RE is the risk exposure,

• P is the probability of the risk to happen, also known as
likelihood of the risk to occur, and

• C is the cost also known as the impact that will affect the
project if the risk happens.

Usually, an expert professional in the project management is re-
sponsible for assigning a score or weigh factor to the probability
(P) and cost (C) of the identified risk according to his or her

172 computer systems science & engineering



S. S. SALIM ET AL

Table 1 Findings from the Literature Review.

Category Available methods or
tools

Selected method or
tools

Reason

Software Test Strategies

• Risk-based strat-
egy

• Requirement-
based strategy

• Model-based strat-
egy

• Risk-based strat-
egy

• Literature revealed that
most of agile projects
adopt risk-based ap-
proach [13]

Risk-based Testing Techniques

• Cost of Exposure

• Pattern-based
Methodology Tai-
loring

• Requirement
Analysis using
Goal Graph

• RiteDAP

• Risk Poker

• Risk Poker • Group consensus in
risk analysis fits impor-
tant agile characteristic;
Group discussion &
self-managed team [6]

• Can be adopted into ag-
ile environment without
modification

Test Coverage

• Code Coverage

• Requirement
Coverage

• Structural
Coverage

• Architectural
Coverage

• Code Coverage • Able to measure fault ex-
posure effectiveness

• Can be used as stopping
rule to define test ade-
quacy [34]

judgment. The risk exposure (RE) is then calculated and priori-
tized accordingly. In Risk Poker, instead of relying on an indi-
vidual expert judgment, which might overlook some issues upon
estimating risks regarding product development, team members
are responsible for rating the probability of risks using colored
rating card, which is called likelihood factor in this research.
Meanwhile, for the cost factor, product owner and stakeholders
are responsible for discussing and estimating the cost of the risk,
which is called impact factor in this research.

Rating Impact Factor Risks

In the Scrum process, upon listing product backlog items, Prod-
uct Owner (PO) involves stakeholders to formulate a feature list
to be developed for the product in a form of user stories. PO
translates the user stories into product backlog items. Once all

required features are collected and listed in the product back-
log, PO discusses the product backlog items with stakeholders
to identify risks and costs that will affect the project. Thus, at
the end of the discussion, PO and stakeholders decide whether
the risk level is appropriate for the listed item that will impact
business value, user’s needs and project as a whole, which is
known as impact factor risk identification.

Rating Likelihood Factor Risks

When product backlog items are ready,a sprint planning meeting
is called by the PO to discuss the selected user stories, estimate
staffing effort, and assign tasks. Since we are deploying Risk
Poker technique in this research, everyone is required to identify
risks related to the items or tasks under discussion and discuss
them thoroughly from the developer, tester, and user perspec-

vol 33 no 3 May 2018 173



A RISK POKER BASED TESTING MODEL FOR SCRUM

tives. Risk Poker technique ensures that the team understands
the risks thoroughly and is able to rate and manage them. This
risk level assignment is called likelihood factor identification for
tasks to be developed and tested in the sprint.

Risk Poker Activity Flow

Figure 2 shows the activity of Risk Poker technique in detail,
stated as:

• PO and stakeholders decide on the impact factor of the user
stories based on how much the user story would affect the
end user, business value, and overall project.

• Following that, the PO presents the user stories to the team
members during sprint planning meeting without disclosing
the impact factor rating. The team members discuss the
user stories presented to them thoroughly from developers
and testers perspective until they are satisfied to identify
and analyze the associated risks. These risks are classified
as likelihood factors for a particular user story. The risks
eventually affect the product quality, therefore, the team
is required to understand all risks associated with the user
story and share their concerns based on their expertise.

• When the team members are satisfied with the discussion
on user stories and their associated risks, the team is then
required to estimate risk level for the user story and assign
test coverage they think would be enough for testing activ-
ity. For this, the team members are provided with a set of
cards consisting of a table of four colored (green, yellow,
orange and red) boxes to rate the risk level of the likelihood
for the user stories as shown in Figure 3. Team members
are required to rate the likelihood factor individually, where
‘red’ represents the highest estimation factor and ‘green’ as
the lowest estimation factor. When everyone finishes with
the estimation individually, team members are required to
simultaneously show their estimation in the group. On hav-
ing a huge difference of estimation colors, the estimator ex-
plains the differences and conducts a discussion to clarify
the situation. PO also has the right to assign the highest
estimation value of the likelihood factor to the user story
affected. When the team reaches a unanimous decision, the
next set of estimation cards is provided for estimation.

