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This paper proposes a machine learning based method which can detect certain events automatically and precisely in biomedical imaging. We detect one
important and not well-defined event, which is called flash, in fluorescence images of Escherichia coli. Given a time series of images, first we propose a
scheme to transform the event detection on region of interest (ROI) in images to a classification problem. Then with supervised human labeling data, we
develop a feature selection technique to utilize support vector machine (SVM) to solve this classification problem. To reduce the time in training SVM model,
a parallel version of SVM training is implemented. On ten stacks of fluorescence images labeled by experts, each of which owns one hundred 512 ·512
images with in total 4906 ROIs and 72056 labeled events, event detection with proposed method takes 19 seconds, while human labeling roughly costs
60 hours. With human labeling as the standard, the accuracy of our method achieves an F-value of about 0.81. This method is much faster than human
detection and expects to be more precise with bigger data. It also can be expanded to a series of event detection with similar properties and improve
efficiency of detection greatly
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1. INTRODUCTION

As fluo-labelled technology and optical image technology de-
velop and fluorescence detection is highly sensitive,fluorescence
imaging is used for cell identification and sorting in flow cytom-
etry, and to reveal the localization, movement of intracellular
substances [1]. With fluorescence technique, large fluorescence
images are generated, collected and analyzed in many fields such
as molecular biology, neurology and bioinformatics. Although
human labeling is the most precise in pattern recognition of the
data in biomedical imaging, it is very time-consuming [2] and
inefficient when the data is big [3]. For example, demarcation
of appropriate landmarks for temporal lobe structures in linear
measures of images can take up to 3 hours [4]. Even some opti-
mal technologies can be used to reduce time, automation is still
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a problem [5]. Automated and efficient method for data analysis
is needed.

The conventional rule and threshold based methods are intu-
itive and simple, however they are not precise enough with big
data. Rule and threshold based methods are like expert systems,
which work well with small data, but will lose its efficiency with
big data. The reasons lie in two points: first, the number of rules
cannot be big enough to reflect the intrinsic characteristics of big
data; second, the thresholds used in each rule are not accurate
for big data. Machine learning based method may act as a possi-
ble solution. One advantage of machine learning based method
is that the whole process is automated, because algorithms are
trained by datasets and carry out without human intervention.
The other advantage is that the method will be more precise
with more data. There have been a lot of successful examples in
biological processing using machine learning, especially Sup-
port Vector Machine (SVM) [6]. In March of 2009, a glucose-

vol 33 no 2 March 2018 105



AUTOMATED AND PRECISE EVENT DETECTION METHOD FOR BIG DATA IN BIOMEDICAL IMAGING

binding site classifier algorithm based on SVM was developed
by Nassif et al. This algorithm can classify glucose binding sets
and non-glucose binding sites in the result of 89.66% sensitiv-
ity and 93.33% specificity [7]. SVM was also used to detect
protein-protein interaction (PPI) and got an accuracy of 87.98%
[8]. Muda et al presented a two-layer SVM classifiers to detect
remote protein homology and fold. Their model significantly
improved the performance for three different structural classi-
fication of proteins (SCOP) datasets that raised 4.19%, 4.57%
and 4.03% respectively compared to other best methods in 2011
[9]. Ciresan et al used a special type of Convolutional Neural
Network (CNN) as a pixel classifier to segment neuronal mem-
branes in the ISBI 2012 EM Segmentation Challenge. Their
network won the championship and furthermore their method
even performed better than human observer in pixel error [10].

Even machine learning algorithms have made great progress,
there are two key challenges applying machine learning. First,
the choice of features for algorithms is very difficult. In most
cases, features only are considered by experts just like Nassif et
al. Second, machine learning algorithms often cause huge com-
putational cost. Quoc et al trained a 9-layered locally connected
sparse autoencoder on a cluster with 1,000 machines (16,000
cores) for three days [11]. These challenges limit the wide use
of machine learning.

