
Comput Syst Sci & Eng (2018) 2: 125–135
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

MapReduce Implementation of an
Improved XML Keyword Search
Algorithm
Yong Zhang1,2, Jing Cai1 and Quanlin Li1

1School of Computer and Information Technology, Liaoning Normal University, Dalian, China
2State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, China

Extensible Markup Language (XML) is commonly employed to represent and transmit information over the Internet. Therefore, how to effectively search for
keywords of massive XML data becomes a new issue. In this paper, we first present four properties to improve the classical ILE algorithm. Then, a kind of
parallel XML keyword search algorithm, based on intelligent grouping to calculate SLCA, is proposed and realized under MapReduce programming model.
At last, a series of experiments are implemented on 7 datasets of different sizes. The obtained results indicate that the proposed algorithm has high execution
efficiency and is applicable to keyword search of massive XML data

Keywords: Extensible markup language; keyword search; MapReduce; parallelization

1. INTRODUCTION

Extensible Markup Language (XML) is the standard for data
exchange on Web. Massive data on Web are stored and trans-
mitted by means of XML, so it is a hot research topic, at present,
to store and search XML data in an efficient and accurate way.
Wide application of XML makes it worthy to research extrac-
tion of information from XML data. In order to obtain desired
information from XML data, the users may turn to two query
mechanisms: one is structured query language, which grammar
is relatively complex and is not conducive to usage by many
users; and the other is keyword search through which the infor-
mation can be obtained.

Aiming at XML keyword search, the main research direction
is the smallest lowest common ancestor (SLCA) [1, 2] and its
series of variation query semantics, e.g., VLCA [3, 4] and Ex-
clusive LCA (ELCA) [5, 6]. Lots of researches have been made
thereon: Xu et al. [1] proposed three kinds of classical algo-
rithms based on SLCA semantics, e.g., Indexed Lookup Eager
(ILE), Scan Eager (SE) and stack-based algorithm (Stack), and
verified that the ILE algorithm is superior to other algorithms.

Sun et al. [2] proposed Multi-SLCA corresponding to ILE al-
gorithm to enhance algorithm efficiency through jumping many
redundancies based on anchor node. Li et al. [3] proposed the
stack-based algorithm VLCAStack according to VLCA seman-
tics and meaning Dewey code.Liu et al. [4] analyzed XML data
structure and keyword matching model and designed algorithm
return generation result. Xu et al. [5] proposed the new semantic
ELCA based on the deficiency in SLCA return result and pro-
posed index stack algorithm based on stack structure. Bao et al.
[7] proposed XML keyword search based on the related guide
order according to SLCA semantics and in combination with
XReal and XSeek, and made the quality analysis of searching
return result. Chen et al. [8] proposed a kind of join-based al-
gorithm and returned the first K results in XML keyword search
in combination with top-K algorithm. Zhou et al. [9] proposed
the computation process of FastSLCA and FastELCA based on
crossing set operation and put forward the FwdSCLA algorithm
and BwdSLCA algorithm to generate SLCA and ELCA. Zhao
et al. [10] made node classification of probabilistic XML file by
means of extreme learning machine method. Based on the pre-
vious researches and SLCA and ELCA semantics, Dimitriouet

vol 33 no 2 March 2018 125

MAPREDUCE IMPLEMENTATION OF AN IMPROVED XML KEYWORD SEARCH ALGORITHM

al. [11] proposed the stack-based algorithm which returned k
optimum results.

However, XML keyword search algorithms above only focus
on small XML data, and are inadequate to deal with the large-
scale XML data. The parallelization is the most effective and
feasible solution to settle the problem [12]. At present, some
scholars have studied the parallel XML keyword query. Zhang
et al. [13] gave a simple solution to process XML query using
MapReduce framework. Camacho-Rodríguez et al. [14] con-
sidered the problem of parallelizing the execution of XQuery and
proposed a solution under MapReduce framework. Li et al. [15]
realized IMS algorithm parallel in Hadoop programming frame-
work. Zhang et al. [16] proposed a kind of distributed keyword
search algorithm based on SLCA. However, it does not optimize
the original serial algorithm but performs the parallel on the ba-
sis of the original algorithms. According to the feature of XML,
this paper proposes an efficient keyword search algorithm for
massive XML data based on MapReduce framework.

The main contributions of this paper are as follows:

• We demonstrate four properties and propose an Intelligent
Indexed Lookup Eager (IILE) algorithm to optimize and
improve the classical ILE algorithm.

• We implement the parallel algorithm of IILE based on
MapReduce programming model to solve the problem in
low efficiency on massive XML data.

• The simulation results demonstrate that the proposed IILE
algorithm can effectively and efficiently deal with keyword
search on massive XML data.

The remaining of the paper is organized as follows. SLCA and
MapReduce framework are simply reviewed in Section 2. Four
properties and the proposed IILE algorithm are presented in de-
tail in Section 3. Section 4 analyses and evaluates the results
through a series of experiments. Finally, the conclusion and
future work are presented in the last Section.