3.3 Risk Poker and Test Coverage Estimation

At the end of sprint planning meeting, the team obtains risk
ratings for each of the discussed backlog items. At this stage,
the product backlog items are broken down into smaller tasks for
development and testing. The tasks are stored as sprint backlog
items that have rating color assigned to them as discussed in
the planning meeting. The assigned rating color provides an
estimation of test coverage for determining how much testing
is needed throughout sprint. Testing activity will be executed
based on the test coverage estimation to obtain a “done” criterion
as a stopper for testing activity before presenting the finished
product to the user at the end of sprint. Table 2 describes the
code coverage definition for test coverage defined for unit test.

3.4 Risk Graph

Risk Graph component is developed separately to allow Scrum
team to manage sprint backlog items in a database and provide
risk prioritization graph for sprint backlog items. The risk graph
component displays sprint backlog items in high, medium and
low-risk level categories for Scrum team to commit to throughout
the sprint. Each item displayed in the Risk Graph component
is also associated with the test coverage definition for testing
activity.

Risk Graph component is accessed at the end of the sprint
planning meeting, where the discussed user story is updated in
the Sprint Backlog database through the Risk Graph component
as shown in Figure 4 together with the risk rating color assigned
both for likelihood and impact factor. The risk rating will deter-
mine how thoroughly testing should be done in the sprint. The
Risk Graph component allows the team members to insert, up-
date and delete Sprint Backlog Items from and into the database.
Each Sprint Backlog Items that has rating color assigned to it
is then matched to the estimated test coverage needed for unit
testing and acceptance testing for team member’s reference in
order to execute the test in sprint.

Once Sprint Backlog database is updated for the sprint, the
team is able to view Risk Graph prioritization to see which item
is prioritized from the highest risk level to the lowest risk level
as shown in Figure 5. Risk levels are categorized into High,
Medium and Low grids. Each risk level grid shows a table that
consists of rating color for both likelihood and impact factor
assigned and the total of related user stories. Instead of tra-
ditionally calculating the risk exposure for each of the sprint
backlog items, the Risk Graph component pairs the rating color
of likelihood factor and impact factor to prioritize risk exposure
as shown in Figure 5.

Once the Risk Graph prioritization is exported, the team will
choose to develop and test on the sprint backlog items placed
in the high-risk area first, followed by medium-risk level items
as plotted in the graph. The team member is able to view the
test coverage estimated for the corresponding sprint backlogs as
shown in Figure 6.

Thus, based on the estimated test coverage for the correspond-
ing sprint backlogs, testers will construct and execute test ac-
cordingly. In this research, the efficiency of these test suites in
detecting fault during experiment validation will determine the
effectiveness of Risk Poker technique as risk-based testing in
order to provide test coverage estimation.

3.5 Integrating the Proposed Testing Model In-
side a Scrum Methodology

Integrating Risk Poker technique as a risk-based testing in Scrum
would improve both risk analyses process and test coverage as
risk poker is able to provide a group consensus upon analyzing
risks and estimating test coverage. Figure 7 shows the incorpora-
tion of the proposed testing model into the Scrum workflow. The
proposed sections are highlighted with red circles in the Scrum
processes. In a larger picture, Risk Poker technique will affect
the following processes in Scrum, as shown previously in Figure
7; 1) Listing Product Backlog, 2) Sprint Planning Meeting, 4)

174 computer systems science & engineering



S. S. SALIM ET AL

Figure 2 Detailed view of Risk poker activity flow diagram [6].

Figure 3 Rating card for impact factor and likelihood factor estimation.

Table 2 Coverage complexity for unit test [7]

Rating Test coverage complexity
Lowest (Green) Decision coverage:

100% decision coverage implies both 100% branch coverage
and 100% statement coverage.

Low (Yellow) Decision condition coverage:
100% decision condition coverage implies both 100% con-
dition coverage and decision coverage.

High (Orange) Condition determination coverage:
100% condition determination coverage implies 100% deci-
sion condition coverage.

Highest (Red) Multiple condition coverage:
100% multiple condition coverage implies 100% condition
determination coverage.

Update Sprint Backlog to manipulate Risk Graph prioritization,
and 5) Testing activity in sprint.

This integration will provide a testing model for Scrum
methodology in terms of;

1. The approach used for risk analyses of user stories amongst
team members which will uncover any possible hidden or

unseen risks,

2. Better knowledge sharing between different background to
improve decision on risk level and test coverage. Figure 8
shows the integrated testing model inside Scrum process.

vol 33 no 3 May 2018 175



A RISK POKER BASED TESTING MODEL FOR SCRUM

 

Figure 4 Update Sprint Backlog details.

Figure 5 Risk Graph prioritization.

4. EXPERIMENTAL DESIGN

4.1 Objectives

The validation of experiment result is aimed to answer two re-
search questions: RQ1: Is the test coverage provided by Risk
Poker-based proposed model adequate compared to the statis-
tical combination of individuals?, and RQ2: How does Risk
Poker-based proposed model estimation differ from the averaged
statistical combination of individual estimations?.