For the detection of one special and important event in bio-
medical imaging, this paper proposes a machine learning based
method which is both automated and precise with big data. Given
time series of biomedical images, first we propose a scheme to
transform the event detection on region of interest (ROI) in im-
ages to a classification problem. Then, with supervised human
labeling data we develop a feature selection technique to utilize
SVM to solve this classification problem. To reduce the time
in training SVM model on big data, a parallel version of SVM
training is implemented.

2. BACKGROUND AND OVERALL
SCHEME

In this section, we will give a brief introduction to flash event
that we detect in our work, and describe overall scheme of our
method.

2.1 Importance of Flash Event

According to the finding of Wang et alâŁ™s study [12], indi-
vidual mitochondria generate quantal bursts of superoxide in the
matrix, called superoxide flashes when mitochondria lie in rest-
ing conditions. In main opinion, superoxide flashes play a part
in a functional linking between transient mitochondrial perme-
ability transition pore (mPTP) opening and electron transport
chain (ETC) dependent reactive oxygen species (ROS) genera-
tion. Superoxide flashes compose elementary and indispensable
incidents of quantal ROS generation and supply a crucial source
of superoxide production. Relying on different situation, ROS
can perform either positive effects or negative effects. There are
many evidences demonstrating that normal and balanced levels
of ROS are essential in regulating diverse cellular processes in-

cluding gene translation [13], Ca2+ spark generation [14] and
ion channel/transporter operation [15]. However, ROS will exert
negative influences if the balance of ROS is broken. When cell
generates too many ROS, ROS can cause apoptotic and necrotic
damage or death of cell and tissue [16] and pathogenesis of a se-
ries of clinically distinguishing diseases and disharmony includ-
ing diabetes, atherosclerosis, and neurodegeneration [17, 18]. If
ROS damage is accumulated and then presents lasting and sys-
temic, cell senescence and aging would be inevitable [19]. Con-
sidering above evidences, superoxide flash is key to research
ROS and understand elementary intracellular and intercellular
signaling processes. The detection of superoxide flash is typical
event detection from fluorescence images. Fig. 1A describes a
procedure of superoxide flash [12] in a single-mitochondrion of
a rat cardiac myocyte which lasts about 20 seconds and intensity
of ROI becomes from low to high and go back low finally.

In our work, we focus on another special kind of superoxide
flashes happened in Escherichia coli. The original dataset we
analyze is a stack consisted of one hundred fluorescence images
of Escherichia coli whose size is 512 pixels with 512 pixels.
The duration of stack is 100 seconds. Every stack records tens
of to hundreds of Escherichia coli and each Escherichia coli
perhaps occurs one flash, several flashes or none in the stack.
Because of large number of Escherichia coli and randomness of
flashes, a professional person needs about ten hours to detect all
of flashes in one stack uninterruptedly. The main difficulty of
flashes detection is that flash is still an unknown phenomenon
and researchers can’t build valid model. In these situations,
automated detection for unknown flash events is necessary and
significant. The original stack of Escherichia coli is shown in
Fig. 1B.

2.2 The Scheme of Overall Solution

We register stack first because objects in original stack often drift
and shake as cell movement and camera shake. Then we regard
each Escherichia coli as a ROI and segment it from image. Only
Escherichia coli are injected into fluorochrome and background
is black enough, so we can segment cells easily by fluorescence
intensity. After cell segmentation, number of each cell’s pixels
and the intensity of each pixel can be counted. We use cell’s aver-
age fluorescence intensity at a certain second, which is computed
by division between sum of fluorescence intensity of pixels and
the number of pixels, as a representative of the whole cell at this
second. This representative is based on observation that all parts
of Escherichia coli have the same fluorescence intensity trend
when flash happens. By this transformation, original 3D image
becomes a 2D image called trace, which vertical coordinate is
average fluorescence intensity and horizontal coordinate is time.
A stack of one hundred images becomes hundreds of traces that
one trace, corresponding to one Escherichia coli, means change
of a cell in 100 seconds by above processing. In observation and
experiments, there is a conclusion that flash always happens in
the peak of trace but peak may not be flash.