2. RELATED WORK

2.1 SLCA

2.1.1 SLCA semantics

SLCA is the important concept for XML keyword query. It is
used mainly for defining the significant result returned for the
given keyword query, which is the core problem in keyword
query research [1, 2, 6, 7, 17-20]. The concrete definition of
SLCA is to solve the subtree root node meeting the two condi-
tions below:

• The subtree includes all keyword sequences.

• The subtree includes no smaller subtree but all keyword
sequences.

XML keyword query work involves mainly in generation of can-
didate point set and reduction in SLCA calculation. As the return
result of XML keyword query, SLCA reflects the inclusion re-
lation between candidate point sets.

2.1.2 SLCA solution

ILE and SE [1] are the classical algorithms for solving SLCA.
The main principle of ILE is to design a kind of data format of
B+ tree structure, to facilitate lm operation and rm operation and
obtain all corresponding Dewey code sets of given keyword, and
the nodes in set are sorted in order of size.

ILE is applicable to the keyword set containing low-frequency
keyword. However, SE, as a variation of ILE, is applicable to
all conditions with little frequency fluctuation of keyword. The
two algorithms are intended for solving SLCA of k keywords, on
the basis of the same rule, needing k − 1 intermediate variable
sets in computation process, and a pair node sets are required
as the input for each SLCA calculation before generation of an
intermediate result set.

Although ILE algorithm has superior performance, it still has
the following deficiencies: firstly, it saves XML data on B+ tree
structure and therefore B+ tree structure must be modified to sup-
port the necessary Dewey code operation, which is complex to
realize. Moreover, B+ index structure is not applicable to Dewey
code data. Secondly, SLCA computation process is “obstructed”
in ILE algorithm, that is, Dewey set Si must be calculated in turn
and the processing of the i − 1th keyword must be completed
before processing the i th keyword [4], which greatly reduces the
algorithm speed. Therefore, the traditional ILE algorithm is not
efficient for large-scale data.

2.2 Hadoop and MapReduce Framework

As an open-source framework, Hadoop mainly consists of the
distributed file system (HDFS) and MapReduce. HDFS can re-
alize the efficient storage and management of data on the cloud
composed of computer cluster [21]. As a kind of parallel pro-
gramming model,MapReduce is intended for parallel computing
and highly abstracts the parallel computing process and devel-
ops it into Map function and Reduce function. Therefore, the
compilation of application program in the MapReduce frame-
work is the process of mapper and reducer customization. Such
computing model requires that the input, output and interme-
diate data are present as a key-value pair <key, value>. Map
function accepts an input in <k1,v1> form and also generates
an intermediate input in <k2,v2> form. Hadoop will integrate
v2 set with the same intermediate k2 value and then transfer it to
Reduce function. Reduce function will accept an input in <k2,
list of value> form and process the value set. Each Reduce out-
put is in <k3,v3> form. Finally, the result will be returned to
the application program.

3. INTELLIGENT INDEXED LOOKUP EA-
GER ALGORITHM BASED ON SLCA SE-
MANTICS

3.1 Optimization and Improvement of ILE Al-
gorithm

Aiming at the above mentioned issues emerged in ILE algorithm,
an improved ILE algorithm was proposed for data optimization,

126 computer systems science & engineering

Y. ZHANG ET AL

called Intelligent Indexed Lookup Eager (IILE). The optimiza-
tion and improvement of ILE algorithm are described from such
four aspects as follows:

To begin with, the complexity of the classical ILE can be
expressed as O(|S1|∑k

i=2 d log |Si |+|S1|2), where |S1| denotes
the minimum size of keyword lists. k and d indicate the number
of keywords and the maximum depth of XML tree, respectively.
It is obvious that the algorithm efficiency is hugely affected by Si,
and the computing cost can be reduced before SLCA computing
by means of decrease in Si (i = 1 to k).

Property 1: slca(S1, S2,…,Sk) = slca(removeAncestor(S1),
removeAncestor(S2), …, removeAncestor(Sk)).

In Property 1,removeAncestor is the function for removing the
ancestor node in Dewey code. According to SLCA semantics,
to solve the SLCA of keyword set wi is to solve the longest
common substring between the corresponding Dewey code set
of keyword set. It is obvious that to remove the ancestor node in
Si will not affect the correctness of SLCA solution but accelerate
the computation process.

Example 1: Supposing the corresponding Dewey code set of key-
word w0 is S0={0.0.0.1} and the corresponding Dewey code set
of keyword w1 is S1={0.0, 0.0.0, 0.1.1.0.1, 0.1.1.1.0, 0.1.1.2.1.0,
0.1.1.3.0, 0.1.2.0.0, 0.2.0.0.0}. When we calculate SLCA be-
tween S0 and S1, an intermediate result {0.0} will be generated
before removeAncestor processing. A slca calculation will be
reduced obviously and then it may get the result SLCA={0.0.0}
directly after execution of removeAncestor operation.

Property 1 provides a basis for cutting Si size and can reduce
some intermediate calculation steps by removing the ancestor
node in Si .

