
Comput Syst Sci & Eng (2018) 2: 61–69
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

An iteration-based differentially
private social network data release
Tianqing Zhu1, Mengmeng Yang1, Ping Xiong2,
Yang Xiang1 and Wanlei Zhou1

1School of Information Techonolgy, Deakin University, Burwood, Australia
E-mail: t.zhu@deakin.edu.au, ymengm@deakin.edu.au, yang.xiang@deakin.edu.au, wanlei.zhou@deakin.edu.au
2School of Information and Security Engineering, Zhongnan University of Economics and Law, Wuhan, China
E-mail: pingxiong@znufe.edu.cn

Online social networks provide an unprecedented opportunity for researchers to analysis various social phenomena. These network data is normally
represented as graphs, which contain many sensitive individual information. Publish these graph data will violate users’ privacy. Differential privacy is
one of the most influential privacy models that provides a rigorous privacy guarantee for data release. However, existing works on graph data publishing
cannot provide accurate results when releasing a large number of queries. In this paper, we propose a graph update method transferring the query release
problem to an iteration process, in which a large set of queries are used as update criteria. Compared with existing works, the proposed method enhances
the accuracy of query results. The extensive experiment proves that the proposed solution outperforms two state-of-the-art methods, the Laplace method
and the correlated method, in terms of Mean Absolute Value. It means our methods can retain more utility of the queries while preserving the privacy

1. INTRODUCTION

With the significant growth of Online Social Networks (OSNs),
the increasing volumes of data collected in those OSNs have
become a rich source of insight into fundamental societal phe-
nomena, such as epidemiology, information dissemination, mar-
keting, etc. Much of this OSN data is in the form of graphs,
which represent information such as the relationships between
individuals. Releasing those graph data has enormous potential
social benefits. However, the graph data infer sensitive informa-
tion about a particular individual [1] has raised concern among
social network participants.

To deal with the problem, lots of privacy models and related
algorithms have been proposed to preserve the privacy of graph
data. Differential privacy is the most prevalent one due to its rig-
orous privacy guarantee. If the differential privacy mechanism
is adopted in graph data, the research problem is then to design
efficient algorithms to release statistics about the graph while
satisfying the definition of differential privacy. Two concepts
for graph have been proposed: Node Differential Privacy and
Edge Differential Privacy. The former protects the node of the
graph and the latter protects the edge in the graph.

Previous works have successfully achieved both node differ-
ential privacy and edge differential privacy when the number of
queries is limited. For example, Hay et al. [9] implemented node
differential privacy, and pointed out the difficulties to achieve
the node differential privacy. Paper [17, 18] proposed to publish
graph dataset using a dK-graph model. Chen et al. [4] considered
the correlation between nodes and proposed a correlated release
method for sparse graphes. However, these works suffer from
a serious problem: when the number of queries is increasing, a
large volume of noise will be introduced. In real world, we have
to release large number of queries for data mining, recommen-
dation or other purposes. The difficulty lies on the problem is
that the privacy budget should be divided into tiny pieces when
the query set are large. Large amount of noise will be introduce
to the published query answers in this scenario.

This paper focuses on releasing a large set of queries for graph
data. Given a set of queries, we apply an iteration method to
generate a synthetic graph to answer these queries accurately.
We can consider the iteration process as a training procedure, in
which queries are training samples and the synthetic graph is an
output learning model. Finally, we will adopt the synthetic graph
to answer this set of queries. As the training process consumes
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less privacy budget than the state-of-the-art methods, the total
noise will be diminished. In these procedures, the major research
issue becomes how to design the iteration process to generate the
synthetic graph.

Our major contribution of this paper is to transfer the query
release problem to an iteration based training process. Specif-
ically, we propose an iteration method, called Graph Update to
generate a synthetic graph, which can answer a large amount of
queries accurately. Compared with state-of-the-art methods, the
Laplace method and the correlated method, it can decrease the
total amount of noise significantly.