We can find out all of peaks in a trace and every peak must
be a flash or not. That means the problem of event detection
becomes classification problem. We use three methods to solve
this problem. The first method is human labeling. By human
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Figure 1 A: superoxide flash image in a single-mitochondrion of a rat cardiac myocyte. B: the original stack of superoxide flashes in Escherichia coli. (only first and
last slice shown).
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Figure 2 Scheme of overall solution.

labeling, all the data sets are labeled by experts, information
of all the traces is collected and standard sets for another two
methods are generated. The second method is rule and threshold
method. We propose several rules to define a typical flash, build
an abstract model to describe flashes, compute the probability
of a peak being a flash. A threshold of probability is decided
to whether a peak is a flash or not. The last method is machine
learning based method using Support Vector Machine. SVM
model is used as a classifier. Model is trained by a part of labeled
data sets. Then this model predicts the other data sets to find
flashes. The whole scheme of overall solution is demonstrated
in Fig. 2.

2.3 Rule and Threshold based Method

Rule and threshold based method is intuitive. If flash can be de-
fined by some rules, we can build models to compute probability
of a peak. The peak whose intensity exceeds threshold is a flash,
problem can be solved [20]. We analyze 11383 labeled flashes
and sort out some flashes as typical flashes. A typical flash is
presented in Fig. 3A. By analyzing typical flashes and expert
experience, three rules are abstracted.

Rule1: A flash should have an obvious intensity change.

Rule 2: A flash should last for enough time.

Rule 3: A flash should be symmetrical to some extent as
the center on top.

For each rule, we apply a factor to indicate it. Every factor is
listed as follows.

r1 = 1− a−
peak

height (1)

r2 = 1− a−
duration

width (2)

r3 = 1− a−
delta
delta c (3)

R = r1 × r2 × r3 (4)

Subject to

a > 1 (5)

delta = peak/duration (6)

deltac = height/width (7)

Peak means the maximum value of peak, duration means time
from start to end of peak, height and width are statistical peak
and duration of known labeled flash, is constant greater than 1.
Three factors are all monotonic increasing. The maximum is 1
for each factor if peak, duration or delta is infinity. That means
it would be a different peak with ordinary peaks and we confirm
this peak is a flash with probability 1. Final probability which is
product of three factors means only if peak, duration and delta
are all large enough, probability can be large enough and this
peak would be a flash probably.

This simple model is built on the base of typical flashes and
can be a good abstract for typical flashes. However, real flashes
have many complex forms. In Fig. 3, there are three flashes
different from typical flash. Therefore, we develop a flash de-
tection method based on SVM, which only uses a small number
of labeled data sets.

3. MACHINE LEARNING BASED METHOD

3.1 Overview

Support Vector Machine (SVM), as a typical and efficient super-
vised machine learning algorithm [21], has been hugely success-
ful in practice. In a recent experimental study [22], the SVM with
Gaussian kernel [23] implemented using LIBSVM [24] [25] has
the second best classification accuracy on the whole UCI data
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Figure 3 Fig. 3. A: a typical flash. B-D: Three atypical flashes. B: intensity
of trace is increasing rapidly. C: intensity of trace declines obviously. D: three
flashes’ average intensities change continuously and flashes are asymmetric.

base among the existing 179 classifiers. Even original SVM is a
two-class classification model with good generalization perfor-
mance [26], SVM model can also be used for one-class analysis
[27], then detects novelty further [28].

SVM need enough features to identify flashes. If there aren’t
enough exact features to present flashes clearly, the performance
will be bad. But extracting exact features is very difficult if
nature of flashes is unknown. Besides feature choice, the second
difficulty is data skew. Probability of flash occurrence is different
obviously in different species. If probability is low, most peaks
aren’t flashes. This phenomenon is called data skew. Accuracy,
which is defined as the ratio of correct predicting samples to all of
samples, is not appropriate for evaluating dataset with data skew.
In our experiments, the distribution of flashes and non-flashes is
not even in peaks, with a proportion about 1:33 within all the
data. That means if an algorithm classifies all of samples as
non-flashes, its accuracy reaches 97%. Task of detection can be
seen as retrieving all flashes, so F value in information retrieval
can be used to evaluate method. The F value is defined as [29]:

F = 2× precision × recall(precision+ recall) (8)

Where

precision = (no. returned flashes)(no. returned peaks) (9)

recall = (no. returned flashes)(no. all the flashes) (10)

We use both accuracy and F value as measurement and show
F value is more reasonable in the flash detection.