4.2 Participants

We conducted our experiment with final year undergraduate stu-
dents of Software Engineering course. The students were al-
ready done with the Software Verification & Validation module
and were assumed to be familiar with the test planning process,
able to construct test cases for testing purpose and able to per-
form various types of testing technique throughout the software
project. We had 3 experimental groups of students (who esti-
mated risk level and test coverage using the proposed method),
and the other 3 control groups of students (who used averaged
statistical combination of individual estimates for further com-
parison). Data and result collected in the study are used to an-

176 computer systems science & engineering



S. S. SALIM ET AL

Figure 6 Test coverage estimation for the risk level Medium.

Figure 7 Proposed Software Testing Strategy incorporated in Scrum workflow.

Figure 8 Integration of the Proposed Testing Model with Scrum Work Flow.

alyze the student group performance when using the proposed
method compared to the averaged statistical combination of in-

dividual estimates. Table 3 listed the summary of the experiment
participants’ details.

vol 33 no 3 May 2018 177



A RISK POKER BASED TESTING MODEL FOR SCRUM

 

Figure 9 Risk Poker Technique Affect Testing Activity in Sprint.

Table 3 Summary of experiment participants’ details.

Participants
Scrum Team Final year student of Software Engineering course

Completed the Software Verification & Validation syllabus
Assumed to be familiar with:

1. Test planning

2. Construct Test Cases

3. Execute testing

3 Experimental group (4 students each group)
3 Control group (4 students each group)

4.3 Materials

A set of 34 user stories were given to 6 groups of students to
be analyzed, estimated and tested for an agile software project
lifecycle following Scrum. Each team was required to prioritize
and estimate test coverage for the same set of 34 user stories
within 3 sprints with each sprint’s duration lasting for 2 weeks.
The whole project took 9 weeks to complete the estimation and
testing. Each team consisted of 4 students who acted as a self-
organizing and self-managing Scrum Team, responsible for ana-
lyzing risks and risk level,estimating test coverage and executing
testing on an e-commerce system based on the given user stories.

The software project developed was an open source e-
commerce system developed for a market-based client named
Marvel Beads. The client provided the requirements and the
primary researcher played the role of Product Owner in collect-
ing requirements from client.

Each user story consisted of a short description of the required
functionality to be discussed by team members during the plan-
ning meeting to analyze risks, prioritize the tasks and assign
how much test coverage is needed. Figure 10 shows two exam-
ples of user stories and the risk identification obtained from the
experimental student teams.

Testing activity was executed in a two-week sprint based on
the test coverage estimation obtained during the planning meet-

ing. Table 4 listed the summary of experiment materials and
environment prepared to execute the experiment validation for
the proposed testing model.

4.4 Experiment Process

Once the software project environment is ready for the experi-
ment, this research starts the experiment according to the step-
by-step process described in Table 5.

The detailed explanation of the step-by-step experiment
process is as follows:

1. This research conducted a briefing session (Step A; Table
5) to train student teams on Scrum process. Briefed exper-
imental student teams on how to implement the proposed
method within Scrum. Next, student teams of the control
group are briefed and trained to estimate risk level and test
coverage using averaged statistical combination of individ-
ual estimates.

2. At the beginning of the project, a collection of the same
user stories have been assigned for 3 sprints respectively
for all teams (Step B).

3. Student teams started the project with Sprint Planning
Meeting. In Sprint Planning Meeting, the student teams

178 computer systems science & engineering



S. S. SALIM ET AL

Figure 10 Sample of user stories and risks identification.

Table 4 Summary of experiment materials.

Experiment Materials
Software Project 1 complete software testing project (test plan, construct test

cases, execute testing, report)
Tamper coding for testing
34 user stories for 3 sprints
Sprint duration: 2 weeks
Project duration: 9 weeks

Scrum process affected Sprint Planning Meeting
Sprint backlog prioritization
Testing activity

Project Data Data For Sprint Planning Meeting:

1. User stories

2. Risks identification list

3. Risks level rating

4. Test coverage

were required to discuss user stories, identify risks and an-
alyze risks associated with the user stories for prioritization
later (Step C). The list of risks identified was recorded as
shown in Figure x for risk assessment discussion. Once
discussion took place and everyone was cleared with the re-
lated issues for the user story, student teams were provided
with rating card to rate risk level for the discussed user
story. The risk level assigned was associated with related
test coverage for each level. The risk rating card consisted
of four colored risks rating: Red as the highest risk, fol-
lowed by orange, yellow and green. The highest risk level
was associated with the most intense code coverage for a
unit test, which is multiple condition coverage, followed by
condition determination coverage, decision condition cov-
erage, and decision coverage. The intensity of test coverage
estimation assigned to each risk level is in accordance with
unit test code coverage complexity defined in ISTQB, as
discussed in Section 3.3 Risk Poker and Test Coverage Es-
timation.