The rest of the paper is organized as follows: We present the
preliminaries in Section 2. Section 3 discusses the Graph Update
method and the experimental result is presented in Section 5,
which is followed by the conclusion in Section 6.

2. PRELIMINARIES

2.1 Notation

We consider a finite data universe X and a dataset D is an
unordered set of n records from X . Let r be a record with d
attributes sampled from X , Two datasets D and D∗ are neigh-
boring datasets if they differ in only one record. A query f is a
function that maps dataset D to an abstract range R: f : D→ R.
A group of queries is denoted as F = { f1, ..., fm}, and F(D)
denotes { f1(D), ..., fm (D)}. We use symbol m to denote the
number of queries in F .

The maximal difference on the results of query f is defined
as the sensitivity s, which determines how much perturbation is
required for the private-preserving answer. To achieve the tar-
get, differential privacy provides a mechanism M, which is a
randomized algorithm that accesses the database. The random-
ized output is denoted by a circumflex over the notation. For
example, f̂ (D) denotes the randomized answer of querying f
on D.

2.2 Graph Notations

We model social network as a simple undirected graph G〈V , E〉,
where V = {v1, v2, ..., vn} is a set of vertices (or Node) represent-
ing individuals in the social network and E ⊆ {(u, v)|u, v ∈ V }
is a set of edges representing relationships between individu-
als. Fig. 1 shows an example of a social network graph. The
nodes are represented by circles and connected with each other
by edges represented by lines. The degree of a node refers to
the number of its neighbourhoods. Formally, we define degree
as follows,
Neighbourhood:

N(v) = {u|(u, v) ∈ E, u �= v} (1)

Degree:

D(v) = |N(v)| (2)
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Figure 1: Graph Data

2.3 Differential Privacy

The target of differential privacy is to mask the difference in
the answer of query f between the neighboring datasets [7].
In ε-differential privacy, parameter ε is defined as the privacy
budget [7], which controls the privacy guarantee level of mecha-
nism M. A smaller ε represents a stronger privacy. The formal
definition of differential privacy is presented as follows:

Definition 1 (ε-Differential Privacy) A randomized algorithm
M gives ε-differential privacy for any pair of neighboring
datasets D and D∗, and for every set of outcomes , M satis-
fies:

Pr [M(D) ∈ ] ≤ exp(ε) · Pr [M(D∗) ∈ ] (3)

Sensitivity is a parameter determining how much perturbation
is required in the mechanism with a given privacy level.

Definition 2 (Sensitivity) [7] For a query f : D → R, the
sensitivity of f is defined as

s = max
D,D′
|| f (D)− f (D∗)||1 (4)

The Laplace mechanism adds Laplace noise to the true an-
swer. The mechanism is defined as follows:

Definition 3 (Laplace mechanism) [7] Given a function f :
D → R over a dataset D, the Eq. 3 provides the ε-differential
privacy.

f̂ (D) = f (D) + Laplace(
s

ε
) (5)

In graph data, we use G to represent D.

2.4 Related Work

2.4.1 Node Differential Privacy

Node differential privacy ensures the privacy of a query over two
neighbouring graphs where two neighbouring graphs can differ
up to all edges connected to one node.

Hay et al. [9] first proposed the notion of node differential
privacy and pointed out the difficulties to achieve it, even it can
provide strong privacy guarantee. Hay et al. [10] showed that
the result of query was highly inaccurate for analysing graph due
to the large noise.

Recently, there are few works [5, 11] contribute to reduce
sensitivity and return accurate answers under node differential
privacy. Although this is a good progress, these algorithms still
hard to be applied in real world, the most prevalent algorithms
are focusing on the Edge differential privacy.
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2.4.2 Edge Differential Privacy

Edge differential privacy means adding or deleting a single edge
between two nodes in the graph makes negligible difference to
the result of the query. The first differential private computation
over graph dataset with edge differential privacy appeared in pa-
per [16], in which Nissim et al. tried to count the number of
triangles in the graph. They provided the concept smooth sensi-
tivity to calibrate the noise to a more local variant of sensitivity.