For solving feature choice and data skew, we present an au-
tomated detection and analysis method to take full advantage of
all the data sets. This method is composed of seven modules as
shown in Fig. 4.

The first two modules, input module and preprocessing mod-
ule, are shared by human labeling, rule and threshold method
and machine learning based method. Stacks of images are read
and prepared for next modules in input module. Behind in-
put module, it is pre-processing module which includes image
registration aligning the same cells in different images, cell seg-
mentation labeling every cell and intensity average computing
average of cell’s fluorescence intensity and transforming cell’s
intensity change to a trace. After it, a stack of images becomes

many traces. In skew elimination module, we introduce accu-
racy and F value to avoid data skew. Features of a peak are se-
lected in feature selection module. After feature selection mod-
ule, some significant features are presented and model can be
trained in model train module. With respect to the high compu-
tational requirement of SVM, We implement model train module
in parallel with message passing interface (MPI) to reduce train
time. Trained model can predict another trace, detect and ana-
lyze flashes in prediction module. The results generated in model
prediction module are concluded for meaningful information to
researchers in result collection module.

3.2 Feature Selection

Feature selection has large impact on classification accuracy.
If all characteristics have been recognized fully, we can select
exact features to build model. Unfortunately, characteristics of
flashes are not well understood. So we face two problems. One
problem is what kinds of features should be selected for flashes.
The other problem is how many features are enough to detect
flashes and classify peaks [30].

For the first problem,we decide to abstract features from peaks
themselves. We choose three intuitionistic features: (i) ampli-
tude which is increasing ratio of intensity of one peak relative
to the intensity of its endpoint, (ii) width which is time interval
between left and right endpoints and (iii) ratio of amplitude and
width which reflects the shape of one peak. These features are
also corresponding to the rules in rule and threshold method. We
speculate three-feature-set is the minimal set to diagnose flashes
but it perhaps isnâŁ™t enough for some persistent disturbance
and fluorochrome’s change. As a contrast to three-feature-set,
we abstract a new feature set consisting of nine features by ex-
pertise experience, which are left amplitude, right amplitude,
left width, right width, left slope, right slope, the average inten-
sity of trace, distance to the last peak, distance to the next peak.
For verifying performance of features, we test a small data set
consisting of ten stacks with 5831 peaks and 66 flashes. In ten
data sets, one set is left as test set, training set number is 3, 6, 9
respectively. Models are trained using both three-feature-set and
nine-feature-set. We modify libsvm to implement our algorithm,
classifier is C-SVC using c meaning cost and g meaning gamma
as both parameters of classifier [24]. The ranges of parameters
are set as: 2−15 ≤ g ≤ 23, 2−5 ≤ c ≤ 215, all pairs of c and g
are tested and results of best F value are listed. The experiment
results are summarized in Table 1.

From these results, we can find accuracies and F values of two
sets only have slight difference,and accuracy of three-feature-set
even has better performance. The fact inspires us to focus on the
second problem: how many features is enough. In our method,
we use data over-fitting to verify completeness of features. Data
over-fitting happens when model is trained excessively in the
training process. Because kernel function and soft margin can
compute and classify samples in a high-dimensional space in
SVM, data over-fitting means that all samples can be separated
linearly in this space when selected features of data are adequate.
For verifying this idea, we perform the second experiment to
over-fit data using three-feature-set and nine-feature-set. This
experiment is carried in two datasets. One is above dataset, the
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Figure 4 Overview of machine learning based method (see text).

other is a median dataset which has 30 stacks with 97991 peaks
and 2095 flashes. Results are demonstrated in Table 2.