• The experimental student group was required to im-
plement Risk Poker technique in Sprint Planning
Meeting to estimate test coverage and prioritize risks,
while on the other hand,

• The control student group estimated test coverage and
prioritized risks using averaged statistical combina-
tion of individual estimations where each team mem-
ber was required to prioritize the user stories individ-
ually and the scores are then averaged to get the test
coverage and prioritization scores. The rating card
for control group students has scores where the high-
est risk scores 4 points, followed by high risk with 3
points, medium risk with 2 points and low risk with 1
point.

• Experimental student group estimated the risk level
individually on the rating card and then present the
rating result together with other team members to re-
veal rating result. If there is a difference in color of
rating, they will discuss the color difference and is-

vol 33 no 3 May 2018 179



A RISK POKER BASED TESTING MODEL FOR SCRUM

Table 5 Experiment Steps

Steps Sprint Activities
A 0

• Brief and train student teams on the software project details and Scrum process

A.1
• Train experimental student teams on how to implement the proposed method in Scrum

A.2
• Train control student teams on how to estimate risks and test coverage using averaged statistical combination

of individual estimations

B
• Product Owner list user stories in the product backlog for 3 sprints respectively

C 1,2 and 3 Sprint Planning Meeting
C.1

• Student team and Product Owner conduct a discussion session on the user stories for Sprint 1

C.2
• Tasks are identified, associated risks are identified, risks are discussed and analyzed

C.3
• Student teams estimate risks level and test coverage for user stories

C.3.1a
• Experimental student teams use Risk Poker technique to estimate risks level and test coverage

C.3.1b
• Control group student teams use the averaged statistical combination of individual scores to estimate risks

level and test coverage

C.4
• A list of risks level and test coverage estimation is collected for the user stories

C.5
• Student teams insert the rating into Risk Graph component to prioritize the highest risks level tasks to the

lowest risks level

D 1,2 and 3 Sprint

• Test the prioritized items according to the assigned test coverage in the Risk Graph to expose fault

E
• Report the list of fault exposed during testing activity

F The researcher collects data and tests result for both experimental and control group.

sues related. Then, once again, they will estimate
the risk level rating individually and present the result
once again to achieve group consensus on risk rat-
ing. Should the rating color is different again at this
time around, the team uses the highest risk level rat-
ing. The rating is updated in Risk Graph component
to prioritize and assign test coverage of the user story.

• On the other hand, the rating card for control group
student teams contains score points for each color risk
level to be averaged to get the statistical combination
of individual estimations. Control students estimated
the risk level individually on the rating card and then
presented the rating result together with other team
members to reveal result rating. The scores of the
rating estimated by team members were accumulated
amongst team members and then the average was cal-
culated to get the risk level score. This average score is

used to prioritize the user story and assigned with ap-
propriate test coverage according to the average score
using the Risk Graph component.

4. On starting the sprint formally after completing the plan-
ning phase, the experimental team started testing the user
stories according to the test coverage assigned to the high-
est risk item, followed by medium risk allocated item and
ended with the low-risk product (Step D) as shown in the
Risk Graph component.

5. At the end of sprint, the teams provided a list of fault ex-
posed and the test result (Step E).

6. Data were collected to evaluate the performance of Risk
Poker and test coverage implementation in Scrum as com-
pared to the averaged statistical combination of individual
estimates (Step F).

180 computer systems science & engineering



S. S. SALIM ET AL

5. EXPERIMENTAL RESULTS

The risk level and test coverage estimation of 34 user stories were
performed to evaluate the proposed method as compared to the
averaged statistical combination of individual estimations. Stu-
dent teams in the experiment are required to discuss and analyze
risks of the user stories provided to estimate test coverage. Ex-
perimental student teams provide test coverage estimation after
analyzing risks using Risk Poker technique whilst the controlled
student teams provide test coverage estimation based on the av-
erage scores of their individual judgment. Thus, the benchmark
set in this paper is focused on test coverage estimation, where the
exposed fault result obtained from student teams are measured
against the seeded fault planted in the system.

For monitoring and observing the results of the proposed
model, data were collected throughout the process and test re-
sults are collected at the end of each sprint. The test result is a
report of how much fault is exposed throughout testing process
particularly in each sprint for each team. The exposed fault was
compared to the seeded fault to measure test coverage adequacy.
Basic descriptive statistics for the test result of the teams are
presented in Table 6.