Next, if S1 is split into �|S1|/|P|� subsets (subgroups) [1],
where P is the buffer of fixed size and subset is expressed
by B , then SLCA result can be presented faster by solving
slca(B ,S2,…,Sk).

Property 2: slca(S1,S2)=removeAncestor(slca(B1,S2)
⋃

…
⋃

slca(Bi ,S2)
⋃

...
⋃

slca(Bk ,S2)), where Bi satisfies S1 =⋃k
i=1 Bi and Bi ∩ Bi+1 = ∅ (1≤ i < k).
Supposing slca(S1, S2) �=removeAncestor(slca(B1,S2)

⋃
…

⋃
slca(Bi ,S2)

⋃
…

⋃
slca(Bk ,S2)), then there exists

Bi which must make slca(Bi ,S2) �⊆slca(S1,S2). S1 =⋃k
i=1 Bi and Bi ∩ Bi+1 = ∅ (1≤ i < k), so Bi ⊂

S1 and slca(Bi , S2) �⊆slca(S1, S2) is false. There-
fore, slca(S1,S2)=removeAncestor(slca(B1,S2)

⋃
…

⋃
slca(Bi ,

S2)
⋃

…
⋃

slca(Bk ,S2)) is correct.
Then, it is proven that SLCA solution meets requirements of

associative law. The algorithm parallelization will be realized
in the following part of this paper and here is a parallel point
for realization of algorithm parallelization. Therefore, S1 can be
split and correct SLCA solving is the foundation and guarantee
for realization of algorithm parallelization.

Property 3: slca(S1,...,Si ,…,Sk)=slca(slca(S1,S2), ...,
slca(Si ,Si+1), …, slca(Sk−1,Sk)), where 1≤ i < k.

If v12 ∈slca(S1, S2), a match {v1,v2} with v12 as the anchor
point must exist (where v1 ∈ S1 and v2 ∈ S2), so v12 = lca(1,
v2) [9]; Similarly, v34=lca(v3, v4).

Supposing A=slca{S1, S2} and B = slca{S3, S4}. If vAB ∈
slca(A, B), then a match {v12, v34} with vAB as the anchor
point must exist (where v12 ∈ A and v34 ∈ B). So, vAB =

lca(v12, v34).
vAB = lca(v12, v34), 12 = lca(v1, v2) and v34 = lca(v3, v4),

so vAB = lca(v1, v2, v3, v4) and slca(S1, S2, S3, S4) =
slca(A, B). In conclusion, slca(S1, ..., Si , . . ., Sk) =
slca(slca(S1, S2), ..., slca(Si , Si+1), . . ., slca(Sk−1, Sk)).

Finally, in ILE and SE algorithms, SLCA is obtained by re-
moving the ancestor node in SLCAs candidate set directly or
indirectly, so the intermediate SLCA candidate set SLCAs is
in fact generated based on a massive calculation process. See
Example 2 below for intuitive description of the problem.

Example 2: Supposing the corresponding Dewey sets of two
keywords w1 and w2 are S1 = {0.0.0, 0.1.1.0.1, 0.1.1.1.0,

0.1.1.2.1.0, 0.1.1.3.0, 0.1.2.0.0, 0.2.0.0.0, 0.2.1.0.0, 0.2.2.0.0}
and S2 = {0.0.1.5, 0.1.0.9.0,

0.1.1.2.0, 0.1.2.1.0, 0.2.0.0.1, 0.3.0.0.0, 0.3.1.0.0, 0.3.2.0.0}.
We calculate SLCAs between keywords w1 and w2 (corre-
sponding to node set S1 and S2) based on ILE algorithm. The
value of P is set to be 2. According to �|S1|/|P|� principle, S1
is divided equally into five groups of S11 = {0.0.0, 0.1.1.0.1},
S12 = {0.1.1.1.0, 0.1.1.2.1.0}, S13 = {0.1.1.3.0, 0.1.2.0.0},
S14 = {0.2.0.0.0, 0.2.1.0.0} and S15 = {0.2.2.0.0}, so we can
obtain SLCA = removeAncestor(slca(S11, S2)∪ slca(S12, S2)∪
slca(S13, S2) ∪ slca(S14, S2)) ∪ slca(S15, S2), i.e., SLCAs= re-
moveAncestor({{0.0,0.1.1}, {0.1.1.2}, {0.1.1,0.1.2}, {0.2.0.0},
{0.2}}). At last, we can obtain SLCAs={0.0, 0.1.1.2, 0.1.2,
0.2.0.0}. Two redundant SLCAs will be generated if the result
set with only four SLCAs is obtained. In case of large XML
document and many keywords, it is a heavy task to remove the
ancestor node and the redundant SLCAs such generated is a
huge waste of computing cost.

Property 4: Principle of intelligent grouping. If lca(vi , vi+1) =
lca(vi+1, vi+2), then vi and vi+1 are in the same group; if
lca(vi , vi+1) > lca(vi+1, vi+2), then vi and vi+1 are in the same
group but vi+1 and vi+2 are not in the same group; and if lca(vi ,
vi+1) < pre(lca(vi+1, vi+2)), then vi and vi+1 are not in the
same group (1 ≤ i ≤ k − 2).