When three features are used on small dataset, the best F ob-
tained using C-SVC with data over-fitting is 0.8852 while on
median dataset, F descents to 0.7583. This indicates three fea-
tures are not enough to model problem. Then nine features are
used. Not only for small set, but also for median set, F ap-
proaches 1 in SVM. At the same time, generated support vectors
(SVs) are a smaller part of flashes and peaks than that of three-
feature-set. This indicates result that all of samples are almost
separated is gained by computing features instead of recording
all the samples. Nine features are adequate to model the classi-
fication problem.

3.3 Parallel Training of SVM Model

When training set is huge, training SVM model will need a lot of
time. Furthermore time will increase rapidly using cross valida-
tion. In our method, we use cross validation to find best parame-
ters for training [31]. Because there are hundreds of thousands
of samples, computation time will be long if fold of cross valida-
tion is large. When fold of cross validation is 9, one month more
is needed to get the best parameters. For increasing efficiency of
method, we exploit several methods to speed up training model.

In the process of training SVM, most of time is dominated
by kernel evaluations, which cost more than 70% training time.
Because kernel matrix is a symmetric matrix computed by pairs
of samples in training dataset, it is decided when training dataset
is certain. Since kernel matrix is shared in cross validation, one
strategy is to pre-compute kernel matrix and store it in main
memory [33]. By this way, kernel evaluation is just read from
kernel matrix so that computation time is reduced when kernel
matrix is used many times. But this way has two drawbacks in
practice. One drawback is that size of kernel matrix will increase
quadratic with size of training dataset increases. If size of dataset
is N , size of kernel matrix is (N ∗ N)/2. Because our single
node of clusters has 66GB memory, that means size of training
dataset would not exceed 134000. However, our whole dataset
owns 385996 samples whose kernel matrix will be about 555GB
and this kernel matrix can’t be stored in memory. The other
drawback is that perhaps only a part of kernel matrix is used in
cross validation. There exist some samples which are impossible

to be support vectors, however their kernel evaluations are also
prepared. This will waste lots of time. That is why we only get
30% performance improvement when we train a dataset owning
100000 samples.

Considering drawbacks of kernel matrix precomputation, we
focus on optimize and speed up single training for reducing com-
putation time. We exploit parallelism based on MPI. Kernel
algorithm of libsvm [32] is Sequential Minimal Optimization
(SMO) [34] as below.

SMO Algorithm

1. Initialize αr = 0, Gr = −1, r = 1, . . . , l

2. Select violating pair {i, j}. If {i, j} is a violating pair,
goto step 3. Otherwise, stop.

2.1. i ∈ arg maxt {−yt Gt |t ∈ Iup(α)},
Iup(α) = {t|αt < C, yt = 1 or αt > 0, yt = −1}

2.2. j ∈ arg mint

{
− b2

it
āit
|t ∈ Ilow(α),−yt Gt < yi Gi

}

Ilow(α) = {t|αt < C, yt = −1 or αt > 0, yt = 1}

3. Update αi , α j , Gr , r = 1, . . . , l

3.1. Count āi j , bi j , old αi = αi , old α j = α j ,

old Gr = Gr , r = 1, . . . , l

3.2. sum = yi oldαi + y j oldα j

tmp = oldαi + yi
bi j

āi j
and 0 ≤ tmp ≤ C

3.3. α j = y j sum− yi y j tmp and 0 ≤ α j ≤ C

αi = yi sum− yi y jα j

Gr = old Gr + Qir (αi − old αi )+ Q jr (α j − oldα j )

Go back to step 2.
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Table 1 Results of three-feature-set and nine-feature-set when training set number is 3, 6, 9.

Training set number Feature number c G accuracy F
3 3 32 8 93.0029% 0.6269
6 3 8 8 92.8571% 0.6142
9 3 8 2 92.6628% 0.5995
3 9 128 8 91.5938% 0.616
6 9 8192 8 92.1283% 0.641
9 9 8192 8 92.2741% 0.6411

Table 2 The feature selection results using data over-fitting.