A work presented in [15] shared the differential private graph
topology based on Stochastic Kronecker graph generation model
by perturbing model parameters. While the Stochastic Konecker
generation model cannot capture the properties of graph accu-
rately due to simple generation process.

Paper [17, 18] published graph dataset using a dK-graph
model. They applied dK-series as query function and added con-
trollable noise based on sensitivity parameter. Wang et al. [18]
proved that privacy dK-graph model can more precisely capture
most of the graph properties and achieve better utility preser-
vation. In order to reduce the noise added to the dK-series,
Sala et al.[17] provided an algorithm partitioning the data of dK-
series into clusters with similar degree. It significantly reduced
the sensitivity for each sub-series. But it used local sensitivity
which can reveal information that cannot achieve strict privacy
preserving [16].

A different approach was proposed in paper [19]. Inferring the
network’s structure via connection probabilities. They encoded
the structure information of the social network by the connection
probabilities between nodes instead of the presence or absence of
the edges. Which reduced the impact of a single edge. Another
work in paper[2] provided a reasonable hypothesis about the
structure of the dataset to restrict the sensitivity of the query.
However, those methods would generate a large dense matrix
which are computationally infeasible for large social network.

The most similar work to ours is from Chen et al. [4], which
shared the same target of this paper: releasing a synthetic graph
to publish a large set of queries. However, they focused on the
correlated queries on the sparse graph. When dealing with large
amount of queries, the performance is not optimal.

3. GRAPH UPDATE METHOD

3.1 Overview of Graph Update

The release method is an iteration-based algorithm, which is a
prevalent release scenario of many applications [8]. Our pro-
posed method is called Graph Update method as the key idea is
to update a synthetic graph until all queries have been answered.

For a social network graph G and a set of queries F =
{ f1, ..., fm}. Our goal is to release a set of query results F̂ and
a synthetic graph Ĝ to the public. Our general idea is to define
an initial graph Ĝ0 and update it to Ĝm−1 in m round according
to m queries in F . Release answers F̂ and the synthetic graph
Ĝ are generated during the iteration. During the process, four
different types of query answer involve in the iteration:

• True answer at : this is the real answer that a graph response
to a query. We cannot release it directly as it will arise
privacy concern. The true answer is normally used as the

baseline to measure the utility loss of a privacy-preserving
algorithm. In this paper, we use at = f (G) to represent
the true answer for a single query f , and At = F(G) =
{at1, ..., atm} to represent an answer set for a query set F .

• Noise answer an: when we add Laplace noise to a true
answer, the result will be the noise answer. Traditional
Laplace method will release the noise answer directly.
However, as we mentioned in Section 1, it will intro-
duce large amount of noise to the release result. We use
an = f̂ (G) = f (G) + Lap(s/ε) to represent a single query
answer and An = F̂(G) = {an1, ..., anm} to represent an
answer set.

• Synthetic answer as : this is the answer generated by a syn-
thetic graph Ĝ. We use as = f (Ĝ) to represent a single
query and As = F(Ĝ) = {as1, ..., asm} to represent an an-
swer set.

• Release answer ar : this is the answer finally released after
the iteration. In Graph Update method, the release answer
set will consist of noise answers and synthetic answers. We
apply ar = f̂ and Ar = F̂ = {ar1, ..., arm} to represent the
single answer of a query and the answer set, respectively.

These four different query answers control the graph update
process. The overview of method is presented in Figure 2. On
the left side of the figure, the query set F performs on the G to
obtain a true answer set At . Laplace noise is then added to At to
get a set of noise answer As = {as1, ...asm}. Each noise answer
asi helps to update the initial Ĝ0 and produce a release answer
ari . The method eventually outputs Ar = {ar1, ..., arm} and the
Ĝm as final results.