5.1 RQ1: Is the test coverage provided by
Risk Poker-based proposed model ade-
quate compared to the statistical combina-
tion of individuals?

Exposed fault is used to measure whether the test coverage esti-
mated in the sprint is adequate to expose the seeded fault in the
system. Balanced Relative Error (BRE) is used to calculate the
performance of test coverage assigned in the sprint. Thus, the
greater the BRE score is, the less adequate test coverage assign-
ment performed in the related sprint as the BRE score represents
how accurate test coverage estimation is to expose seeded faults.
The BRE of both experimental student teams and control student
teams are calculated as follows:

B RE =
∣
∣seededfault − exposedfault

∣
∣

min
(
seededfault, exposedfault

)

In order to answer RQ1, the mean BRE of the fault exposure
was calculated by comparing the BRE of Risk Poker estimates
(experimental student teams) and the BRE of the averaged sta-
tistical combination of individual estimates (controlled student
teams).

Figure 11 shows the BRE mean for both the experimental and
control student teams test result. The mean BRE of the seeded
fault is 0.00, thus, the closer the mean BRE of the test result to
0.00, the lesser the relative error of the fault exposure. Table 7
summarized the BRE scores for both experimental group (stu-
dent team A-1, A-2, A-4) and controlled group (student team
B-3, B-5, B-6). It seems that experimental group student teams
returned BRE scores that are within 0.0–1.0, and the greatest
relative error score for this group is within 1.1–2.0 (student team
A-1). Whilst, on the other hand, BRE scores for controlled group
student teams are within 1.1–2.0 applicable for all participated
teams (student team B-3, B-5, B-6). A straightforward analy-
sis of the results has suggested that mean BRE of experimental

student teams (0.24) is smaller than the mean BRE of the con-
trolled student teams (0.50) as depicted in Figure 11. Thus, this
research is able to conclude that the test coverage estimation pro-
vided by Risk Poker technique is more adequate in exposing the
seeded fault compared to the averaged statistical combination of
individual estimates.

5.2 RQ2: How does Risk Poker-based pro-
posed model estimation differ from the av-
eraged statistical combination of individual
estimations?

Referring to the descriptive statistic as stated previously in Table
6; for the total of 102 user stories that were analyzed for both
experimental and control group of student teams, the experimen-
tal group of student teams which estimate risk and test coverage
using Risk Poker technique, have the BRE mean of 0.24 (sd =
0.49) compared to the control group of student teams BRE mean
which is 0.50 (sd = 0.89). So, does the difference between the
two BRE means is simply due to sampling variation, or does the
BRE provide evidence that Risk Poker technique does, on av-
erage, improve test coverage estimation? The p-value obtained
from an independent samples t-test answers this question. This
research has run an independent t-test to test the hypothesis that
both the experimental and control group were associated with
statistically significantly different mean of balanced relative er-
ror of the test coverage estimation. Thus, the independent t-test
was conducted to compare balanced relative error for test cov-
erage estimation in using Risk Poker technique as risk and test
coverage estimation and in averaged statistical combination of
individual estimation conditions.

The result displayed in Table 8 showed a significant differ-
ence in the BRE scores for student teams that used Risk Poker
technique to estimate risk level and test coverage (M=0.24,
SD=0.49) and BRE scores for student team that did not
use Risk Poker technique (M=0.50, SD=0.89) conditions;
t(202)=(2.63), p=(0.009). Since the p-value is 0.009, therefore
the difference between the two means is statistically significantly
different from zero at the 5% level of significance. Thus, there
is sufficient evidence to suggest that risk poker technique does
change the mean BRE of test coverage accuracy. There is an es-
timated change of standard error of 0.1%. Hence, these results
suggest that Risk Poker technique really does have an effect on
estimating risk level and test coverage for testing of an agile
project following Scrum.

6. DISCUSSION

6.1 RQ1: Is the test coverage provided by
Risk Poker-based proposed model ade-
quate compared to the statistical combina-
tion of individuals?

Referring back to Figure 11, this research has learned that the
BRE mean for the control group (Group B-3, B-5 & B-6) is
greater than the experimental group, thus it indicates that the

vol 33 no 3 May 2018 181



A RISK POKER BASED TESTING MODEL FOR SCRUM

Table 6 Statistics.

BRE averaged Individual
Statistical Combination

BRE Risk Poker

User stories 102 102
Mean 0.5049 0.2402
Median 0.0000 0.0000
Std. deviation 0.88858 0.49116
Skewness 2.543 1.973
Std. error of skewness 0.239 0.239
Kurtosis 8.145 3.235
Std. error of kurtosis 0.474 0.474
Range 5.00 2.00

 

 

Figure 11 BRE mean for experimental and control group.