For the same Dewey code (node) vi+1, lca(vi , vi+1) ≥
lca(vi+1, vi+2) indicates that vi is more closer to vi+1than
vi+2, that is, vi has the longer common prefix than vi+2with
respect to vi+1. Then, in the process of calculating SLCA,
slca(vn , …, vi , vi+1, vi+2, …, vk) can be divided into
slca(vn ,…,vi) and slca(vi+1, vi+2,…,vk), or slca(vn ,…,vi , vi+1)

and slca(vi+2,…,vk). The number of ancestor contained in the
SLCA candidate set in the first decomposition condition must
not be smaller than that in the second decomposition condition.
vi and vi+1 are “closer”, so we suppose that the ancestor rela-
tionship exists between vi and vi+1 and SLCA is generated by
a certain node v in S2. We have to remove the ancestor node
generated right now after calculating SLCA, to obtain the accu-
rate SLCA under the first condition. However, the judgment can
be made for removing the ancestor node in the solution process,
without waiting for the completion of decomposition and solu-
tion. Therefore, Example 2 can be solved again by the grouping
strategy. Now, let’s refer to Example 3 below.

Example 3: According to Property 4, lca(0.0.0,
0.1.1.0.1)<lca(0.1.1.0.1, 0.1.1.1.0), so “0.0.0” and “0.1.1.0.1”
are not in the same group, and S11 = {0.0.0}. More-
over, lca(0.1.1.0.1, 0.1.1.1.0)= 0.1.1 and lca(0.1.1.1.0,

vol 33 no 2 March 2018 127

MAPREDUCE IMPLEMENTATION OF AN IMPROVED XML KEYWORD SEARCH ALGORITHM

Table 1 Basic information of the testing datasets

dataset The size The number The number
of dataset of nodes of Keywords

data1 10.7 MB 320,714 19,393
data2 125.2 MB 3,737,432 92,633
data3 168.8 MB 5,954,571 128,824
data4 226.3 MB 6,999,749 1,050,132
data5 247.1 MB 7,389,164 176,431
data6 1.1 GB 35,852,619 3,951,735
data7 1.6 GB 69,427,983 15,082,852

0.1.1.2.1.0)=0.1.1, so “0.1.1.0.1” and “0.1.1.1.0” are in
the same group. At last, S1 is dynamically divided
into four groups of changing size. Therefore, SLCAs
= removeAncestor(slca(S11,S2) ∪ slca(S12, S2)∪slca(S13,
S2)∪slca(S14, S2)), that is, SLCAs = removeAncestor({{0.0},
{0.1.1.2}, {0.1.2}, {0.2.0.0}). Four SLCA result sets are
generated directly without redundant results. “0.1.1.2” in
SLCA needs no screening after SLCA candidate set obtained
from grouping, so the “ancestor relationship” generated in
solution process will not be processed and no more computing
resource will be wasted. According to lemma1 and lemma2 in
Ref. [1], the logic complexity of SLCA solving is simplified.
The effect is more obvious in the solution process for many
keywords.

Based on such four properties and in combination with
Hadoop’s parallel mechanism, the ancestor will be removed at
first during reading metadata in Map process. And then,Si will
be intelligently grouped and each group will be delivered to a
Reduce for parallel process. At last, the results are collected and
subjected to removing duplicates and removing ancestor.

3.2 Realization of Hadoop-based Algorithm

This section will present the realization of IILE algorithm under
Hadoop and MapReduce framework. The algorithm realization
may be divided into four major parts as shown in Fig.1, which
presents the flow chart of SLCA keyword query of keyword Title,
Ben and John in School.xml document tree [1] as shown in Fig. 2.

3.3 Description of Algorithm

According to above four properties, this subsection gives a detail
description of our proposed IILE algorithm based on MapReduce
framework.

Algorithm 1 first selects the keyword to be looked up and the
corresponding Dewey code, and saves all Dewey codes of the
same keyword to the same set.

In Algorithm 1, m keywords to be looked up are {w1,
w2,…,wi ,…,wm}. We select the keyword to be looked up and
the corresponding Dewey code through SelectMapper function,
and then merge its Dewey code set to save in Si in SelectReducer
function. The results are outputted to HDFS and will be used in
the next sorting function module.

Algorithm 1. SelectMapReduce
1:SelectMapper (key=offset,value=(dewey, keyword)){
2: if keyword= wi then
3: output (keyword, dewey);
4: end if
5:}
6:SelectReducer (key=(keyword,dewey),values){
7: for all the same keyword do
8: put dewey into Si ;
9: end for
10: output (keyword,Si);
11:}

Algorithm 2 arranges the Dewey codes of each keyword in
the ascending order.

Algorithm 2. SortMapReduce
1:SortMapper(key=keyword,value=Si){
2: length =the size of dewey in Si ;
3: output(length,value);
4:}
5:SortReducer(key=length,values){
6: according to length, sort Si from small to large;
7: output((keyword,Si),Text());
8:}

In Algorithm 2, Si will be sorted in the ascending order ac-
cording to the number of Dewey code. By means of the char-
acteristic of automatic sorting of Reduce,SortReducer function
sorts keywords according to the number of Dewey code of the
same keyword. The size of SLCA must be smaller than |Smin|
at last, so the sequence from small to large, must be beneficial
to the simplification of computation process.