Query f1

Query f2

Query fm

...
...

an1

Laplace

Ĝ0 Ĝ1 Ĝm 

G

anmAt

F

...
An

Ar
ar1 ar2 ar1

Ĝ

an2

Figure 2: Overview of Graph Update Method

Comparing with the traditional Laplace method, the proposed
Graph Update method adds less noise. As some queries are
answered by the synthetic graph, these query answers will not
consume any privacy budget. Moreover, the synthetic graph can
be applied to predict new queries without any privacy budget.
Eventually, the Graph Update method can outperform the trac-
tional Laplace method.

3.2 Graph Update Method

The Graph Update method works in three steps:

• initial the synthetic graph: As we only preserve the edge
privacy, we assume that the number and the labels of nodes
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Algorithm 1 Graph Update method

Require: G, F = {f1, ..., fm}, ε, T
Ensure: Ar = {ar1, ..., arm}.

1. ε′ = ε/m
2. initial graph Ĝ0;

for each query fi ∈ F do

3. Compute true answer ati;
4. Add Laplace Noise to true answer ani = f̂i =
fi(G) + Lap(S/ε′);
5. Compute synthetic answer asi = fi(Ĝ);
6. di = ani − asi;
if |di|> T then

7. ari = ani;
8. update the Ĝi−1 to Ĝi;

else

9. ari = asi;
10. Ĝm = Ĝm−1

end if

end for

11. Make all degrees in G round numbers.

12. Output Ar = {ar1, ..., arm}, and Ĝ;

are fixed. The synthetic graph is initialed as a fully con-
nected graph with fixed nodes.

• update the synthetic graph: the initial graph will be updated
according to result of each query in F , until all queries in
F have been used.

• release query answers and synthetic graph: Two types of
answers, noise answers and synthetic answers that have
potential to be released. Synthetic graph is also released to
the public.

Algorithm 1 is a detailed description of the Graph Update
method. In step 1, the privacy budget ε is divided by m and
will be arranged to each query in the set. Step 2 initializes
the graph to Ĝ0 as a full connected one. Then for each query
fi in the query set F , the algorithm computes the true answer
fi (G) at Step 3. After that, the noise answer and the synthetic
answer of fi are computed at Step 4 and 5, respectively. Step 6
measures the distance between the true answer and the synthetic
answer. If the distance is larger than a threshold T , the Step 7
will release the noisy answer. Otherwise, the synthetic graph
will be updated by an Updated Function in Step 8 and Step 9
will release the synthetic answer. This means the synthetic graph
is applicable for answering question, so in Step 10, we put the
current synthetic graph to the next round. This process is iterated
until all queries in F are preceded. Finally, As the number of
edges should be a integer, we round the number of degrees in
Step 11. the algorithm generates Ar and Ĝ as the output in Step
12.

The parameter T is a threshold controlling the distance be-
tween An and As . A larger T means less update of the graph
and most of the answer in Ar are synthetic answers. It leads
to less privacy budget consuming, however, when the synthetic
graph is far away from the original graph, the performance may
not optimal. A smaller T means the algorithm has more updates
of the graph and most of the answer in Ar are noise answers.

Algorithm 2 Update Function

Require: Ĝ, f , d, θ, (0 < θ < 1)
Ensure: Ĝ′.

1. Identify related nodes Vf that f involved;

if d > 0 then
2. D(Vf ) = (1 + θ) ∗D(Vf );

else

3. D(Vf ) = θ ∗D(Vf );
end if

4. Ĝ′ = G ∪D(Vf ).

5. Output Ĝ′.

More privacy budgets will be consumes in this configuration.
Consequently, the choice of T will have impact on different sce-
narios. We will confirm the value of T in the experiment in
Section 5

3.3 Update Function

Step 8 in Algorithm 1 involves with an Update Function, which
updates the synthetic graph Ĝ to graph Ĝ′ according to query
answers. Specifically, Update Function is controlled by the dis-
tance d between the an and as of f . If an is smaller than as , it
means that the synthetic graph has more edges than the original
graph in the related nodes. Update Function has to delete some
edges between the related nodes. Otherwise, Update Function
will add some edges in the synthetic graph.