Table 7 BRE scores.

BRE =
0.0 0.1–1.0 1.1–2.0 2.1–3.0 3.1–4.0 4.1–5.0

n = 34
A-1 21 10 3 0 0 0
A-2 30 4 0 0 0 0
A-4 29 5 0 0 0 0
B-3 17 9 4 2 1 1
B-5 25 8 1 0 0 0
B-6 23 9 2 0 0 0

control group’s test coverage estimation is less accurate in ex-
posing seeded fault. The range of control group’s mean is 5.00
compared to the experimental group which is 2.00 as shown ear-
lier in Table 6 Statistics. The higher range of unexposed seeded
fault for control group indicates that test coverage estimation by

the experimental group is more adequate to detect seeded fault
compared to the control group. In addition to that, the highest
number of unexposed seeded fault (7 unexposed seeded faults)
occurred in two out of three control group’s estimation as shown
in Figure 12 also indicates inadequate test coverage estimation

182 computer systems science & engineering



S. S. SALIM ET AL

Table 8 Independent t-test result.

Lavene’s Test for Equality of
Variances

t-test for Equality of Means 95% Confidence Interval of
the Difference

F Sig. t df Sig. Mean Std. Error Lower Upper
(2-tailed) Difference Difference

BRE Scores Equal variances
assumed

17.139 0.000 -2.633 202 0.009 -0.26471 0.10053 -0.4629 -0.6649

Equal variances
not assumed

-2.633 157.448 0.009 -0.26471 0.10053 -0.4632 -0.6615

technique for testing to cover required functionality to detect the
fault. These issues have proven that Risk Poker technique is
able to provide a relevant estimation of test coverage when the
group is allowed to discuss their rating and concerns, where hid-
den issues can be highlighted for the task rating and estimation.
Furthermore, this result has shown a significant difference in
statistical tests presented previously in Table 6 which indicates
that Risk Poker estimates provided by student teams are more
accurate than the averaged statistical combination of individual
estimations.

6.2 RQ2: How does Risk Poker-based pro-
posed model estimation differ from the av-
eraged statistical combination of individual
estimations?

Following, an independent t-test analysis conducted on the ex-
periment test result has shown that there is a statistically signifi-
cant difference between the proposed technique and the averaged
statistical combination of individual estimations. Thus, it indi-
cates that test coverage estimation provided by student teams that
used Risk Poker technique is more accurate than the averaged
statistical combination of individual estimations. In addition to
that, the result of this statistical tests also disagrees with [39]
that face-to-face meetings are harmful to decision making. Con-
sidering the fact that Risk Poker estimates tended to be slightly
better than the averaged statistical combination of individual es-
timates, it seems reasonable to continue the research on group
processes in software estimation.

6.3 Study Validity

To increase the validity of this study, we studied 6 teams, work-
ing on the same project and all teams estimated the same set of
user stories; therefore, their estimates are directly comparable.
However, in spite of the fact that the study was conducted within
the framework of a group student project, every effort was made
to increase its external validity by emulating an industrial envi-
ronment as close as possible. User stories were defined on the
basis of the e-commerce system that is actually used for an online
store and the students were required to fully test the code with
seeded faults. Nevertheless, the main threat to external validity
remains that only one project was used.

Based on statistical analysis, the results can be general-
ized only to students of the final year of computer science

course working on similar projects that require the testing of
e-commerce systems, while more studies are needed on real
projects of different size and complexity in order to general-
ize the findings to industry. In addition to that, the researcher
is also the Product Owner, so it might not be comparable to an
actual product owner in the industrial environment. Further-
more, the experiment environment does not include full devel-
opment project and bug fixes, which could be another variable
that would contribute to the effectiveness of implementing the
proposed method in an agile project following Scrum.

Student teams were required to end their Sprint Planning
Meeting within 60 - 80 minutes in each meeting where they
discuss, analyze, prioritize and estimate test coverage for each
user story. The experiment includes the time constraint in the
project execution to make sure both the experimental and con-
trol group spend the same amount of effort and time to achieve
a decision on risk analyses and estimating test coverage.

Considering the aforementioned limitations, the results of this
study can be used together with other studies as a stepping stone
to further research, narrowing down the focus to a more experi-
enced expert groups and searching for contexts where Risk Poker
improves test coverage estimation accuracy by increasing com-
mitment, sharing estimating expertise, promoting team growth
and refining solution understanding. To second that, experiment-
ing with student teams alone might not give a various statistic
result to compare and measure the difference of implementing
the proposed technique with other technique. In addition, on a
bigger scale, students would not be able to replicate a real situ-
ation as professional testers with their limited experience, thus
the need for a bigger scale study to involve industrial project for
a more statistically comparable result. Lastly, the experiment is
a comparison between experimental and control group of peo-
ple, not a post and after post technique. Thus, a study reporting
the statistic result of improvement of the accuracy of before im-
plementing the proposed technique with after implementing the
proposed technique would help.