Then, Algorithm 3 realizes the parallel of IILE algorithm.

Algorithm 3. SLCAMapReduce
1:SLCAMapper (key=offset, value=(keyword, Si)){
2: removeAncestor(Si);
3: for (i=2 to m) do
4: put Si into Ss;
5: end for
6: foreach Set in S do
7: result=ileAlgorithm(Set, Ss)[1];
8: if result is not null then
9: output(size of result, result);
10: end if
11: end for
12: if (i=1) then
13: IGA(S1);
14: end if
15:}
16:SLCAReducer (key=(size of result, result),values){
17: output(key, values);
18:}

128 computer systems science & engineering

Y. ZHANG ET AL

Figure 1 Flow chart of Hadoop-based SLCA keyword query.

Figure 2 School.xml document tree (each node is identified by Dewey code) [1].

In Line 2, ancestor code is removed from Dewey code set
according to Property 1. Apart from S1, Si is included in the
set Ss. Dewey codes are classified intelligently. S1 is grouped
intelligently by function IGA(S1) in Line 13 of Algorithm 3,
which is implemented as follows.

Sub-function IGA indicates the intelligent grouping process.
Lines 3-4 indicate no grouping is required if the quan-
tity of Dewey code is too few. Lines 11-16 indicate if
lca(v j , v j+1)=lca(v j+1, v j+2), then v j and v j+1 are in the same
group. Lines 17-23 indicate if lca(v j , v j+1) >lca(v j+1, v j+2),
then v j and v j+1are in the same group, and v j+1 and
v j+2are not in the same group. Lines 24–30 indicate if
lca(v j , v j+1) <lca(v j+1, v j+2), then v j and v j+1 are not in
the same group.

4. EXPERIMENTAL ANALYSIS

The paper designs a series of experiments by combining the
several factors of XML keywords query, such as number and
frequency of keywords, size of XML dataset and number of
parallel cluster nodes. Through the analysis of the experimental
results, this section also validates the high efficiency of the XML
keyword query based on Hadoop.

In our experiments of the paper, 17 nodes are involved in the
cluster. The configuration information and operation environ-
ments of all nodes are the same. We have built a system platform
using Ubuntu10.12, Hadoop 0.20.2 and Java 1.6.0_21. One of
them is used as the master node and the rest are used as slave
nodes.

4.1 Experimental Data

4.1.1 Datasets

7 XML datasets are used in the experiments as follows.
Dataset 1 is FI_meta.xml, called as data1. Dataset 2 is
FR_meta.xml, called as data2. Dataset 3 is ES_meta.xml,
called as data3. Dataset 4 is od_bsz-tit_130516_20.xml,
called as data4. Dataset 5 is DE_meta.xml, called as data5.
Dataset 6 is od-up_bsz-tit_150316_01.xml, called as data6.
The above data1, data2, data3 and data5 can be downloaded
from https://www.monetdb.org/Downloads. Data4 and data6
can be downloaded from http://swblod.bsz-bw.de/od/. Dataset
7 is dblp.xml, called as data7, which can be downloaded from
http://dblp.uni-trier.de/xml/. Table I lists their basic information.

4.2 Basic Information of the Testing Datasets

4.2.1 Queried keyword information

Based on the need of the experiment, 7 sets were selected ran-
domly from each dataset in accordance with the number and
frequency to search for the keyword groups. As shown in Table
2, 49 keyword groups were available in total, which were num-
bered from Q1-Q49. Each group is separated by commas, and
the number and frequency of the keywords were separated by “–
” [7]. For example, 4-100 means 4 keywords and the frequency
of each keyword is 100 (1±10%), i.e. the frequencies of all the
keywords that appear 90–110 times are all 100.

vol 33 no 2 March 2018 129

MAPREDUCE IMPLEMENTATION OF AN IMPROVED XML KEYWORD SEARCH ALGORITHM

Table 2 Information of keyword groups

dataset ID Keywords query condition

data1

Q1 1.750, 1988_01_01, 98.105, C6H6 4-10
Q2 station_local_code, station_name, station_latitude_dms, 97.260 4-100
Q3 0,1, data_file, data_type 4-1000
Q4 Mean, maximum, P98, Max 4-5000
Q5 97.260, station_name 2-100
Q6 station_local_code, station_name, station_latitude_dms, 97.260, 7, 9, 4.000, sabe_unit_name 8-100
Q7 station_local_code, station_name, station_latitude_dms, 97.260, 7, 9, 4.000, sabe_unit_name, 101,

station_info, 366, urban, station_city, station, population, 3.000
16-100

data2

Q8 90.217, 1988_01_02, MQ, Villeurbanne 4-10
Q9 Organization, 90.164, 16, person_first_name 4-100
Q10 Station_city, street_name, population, NO2 4-1000
Q11 Data_set, UNKNOWN, Max8, 1.000 4-5000
Q12 90.164, 16 2-100
Q13 Organization, 90.164, 16, person_first_name, 1999_06_01, organization_city, organization_name,

unknown
8-100

Q14 Organization, 90.164, 16, person_first_name, 1999_06_01, organization_city, organization_name,
unknown, 12, FR035A, person_last_name, street_type, person, Temperature, 1976_01_01, organi-
zation_address