These related nodes is defined in the follow definition 4:

Definition 4 (Related Node) For a query f and a graph G, re-
lated nodes V f are all nodes that response to the query f , we
use set D(V f ) to denote degrees of those nodes.

The number of edges for a node should be a integer. However,
to adjust degree of those related nodes, we arrange weight θ

(0 ≤ θ ≤ 1) for each edge. After the updating, these weights
will be rounded to represent node edges.

Algorithm 2 illustrates the detail of Update Function. In the
first step, the function identifies related nodes. If d > 0, which
means the synthetic graph has less edges than the original one,
the function will enhance the θ in Step 2. If d ≤ 0, which
means the synthetic graph has too many edges, the function will
diminish those edges by θ in Step 3. Step 4 merges the edges to
the original graph. Step 5 outputs the Ĝ′.

4. PRIVACY AND UTILITY ANALYSIS

4.1 Privacy Analysis

This section presents a comparison on the privacy between the
tractional Laplace method and Graph Update. The sequential
composition [14] of the privacy budget is applied,which is shown
in Lemma 1 The sequential composition accumulates privacy
budget ε of each step when a series of private steps is performed
sequentially on a dataset.
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Lemma 1 Sequential Composition: Suppose a method M =
{M1, ...Mm} has m steps, and each step Mi provides ε privacy
guarantee, the sequence of M will provide (m ∗ ε)-differential
privacy.

For traditional Laplace method, when answering F with m
queries, ε will be divided into m pieces and arranged to each
query fi ∈ F . Specifically, we have ε′ = ε/m and for each query,
the noise answer will be ani = fi + Lap(s/ε′). According to the
sequential composition, the Laplace method preserve (ε′ ∗ m)-
differential privacy, which is equal to ε-differential privacy.

In Graph Update method, the release answer set Ar are the
combination of noise answers An and synthetic answers As .
Only An consume privacy budget, while As do not. In algo-
rithm 1, even Step 4 adds Laplace noise to the true answer, the
noise result does not release directly. Only when the algorithm
processed to Step 7, in which an is released, the algorithm con-
sumes the privacy budget. Suppose there are j (0 ≤ j ≤ m)
queries in F is released by synthetic answers, the algorithm pre-
serves ((m− j )∗ε′)-differential privacy. As (m− j )∗ε′ ≤ m∗ε′,
the Graph Update method preserve more strict privacy than trac-
tional Laplace method.

4.2 Utility Analysis

We applied Mean Absolute Error (MAE) as the utility of the
query set on a graph. M AEr of release answer Ar is defined as
Eq. 6

M AEr =
1

m
|F̂i (G)− Fi (G)|

=
1

m

∑
fi∈F

| f̂i (G)− fi (G)|

=
1

m

∑
ai∈Ar

|ari − ati |

=
1

m
|Ar − At | (6)

Similarly, M AEn of noise answers and M AEs of synthetic an-
swers are defined as Eq. 7 and Eq. 8, respectively.

M AEn =
1

m
|An − At | (7)

M AEs =
1

m
|As − At | (8)

It is obvious that for true answers At , the M AE is zero. M AEn

represents the performance of traditional Laplace method. A
lower M AE implies a better performance.

The target of Graph Update method is to achieve a lower
M AEr in a fixed privacy budget. We apply a simulated figure 3
to illustrate the relationship between M AE values and the size
of the query set m.