7. CONCLUSION AND FUTURE WORKS

This research has identified a suitable testing strategy that could
fit agile projects following Scrum and able to perform through
the experiment validation executed with undergraduate student
teams in a software development project following Scrum. This
research has also identified suitable test coverage technique to
combine with the identified software test strategy, where the test
coverage estimation provided by the proposed method shows
significant difference in the statistical result where BRE mean for

vol 33 no 3 May 2018 183



A RISK POKER BASED TESTING MODEL FOR SCRUM

 

 

Figure 12 Unexposed fault quantity.

the averaged individual estimations (BRE mean=5.00) is greater
than Risk Poker estimation (BRE mean=2.00).

This research opens up opportunities to various potential fu-
ture works and some of the future works highly recommended
by this research are as follow;

• Integration of Risk Poker with Planning Poker in the plan-
ning meeting since both techniques share many similar
characteristics to achieve group consensus in the decision-
making process.

• Conduct similar case study but in a software project which
has various levels of group members knowledge and field
of expertise which is expected to produce higher accuracy
in risk prioritization and test coverage estimation. At the
same time, measure if there is any improvement over time
in the risk assessments activity.

• Study the outcome of a software development project that
initially does not apply the method proposed by this re-
search, and then in the middle of the project, apply the
proposed method in order to identify and measure the im-
provements brought by the proposed method compared to
the initial process.

• Apply similar case study to a real software development
project involving real industry personnel in order to verify
the practicality of implementing the proposed method in
the industry. In the same study, researchers may also iden-
tify the reception level and issues that would occur upon
implementing the proposed technique to the existing team
members who have established their own ways of estimat-
ing prior to the introduction of the new method.

• Conduct a similar case study on a real software project for
agile which initially used group discussions for estimation.
Then, to understands how exactly Risk Poker improved pre-
dictions, examine and analyze the risk assessment obtained
from Risk Poker group compared to the initial group dis-
cussions result.

Acknowledgment

This research is supported by Fundamental Research Grant
Scheme (FRGS) Grant No.: FP002-2016 from the Ministry of
Higher Education, Malaysia.

REFERENCES

1. VersionOne.com, The State of Agile Development, in
State of Agile Survey 2010. 2010: https://www.versionone.
com/pdf/2010_State_of_Agile_Development_Survey_Results.pdf.

2. Grenning, J., Planning poker or how to avoid analysis paralysis
while release planning. Hawthorn Woods: Renaissance Software
Consulting, 2002. 3.

3. Schwaber, K., Agile Project Management with Scrum. 2004: Mi-
crosoft Press.

4. Schwaber, K. and M. Beedle, Agilè Software Development with
Scrum. 2002.

5. Nelson, C.R., G. Taran, and L. de Lascurain Hinojosa, Explicit
risk management in agile processes, in Agile processes in software
engineering and extreme programming. 2008, Springer. p. 190-
201.

6. Van de Laar, J., Risk Poker: Risk based testing in agile projects.
Software Quality DayS, 2012: p. 51.

184 computer systems science & engineering



S. S. SALIM ET AL

7. Thomas Müller, D.F., ISTQB WG Foundation Level.
Certified Tester Foundation Level Syllabus. 2011 [cited
2015 24 January 2016]; Version 2011:[Available from:
http://www.istqb.org/downloads/send/2-foundation-level-
documents/3-foundation-level-syllabus-2011.html4.

8. Hellmann, T.D., et al. Agile Testing: Past, Present, and Future–
Charting a Systematic Map of Testing in Agile Software Develop-
ment. in Agile Conference (AGILE), 2012. 2012. IEEE.

9. Khalane, T. and M. Tanner. Software quality assurance in Scrum:
The need for concrete guidance on SQA strategies in meeting user
expectations. in Adaptive Science and Technology (ICAST), 2013
International Conference on. 2013. IEEE.

10. Winter, J., et al., Meeting organisational needs and quality assur-
ance through balancing agile and formal usability testing results,
in Software Engineering Techniques. 2011, Springer. p. 275-289.

11. Stolberg, S. Enabling Agile Testing through Continuous Integra-
tion. in Agile Conference, 2009. AGILE ’09. 2009.

12. Stallbaum, H., A. Metzger, and K. Pohl. An automated technique
for risk-based test case generation and prioritization. in Proceed-
ings of the 3rd international workshop on Automation of software
test. 2008. ACM.