16-100

data3

Q15 Cu, Fe, 90.205, 2010_08_01 4-10
Q16 1988_01_01, 34.500, Madrid, CH4 4-100
Q17 3, station_latitude_dms, station_european_code, station_city 4-1000
Q18 60,102, Max25, Max26 4-5000
Q19 34.500, CH4 2-100
Q20 3, station_latitude_dms, station_european_code, station_city, regional, 1992_05_01, hour, 3.600 8-100
Q21 3, station_latitude_dms, station_european_code, station_city, regional, 1992_05_01, hour, 3.600,

T_VOC, C6H5_C2H5, natural, chemiluminescence, station_distance_to_source, DESCONO-
CIDO, near city, rural, background

16-100

data4

Q22 C, M, DVD ROM, Growth 4-10
Q23 Boon, Duncker, Ratgeber, 780 4-100
Q24 Jpn, spa, lat, trl 4-1000
Q25 Aut, rvk, prf, pup 4-5000
Q26 Ratgeber, 780 2-100
Q27 Boon, Duncker, Ratgeber, 780, UB, Jena, aui, grc 8-100
Q28 Boon, Duncker, Ratgeber, 780, UB, Jena, aui, grc, fin, dbp, cmm, pdf, Foreign_relations, Film,

Autoren, Germany
16-100

data5

Q29 K, 90.209, 1993_03_031, Magdeburg 4-10
Q30 As, Ni, 1983_07_01, station_description 4-100
Q31 1988_01_01, NO, Background, SPM 4-1000
Q32 361, 362, 363, 364 4-5000
Q33 1983_07_01, station_description 2-100
Q34 As, Ni, 1983_07_01, station_description, 81.500, 7018, Conductimetry, light_scattering 8-100
Q35 As, Ni, 1983_07_01, station_description, 81.500, 7018, Conductimetry, light_scattering, DE012A,

meadow, permuation_tube, Direct_solar_radiation, month, 2008_12_30, G, 26
16-100

data6

Q36 Set, sankt, UQ_1225, UB_2780 4-10
Q37 Tests, Tempel, Testmaterial, UY 4-100
Q38 1957, Stuttgart, DE_21_32a, DE_25_75 4-1000
Q39 Politologie, adp, ad18, De_1033 4-5000
Q40 Tests, Tempel 2-100
Q41 Tests, Tempel, Testmaterial, UY, UF_1500, UF_4000, UVK_Lucius, AF_02000 8-100
Q42 Tests, Tempel, Testmaterial, UY, UF_1500, UF_4000, UVK_Lucius, AF_02000, AE_55000,

Aeschylus, Adressat, BC_1100, BB_1850, BC_2205, Commercial_law, Country_report
16-100

data7

Q43 Elvis C. S. Chen, Emanuele toscano, Embedded Systems, Emily F. Conant 4-10
Q44 NLPKE, NLPRS, NMA, JFIADSMA 4-100
Q45 HPDC, HRI, ISM, ISPA 4-1000
Q46 UAI, ACC, AAAI, AMIA 4-5000
Q47 NLPKE, NLPRS 2-100
Q48 NLPKE, NLPRS, NMA, JFIADSMA, ADS, ADCS, SUTC, SwSTE 8-100
Q49 NLPKE, NLPRS, NMA, JFIADSMA, ADS, ADCS, SUTC, SwSTE, VIP, VRIC, TES, TAPOS,

ZEUS, WISES, WAIFI, WEB
16-100

130 computer systems science & engineering

Y. ZHANG ET AL

(a) Running status at query condition of 4-10 (b) Running status at query condition of 4-100

(c) Running status at query condition of 4-1,000 (d) Running status at query condition of 4-5,000

(e) Running status at query condition of 2-100 (f) Running status at query condition of 8-100

(g) Running status at query condition of 16-100

Figure 3 Bar graph of running time.

vol 33 no 2 March 2018 131

MAPREDUCE IMPLEMENTATION OF AN IMPROVED XML KEYWORD SEARCH ALGORITHM

(a) Running status at query condition of 4-10 (b) Running status at query condition of 4-100

(c) Running status at query condition of 4-1,000 (d) Running status at query condition of 4-5,000

(e) Running status at query condition of 2-100 (f) Running status at query condition of 8-100

(g) Running status at query condition of 16-100

Figure 4 Speed-up ratio curve.

132 computer systems science & engineering

Y. ZHANG ET AL

(a) Running status at query condition of 4-10 (b) Running status at query condition of 4-100

(c) Running status at query condition of 4-1,000 (d) Running status at query condition of 4-5,000

(e) Running status at query condition of 2-100 (f) Running status at query condition of 8-100

(g) Running status at query condition of 16-100

Figure 5 Curve chart of the optimal size of nodes in the cluster.