In Figure 3, x axis is the size of the query set and y axis is the
value of M AE . For noise answer An , M AEn is arising with the
increasing of m. We apply a smooth line to represent the M AEn

in this simulated figure. In real case, the line is fluctuated as
the noise is derived from Laplace distribution. The M AEs is
decreasing at the beginning with the increasing of m. When it

reaches to its lowest point, the M AEs begins to rise with the
enhance of m. This is because with the update of the graph,
the synthetic graph is getting more and more accurate, M AEs

is keeping decreasing. However, as the iteration procedure is
controlled by the noise answer, it is impossible for synthetic
graph to equal to the original graph, no matter how large m is.
On the contrary, with the increasing of m, more noise will be
introduced to iteration and the synthetic graph will be far away
from the original graph.

As Ar is the combination of An and As , M AEr of release
answers can be reflected by synthetic answer M AEs and noise
answer M AEn . Figure 3 shows that M AEs will below M AEn

when the query size reaches to m1. After reaching to a lowest
point, it begins to increase. After reaching to m2, the M AEs

is higher than M AEn . Consequently, when m in the scale of
[0, m1) ∪ (m2, m], the M AEr is dominated by noise answer
M AEn . When m in the scale of [m1, m2], the M AEr is dom-
inated by synthetic answer M AEs . By this way, in the scale
of [0, m], the M AEr of release answers is smaller than M AEn ,
which means that the performance of the proposed Graph Up-
date method is better than the traditional Laplace method.

m

MAE

Noise Answer 

Synthetic Answer

0 m1 m2

Figure 3: Utility of the Query set on a Graph

We will use experiment to confirm the optimal M AE in Sec-
tion 5. As random noise is introduced to the method, points
m1 and m2 can hardly be determined. In real case, they are
ranges rather than exact points. In the Graph Update method,
the parameter T is used to adjust the range.

5. EXPERIMENT AND ANALYSIS

This section evaluates the performance of the proposed Graph
Update method by answering the following questions:

• How do the parameter T impact on the performance of
Graph Update

Graph Update contains an essential parameter T that con-
trols releasing outputs. In the first part of the experiment,
we will test the impact of T in terms of Mean Absolute
Error (MAE).

• What is the performance of Graph Update comparing with
the traditional Laplace method and other related methods?

The proposed Graph Update method aims to effectively
answer a large set of queries. We will investigate the per-
formance of Graph Update on a set of queries and com-
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pare it with the traditional Laplace method and a Corre-
lated method proposed by Chen et al. [4]. In addition, the
performance will also be measured under different privacy
budgets.

5.1 Datasets and Configuration

The experiment involve with four datasets, which are collected
from Stanford Network Analysis Platform (SNAP) [13].

Table 1: Graph Datasets

Type Name Nodes Edges

Social Networks ego-Facebook 4,039 88,234
Social Networks wiki-Vote 7,115 103,689

Internet peer-to-peer networks p2p-Gnutella08 6,301 20,777
Collaboration networks ca-GrQc 5,242 14,496

In the experiment, we consider the degree query on nodes,
which is similar to the count query on relation dataset. To pre-
serve the edge privacy, the degree query has the sensitivity of 1,
which means deleting an edge will have maximum impact of 1
on the query result. The performance of results is measured by
Mean Absolute Error (MAE) 6.

5.2 Evaluation of Parameters

In Graph Update, T is a threshold that controls the releasing
results and has a direct impact on the performance of the query
result. To achieve a comprehensive investigation, we investigate
the impact of T on the utility. The parameter T varied from 0.02
to 1 with a step of 0.02 with the size of query set equal to 10 and
privacy budget ε fixing to 1.