13. Kasurinen, J., O. Taipale, and K. Smolander, Test case selection
and prioritization: risk-based or design-based?, in Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. 2010, ACM: Bolzano-
Bozen, Italy. p. 1-10.

14. Mahnič, V. and T. Hovelja, On using planning poker for estimating
user stories. Journal of Systems and Software, 2012. 85(9): p.
2086-2095.

15. Paulk, M.C., Agile methodologies and process discipline. Institute
for Software Research, 2002: p. 3.

16. Li, M., et al. A risk-driven method for eXtreme programming re-
lease planning. in Proceedings of the 28th international conference
on Software engineering. 2006. ACM.

17. Bannerman, P.L., Risk and risk management in software projects:
A reassessment. Journal of Systems and Software, 2008. 81(12):
p. 2118-2133.

18. Hartmann, J., L.M. Fontoura, and R.T. Price, Using Risk Analy-
sis and Patterns to Tailor Software Processes. XIX Simpósio
Brasileiro de Engenharia de Software, Uberlândia, 2005.

19. Hall, E.M., Managing risk: Methods for software systems devel-
opment. 1998: Pearson Education.

20. Boehm, B.W., Software risk management: principles and prac-
tices. Software, IEEE, 1991. 8(1): p. 32-41.

21. Felderer, M. and R. Ramler, Risk orientation in software testing
processes of small and medium enterprises: an exploratory and
comparative study. Software Quality Journal, 2016. 24(3): p. 519-
548.

22. Nyfjord, J., Towards integrating agile development and risk man-
agement. 2008.

23. Ramler, R. and M. Felderer. A process for risk-based test strategy
development and its industrial evaluation. in International Con-
ference on Product-Focused Software Process Improvement. 2015.
Springer.

24. Williams, L., M. Gegick, and A. Meneely, Protection Poker: Struc-
turing Software Security Risk Assessment and Knowledge Trans-
fer, in Engineering Secure Software and Systems. 2009, Springer.
p. 122-134.

25. Kettunen, V., et al. A study on agility and testing processes in
software organizations. in Proceedings of the 19th international
symposium on Software testing and analysis. 2010. ACM.

26. Garousi, V. and J. Zhi, A survey of software testing practices in
Canada. Journal of Systems and Software, 2013. 86(5): p. 1354-
1376.

27. Jogu, K.K. and K.N. Reddy, Moving Towards Agile Testing Strate-

gies. Cvr journal of science & technology, 2013: p. 88.
28. Moløkken-Østvold, K. and M. Jørgensen, Group Processes in Soft-

ware Effort Estimation. Empirical Software Engineering, 2004.
9(4): p. 315-334.

29. Schatz, B. and I. Abdelshafi, Primavera gets agile: a successful
transition to agile development. Software, IEEE, 2005. 22(3): p.
36-42.

30. Shahid, M., S. Ibrahim, and H. Selamat. An Evaluation of Current
Approaches to Support Test Coverage Analysis. in International
Conference on Computer Engineering and Technology, 3rd (IC-
CET 2011). 2011. ASME Press.

31. Dang, T. and T. Nahhal, Coverage-guided test generation for con-
tinuous and hybrid systems. Formal Methods in System Design,
2009. 34(2): p. 183-213.

32. Lawrence, J., et al. How well do professional developers test with
code coverage visualizations? An empirical study. in Visual Lan-
guages and Human-Centric Computing, 2005 IEEE Symposium
on. 2005. IEEE.

33. Marré, M. and A. Bertolino, Using spanning sets for coverage test-
ing. Software Engineering, IEEE Transactions on, 2003. 29(11):
p. 974-984.

34. Zhu, H., P.A. Hall, and J.H. May, Software unit test coverage and
adequacy. Acm computing surveys (csur), 1997. 29(4): p. 366-
427.

35. Walkinshaw, N., et al., Increasing functional coverage by induc-
tive testing: a case study, in Testing Software and Systems. 2010,
Springer. p. 126-141.

36. Woodward, M.R. and M.A. Hennell, Strategic benefits of software
test management: a case study. Journal of Engineering and Tech-
nology Management, 2005. 22(1): p. 113-140.

37. Gargantini, A. and E. Riccobene, ASM-based testing: Coverage
criteria and automatic test sequence generation. Journal of Uni-
versal Computer Science, 2001. 7(11): p. 1050-1067.

38. Cai, X. and M.R. Lyu. Software reliability modeling with test cov-
erage: Experimentation and measurement with a fault-tolerant
software project. in Software Reliability, 2007. ISSRE’07. The 18th
IEEE International Symposium on. 2007. IEEE.

39. Armstrong, J.S., How to make better forecasts and decisions:
Avoid face-to-face meetings. Foresight, 2006. 5: p. 3-8.

vol 33 no 3 May 2018 185