5. INFORMATION OF KEYWORD GROUPS

5.1 Experimental Process

5.1.1 Experiment 1: change the query characteristic and
compare the running time

To test the running time of proposed IILE algorithm, we change
the size of nodes in the cluster from 2 to 16 in the first experiment.
Fig. 3 illustrates corresponding results.

It is obvious that the running efficiency on small-scale dataset

is not ideal, such as data1-data4, as shown in Fig. 3. The running
time changes not obviously and even more slowly while the size
of nodes gradually increases. However, for large-scale datasets,
such as data5-data7, it shows obvious advantages. Fig. 3 (e, f,
g) indicates that the running time obviously decreases when the
size of nodes changes from 2 to 4, while it changes slowly when
the size of nodes reaches 8. The query condition has small effect
on the running time. For the same dataset, the running time in the
query conditions of 4-5000 and 16-100 is longer than that in other
query conditions. It indicates that the size and the frequency of

vol 33 no 2 March 2018 133

MAPREDUCE IMPLEMENTATION OF AN IMPROVED XML KEYWORD SEARCH ALGORITHM

Sub-function. Intelligent Grouping Algorithm (IGA)
Input: S1
Output: S={every Set from S1 },Set is a group ofS1

1: S={};
2: Set={};
3: if (|S1| <= 2) then
4: {Set=S1; S = S∪{Set};}
5: else
6: {Flag=true;
7: for (j=1 to |S1| − 2) do
8: if (Flag) then
9: {Set=Set∪{v j }; Flag=false;}
10: end if
11: if (lca(v j , v j+1)=lca(v j+1, v j+2)) then
12: {Set=Set∪{v j+1};
13: if (j = |S1| − 2) then
14: {Set=Set∪{v j+2}; S = S∪{Set};}
15: end if
16: }
17: else if (lca(v j , v j+1) >lca(v j+1, v j+2)) then
18: {Set=Set∪{v j+1}; S = S∪{Set}; Set={};
19:if (j = |S1| − 2) then
20: Set=Set∪{v j+2};
21: end if
22: j++; Flag=true;
23: }
24: else if (lca(v j ,v j+1) <lca(v j+1, v j+2)) then
25: {S = S∪{Set }; Set={};
26: if (j=|S1| − 2) then
27: {Set=Set∪{ v j+1 },Set=Set∪{ v j+2}; S = S∪{Set };}
28: end if
29: Flag=true;
30: }
31: end if
32: end for
33: }
34:end if
35:return S

keyword will affect the running time of IILE algorithm. The
experimental results have verified that IILE algorithm is more
suitable for large-scale dataset, which makes it possible to query
massive XML keywords.

5.1.2 Experiment 2: change the number of cluster nodes
and compare the speed-up ratio

We have introduced the speed-up ratio to analyze the experi-
mental results and measure the performance and efficiency of
parallel system. The speed-up ratio is defined as speed-up ratio
= Running time on single machine/Running time on clusters.

From the speed-up ratio curve in Fig. 4, we can clearly see
that, the speed-up ratio shows a tendency of increase as the size of
nodes increases. However, it is not obvious in the case of small-
scale datasets. We can also see that after 8 nodes, the increase
of the speed-up ratio starts to slow down. This is because there
is also an information exchange between the nodes of the same
dataset, which will occupy some system consumption. It is not

true that the algorithm speed can increase unlimitedly as the
increase of the number of nodes.

5.1.3 Experiment 3: change the size of cluster nodes and
compare the optimal number of nodes

Fig. 5 shows the curve chart of the optimal size of nodes in
the cluster. We can see from Fig. 5 that, for a specific sized
dataset, the running efficiency will increase when the size of
nodes increases. But it is not the more the better. As shown
in Fig. 5, we can see that for the same data file, the reducing
tendency of the running time is slowing down as the size of
nodes increases. This is determined by the block mechanism
of Hadoop itself whose default data block size is 64 MB, just
like the data of 128 MB divided into 2 data blocks and the data
of 256MB divided into 4 data blocks. The figure shows that
data7 has the best efficiency in the cluster with 8 nodes, while
the reducing tendency of running time tends to be gentle if the
number of nodes increases.

6. CONCLUSION AND FUTURE WORK

In this paper, parallelization of MapReduce-based XML key-
word search algorithm is further researched to process massive
XML data. The grouping-based IILE algorithm is proposed and
realized, and then the parallel is carried out by means of Hadoop.
The experimental results show that our proposed algorithm can
process SLCA-based keyword search of large-scale XML data.

However, some gaps still remain in this paper: (1) the algo-
rithm does not achieve the complete separation of relationship
between groups and some ancestor relationships still exist. The
reason for these problems may be further analyzed or studied
in the next phase. (2) Limited by unavailable Hadoop iteration
and other factors, these functional modules shall be written by
block. The previous research was conducted from the perspec-
tive of repeated starting of Hadoop program. (3) Parallelization
of XML Dewey code has not yet been implemented in place. In
light of these, emphasis will be placed on these gaps to study
efficient algorithm for keyword search and applications of the
same in cloud computing environment.