Peak Flash Feature number c g Accuracy F P R SV(flash) SV(peak)
5831 66 3 8192 8 99.76% 0.8852 0.9643 0.8182 35 36
5831 66 9 32 2 100% 1 1 1 51 83

97991 2095 3 32768 8 99.09% 0.7583 0.862 0.6769 985 995
97991 2095 9 32768 8 99.98% 0.995 0.9976 0.9937 805 988

In this algorithm, āi j , bi j are defined as in (11, 12). Q is
kernel matrix and Qij is kernel evaluation between sample i and
sample j . τ is a small positive number.

ātk =
{

atk = Qtt + Qkk − 2yt yk Qtk, i f, atk > 0
τ, otherwise

(11)

btk = −yt Gt + ykGk (12)

The first idea to reduce computation time of SMO is to improve
efficiency of computing kernel matrix because it is bottleneck.
In SMO, kernel matrix often accesses by row and the i-th row
of kernel matrix means kernel evaluations between sample i and
every sample of the whole dataset. So we use single instruction
multiple data (SIMD) mode to evaluate the row of kernel matrix
[35]. First, entire training dataset is equally partitioned into small
subsets according to the number of processors used. Secondly,
sample i is broadcasted to every processor and each of subsets
is also distributed to corresponding processor. Finally, every
processor computes a part of the i -th row of kernel matrix based
on sample i and distributed training subset. The whole i -th row of
kernel matrix consists of each part of kernel evaluations on each
processor. Because evaluations on each processor are carried
out at the same time, lots of computation time will be saved. If
there are p processors used and Ts denotes total time of kernel
evaluations in sequential SMO, the amount of kernel evalu-ations
time in SIMD mode could be almost reduced to Ts/p.

Besides evaluating kernel values, selecting violating pair {i, j}
can also be performed in parallel mode. In sequential SMO
algorithm, violating pair {i, j} is selected based on objective
function (13) (14) and objective functions are computed on the
entire training dataset.

obji = max
t

(−yt Gt ), t ∈ Iup(α) (13)

obj j = min
t

(
−b2

it

āit

)
, t ∈ Ilow(α),−yt Gt < yi Gi (14)

In parallel mode, each processor could compute a local op-
timal obji and objj using its assigned subset and find a corre-
sponding local pair {i, j}. Then the local optimal obji and objj
of each processor will be compared. Global obji is the maxi-
mum value of local obji and global objj is the minimum value of
local objj. In MPI library, compare of local values can be imple-
mented conveniently using the function MPI_Allreduce. When
the global obji and global objj are determined, corresponding
global violating pair {i, j} is also selected, then broadcasted to
each processor.

After selecting of violating pair {i, j}, the computation load
is concentrated on update αi , α j and Gr in step 3 of sequen-
tial SMO. In this step, αi and α j are associated with violating
pair {i, j} and these values can be evaluated directly by using
any processor. Array G consists of the gradient value of every
sample and it can be updated by parallel mode, too. Because
each processor owns a distributed training subset, it can keep a
corresponding G subset. When new violating pair {i, j} is sent
to each processor, it can update local G subset by using new vi-
olating pair and local subset. By means of GATHER operation
in MPI library, the entire G array is composed of local G subset
on each processor easily.

The left parts of algorithm only take little time and can be
handled by one processor. Communication among processors
is required and costs some time. There is three global commu-
nications which are selection of global i and j and combina-
tion of gradient array G. The communicated data is small and
communication can overlap computation by designing parallel
algorithm carefully and using asynchronous communication, so
communication time can be a little proportion of the whole train-
ing time. A brief summary of parallel algorithm is listed as fol-
lows. Corresponding procedure of parallel algorithm is shown
in Fig. 5.
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Figure 5 Procedure of parallel SMO algorithm.

4. EXPERIMENT RESULTS

4.1 Experimental datasets

The dataset in experiments includes 100 stacks of fluorescence
images, each of which consists of 100 fluorescence images in
100 seconds. This dataset has been labeled manually and we
can know details of flash. These stacks have 29048 traces of
29048 cells, 385996 peaks and 11383 labeled flashes.