Acknowledgements

This work is partly supported by National Natural Science Foun-
dation of China (No. 61373127).

REFERENCES

1. Y. Xu and Y. Papakonstantinou, “Efficient keyword search for
smallest LCAs in XML databases,” Proceedings of SIGMOD,
2005, pp. 537–538.

2. C. Sun, C. Y. Chan, and A. K. Goenka, “Multiway SLCA-based
keyword search in XML data,” Proceedings of the 16th Interna-
tional Conference on World Wide Web, 2007, pp. 1043–1052.

3. G. L. L, J. H. Feng, J. Y. Wang, and L. Z. Zhou, “Effective keyword
search for valuable LCAs over XML documents,” Proceedings of

134 computer systems science & engineering

Y. ZHANG ET AL

the sixteenth ACM Conference on Information and Knowledge
Management, ACM Press, 2007, pp. 31–40.

4. Z. Liu Z and Y. Chen, “Identifying meaning return information
for XML keyword search,” Proceedings of SIGMOD, 2007, pp.
329–340.

5. Y. Xu and Y. Papakonstantinou, “Efficient LCA based keyword
search in XML data,” Proceedings of EDBT, 2008, pp. 535–546.

6. J. Li, C. Liu, R. Zhou, and J. Yu, “Quasi-SLCA based keyword
query processing over probabilistic XML data,” IEEE Transactions
on Knowledge and Data Engineering, 2014, 26(4): 957–969.

7. Z. Bao, J. Lu, T. W. Ling, and B. Chen, “Towards an effective
XML keyword search,” IEEE Transactions on Knowledge and Data
Engineering, 2010, 22(8): 1077–1092.

8. L. J. Chen and Y. Papakonstantinou, “Supporting top-k keyword
search in xml databases,” Proceedings of IEEE 26th International
Conference on Data Engineering (ICDE), 2010, pp. 689–700.

9. J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen, X. Lin, and J. Guo,
“Fast SLCA and ELCA computation for XML keyword queries
based on set intersection,” Proceedings of IEEE 28th International
Conference on Data Engineering (ICDE), 2012, pp. 905–916.

10. Y. Zhao, Y. Yuan, and G. Wang, “Keyword search over probabilis-
tic XML documents based on node classification,” Mathematical
Problems in Engineering, 2015, Article ID 210961, 11 pages.

11. A. Dimitriou, D. Theodoratos, and T. Sellis, “Top-k-size keyword
search on tree structured data,” Information Systems, 2015, 47:
178–193.

12. N. Bidoit, D. Colazzo, N. Malla, F. Ulliana, M. Nolé, and C. Sar-
tiani, “Processing XML queries and updates on Map/Reduce clus-
ters,” Proceedings of the 16th International Conference on Extend-
ing Database Technology (EDBT), 2013, pp. 745-748.

13. Y. Zhang, Q. Li, and B. Liu, “MapReduce implementation of XML
keyword search algorithm,” Proceedings of International Confer-
ence on Big Data Intelligence and Computing, 2015, pp. 721-728.

14. J. Camacho-Rodríguez, D. Colazzo, and I. Manolescu, “PAX-
Query: efficient parallel processing of complex XQuery,” IEEE
Transactions on Knowledge and Data Engineering, 2015, 27(7):
1977-1991.

15. Z. Li and S. Tao, “A XML keyword search algorithm based on
MapReduce,” International Journal of Digital Content Technology
& its Applications, 2012, 6(17): 307–316.

16. C. Zhang, Q. Ma, X. Wang, and A. Zhou, “Distributed SLCA-
based XML keyword search by Map-Reduce,” Proceedings of the
15th International conference on Database systems for Advanced
Applications (DASFAA’10), Springer Berlin Heidelberg, 2010, pp.
386–397.

17. Y. Shen and L. Feng, “Evaluation of XPath queries with predicates:
an Eulerian cycle theory based sequencing approach,” International
Journal of Computer Systems Science & Engineering, 2011, 26(4):
241–257.

18. S. Böttcher, R. Hartel, and J. Rabe, “Efficient XML keyword search
based on DAG-compression,” Proceedings of DEXA, Springer In-
ternational Publishing, 2014, pp. 122–137.

19. M. Mataoui and M. Mezghiche, “A distance based approach for
link analysis in XML information retrieval,” International Journal
of Computer Systems Science & Engineering, 2015, 30(3): 173–
183.

20. R. R. Lin, Y. H. Chang, and K. M. Chao, “Locating Valid SLCAs
for XML keyword search with NOT semantics,” ACM SIGMOD
Record, 2014, 43(2): 29–34.

21. X. Zheng, J. Li, Y. Zhang, and Q. Liu, “An optimization model of
Hadoop cluster performance prediction based on Markov process,”
International Journal of Computer Systems Science & Engineer-
ing, 2016, 31(2): 127–136.

vol 33 no 2 March 2018 135