4.2 Performance of Parallel SVM

We test parallel performance of our method using all the stacks.
In this experiment, we test different values of parameter c be-
cause training time will be more with larger c. Parallel algorithm
is analyzed from training time, communicating ratio time and
workload balance. Table 3 depicts training time in sequential
SVM and different number of processors. Training time will
be reduced as processors increase in both value of c. Maxi-
mal speedup can reach 3.35 and 1.62 respectively when c are
1 and 32768. Communicating cost will increase with increas-
ing of processors. Communicating ratio in all training time can
reach 23.39% and 39.4% respectively according to 1 and 32768
when we use eight processors in parallel algorithm in Fig 6. Our
algorithm implements excellent workload balance. We record
workload execution time and compute corresponding ratio of
standard deviation and mean value for each processor. When c
are 1 and 32768 and eight processors are used, corresponding
ratio are 5.77% and 5.07%. That means our parallel algorithm
makes full use of each processor and implements excellent work-
load balance.

Table 3 Results of MPI speedup. Unit is second.
c sequential Parallel SVM

SVM 1P 2P 4P 8P
1 396.59 590.1 305.73 168.37 118.25

32768 27498.99 53246.1 47322.6 35182.08 16995.01

 
A B

Figure 6 Ratios of communication in different c. (A) c=1. (B) c=32768.

4.3 Prediction Precision of rule and threshold
method and SVM

We do experiments to compare rule and threshold method and
SVM method. In our experiments, we carry parameter tuning
methods to make the results reasonable and correct [36]. The
whole data are split into training and test sets resulting in 7
cases, with proportion between size of training and test sets is
respectively: 9:1, 4:1, 2:1, 1:1, 1:2, 1:4 and 1:9. Results are
given in Table 4 and 5. In rule and threshold method, height
and width, which are corresponding average of labeled flashes
in training set, will change as training set changes. We suppose
a peak, whose peak and duration are the same with height and
width, is a flash with at least 90% probability. Then we can get
an approximate equation (15) and α is set as 25 by this equation.

(1− a−1)3 ≈ 0.9 (15)
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Then we change threshold from 0.1 to 0.95 with stride 0.05
and compute the best results in different threshold, training set
and test set. Table 4 gives the best F value of rule and accord-
ing threshold. We can see F value is stable between 0.7 and
0.727. Stability means typical flashes have a large proportion in
flashes. Even weakly, F value still declines when training set is
decreasing and test set is increasing. This phenomenon can be
explained. When test set is increasing, there are more complex
flashes. However original model has limited ability to measure
flashes and perhaps have bad result to larger set. Because typical
flashes are in majority, F value just declines a little.

Table 5 gives the best F obtained using optimizations that
traversing all c and g in cross validation of SVM method. Ranges
of parameters are respectively as: 2−15 ≤ g ≤ 23, 2−5 ≤ c ≤
215. Fold v of cross validation is 2 ≤ v ≤ 9. First, F values
of SVM method are all better than that of rule and threshold
method in each ratio except 1:9. Because performance of SVM
depends on training set, we think training set is too small and
trained model is weak so that SVM gets lower performance in
the ratio of 1:9. The other conclusion is F value increases more
quickly in SVM when training set is increasing. Performance of
rule and threshold method is determined if model is confirmed.
But SVM method can build stronger model to perform better
as training sets is more. Two methods have different increase
when ratio changes uniformly. F value is just 0.817 even in SVM
method. Is this the best result of SVM? To answer this question,
both training set and test set are set as all of 100 stacks and we
test whether SVM method can detect all flashes. The result is
listed in Table 6. F value can reach 0.938, which means SVM
method can separate the most of flashes from peaks. So we infer
that our datasets are not enough and a better model would be
trained if there are more datasets.

Finally, we analyze flashes detected by SVM, find some faint
and unconspicuous flashes missing are also detected by model.
One example is demonstrated in Figure 7. This proves that SVM
method is effective and can provide helpful supplement for man-
ual work.

Table 4 The best F obtained using rule and threshold method.

Train:Test threshold Accuracy F
9:1 0.9 99.25% 0.727
4:1 0.85 98.85% 0.715
2:1 0.85 98.69% 0.713
1:1 0.85 98.06% 0.701
1:2 0.9 98.81% 0.712
1:4 0.9 98.75% 0.701
1:9 0.9 98.7% 0.7

Table 5 The best F obtained using SVM method.

Train:Test v c g Accuracy F
9:1 2 8 8 99.45% 0.817
4:1 2 512 2 99.26% 0.804
2:1 2 512 2 99.13% 0.804
1:1 2 128 8 98.72% 0.764
1:2 2 32 8 98.86% 0.76
1:4 2 8 8 98.82% 0.759
1:9 2 32 8 98.08% 0.662

Table 6 The best F obtained using SVM method.

Train:Test v c g Accuracy F
9:1 2 8 8 99.45% 0.817
4:1 2 512 2 99.26% 0.804
2:1 2 512 2 99.13% 0.804
1:1 2 128 8 98.72% 0.764
1:2 2 32 8 98.86% 0.76
1:4 2 8 8 98.82% 0.759
1:9 2 32 8 98.08% 0.662

Table 7 Separation of flashes from peaks in 100 stacks.

Peak Flash Feature c g Accuracy
number

385996 11383 9 32768 8 99.63%
F P R SV(flash) SV(peak)

0.9383 0.9471 0.9296 3282 4820

 

Figure 7 A flash missed by experts and detected by model. No 145 cell occurred
a faint and nonstandard flash. This flash is missed by experts but detected by our
model.

5. DISCUSSION AND FUTURE WORKS

In this paper, we use SVM to implement our method. However,
there are many other outstanding models and algorithms which
can be used to solve the classification problems. Perhaps cer-
tain special model exists which can be suited of classifying flash
events. We use SVM due to the following reasons. First, consid-
ering that flash has not been analyzed by any machine learning
method before, we decide to apply mature technology to analyze
flash and hope to get some reasonable results at the beginning.
Secondly, SVM owns outstanding classification performance
and performs steadily especially for multiple-dimensional data.
Furthermore, SVM has high computing efficiency to reduce a
lot of running time. Meanwhile, it is easy to be parallelized and
can save time further. Thirdly, SVM owns firm basis in mathe-
matics. Its result and computing procedure are useful for us to
build a more practical biological model of flash.

In our paper, the method based on SVM to analyze flash by
standard data is successful. But that does not mean the whole
work finishes. We plan to research and analyze flashes further
from three aspects in the future.

1. Our work investigates flashes of Escherichia coli mainly.
However, flash is a kind of life phenomenon exists in dif-
ferent species and tissues extensively. So far we have also
tried to detect flash in neuron by our method. Some exper-
imental results have also shown our method makes good
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effect to reduce the time of detecting flash and increase
the accuracy of analyze flash. In fact, flashes in different
species and tissues are very different and lack of corre-
sponding standard data. So we will also consider to adopt
unsupervised learning such as clustering to analyze flashes
of neuron. We hope to find some similarities in different
flashes of different species and tissues.

2. We try to describe flash events quantitatively and build
an accurate mathematical model of flash according to the
model trained by SVM and standard flash data.

3. Extracting features of flash mainly depends on expert ex-
perience now. We want to utilize some algorithms to op-
timize feature extraction for better results. At present, we
are trying to extract more accurate features by training deep
learning network to get better classification results.

6. CONCLUSION

In this paper, we implemented a systematic and general method
based on SVM to detect and analyze flash that is an important
biological event in Escherichia coli. This simple and efficient
method can take full advantage of all labeled data, receive more
satisfactory prediction than rule and threshold method and find
some flashes omitted by experts. Sufficient results indicate that
performance of our method will be better if we have more labeled
data. The most important contribution of our method is that this
method not only can be used in flash, it but also can be used in
other fluorescence events.
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