Fig. 4 shows that at the beginning, it is apparent with an in-
creasing of T , M AE drops quickly. But when T achieves a
threshold, M AE reaches its minimum and keeps increasing.
For example, as shown in Fig. 4a, M AE keeps decreasing until
T = 0.1100, with M AE = 50.37 at its lowest point. After this,
as T increases, M AE keeps rising. This trend can be observed in
other data sets. in Fig. 4b, the M AE reaches its minimum when
T = 0.2100 and remains stable until T ≥ 0.7100. After that,
T is keeping increasing. Fig. 4c and 4d show the same trend.
This pattern shows the impact of T on the performance. At the
beginning, when T is relatively small, the increasing value of T
will decrease the update round, which means the privacy budget
can be saved and less noise is added to query answers. Thus
the M AE is keeping decreasing. However, when T reaches
to a threshold, the decreasing number of update rounds leads
an inaccurate synthetic graph. Consequently, we choose a suit-
able T for each dataset to achieve a minimal M AE . Accord-
ing to the results shown in Fig. 4, we can chose T = 0.3100
as the parameter in ego-facebook dataset; T = 0.3600
in Wiki-Vote dataset; T = 0.2600 in p2p-Gnutella08
dataset and T = 0.4100 in ca-GrQc dataset.

The parameter θ is another important parameter that affects
Graph Update. To evaluate the impact of θ , we use 100 queries
and vary it from 0.1 to 1.
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Figure 4: Impact of T on Update Round

Fig. 5 shows that in all datasets, when θ is increasing at the
beginning, the M AE of Graph Update is decreasing. However,
when M AE reaches to its lowest value, it begins to keep increas-
ing with the enhancement of θ . This trend means that when θ is
too small, the graph can not be fully updated within 100 queries.
Consequently, M AE is keeping decreasing with the increasing
of the θ . In this particular scale, a larger θ can help to update the
graph in limited queries. But this decreasing of M AE cannot
be lasted long, when θ is large enough, the M AE will be raised
with the increasing of θ . During this process, we can choose a
suitable θ that can minimize M AE .

The ego-Facebook dataset in Fig. 5a shows that when θ is
reached to 0.0800, the minimum M AE is 70.100. This means
for this datset, a proper θ could be 0.0800 when answering 100
queries. When θ reaches to 0.1300, M AE is increasing sharply.
Fig. 5b shows that for Wiki-Vote dataset, M AE keeps in a
low level when θ is in the scale of 0.1000 to 0.3500. Similarly,
Datasets p2p-Gnutella08 and ca-GrQc are showing the
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Figure 5: Impact of θ on Update Graph

same trend. In Fig. 5c and Fig. 5d, we can observe that θ can be
0.1− 0.3 and 0.1− 0.25 for those two datasets, respectively.

5.3 Performance Evaluation on Diverse Size of
Query Sets

The performance of the Update Graph is examined through com-
parison with the state-of-the-art Laplace method [6] and Corre-
lated method [4]. We set the size of query sets from 1 to 200,
in which each query is independent to each other. Parameters T
and θ as optimal one for each dataset and the ε is fixed at 1 for
all methods.

According to the Figure 6, we can generally get the perfor-
mance of the Graph Update comparing with other methods.
First, we observe that with the increasing of the size of the query
sets, M AEs of all methods are increasing approximately in lin-
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Figure 6: Performance of different methods

ear. This is because the queries are independent to each other
and the privacy budget is arranged equally to each query. With
the linear increasing of the query number, the noise added to
each query answer is enhanced linearly.

Second, Figure 6 shows that Update Graph has lower M AE
comparing with other two methods, especially when the size of
the query set is large. As shown in Figure 6a, when the size of
query set is 200, the M AE of Graph Update is 99.8500 while
the Laplace method has M AE of 210.0020, and the Correlated
method has M AE of 135.2078 which is 52.45% and 26.15%
higher than the proposed Update Graph. This trend can be ob-
served in Figure 6b, 6c and 6d. Graph Update has better per-
formance because part of query answers does not consume any
privacy budget, while noise is only added in the updated proce-
dure. Other methods, including Laplace method consume the
privacy budget when answering every query. The result shows
the effectiveness of Graph Update in answering a large set of
queries.
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Figure 7: Impact of ε on the performance

Third, it is worth to mention that when the size of the query
set is limited, the proposed Graph Update may not necessary
outperform the Correlated method. Figure 6a shows that when
the size is less than 20, M AEs of Graph Update and the Cor-
related method are mixed together. This is because when the
query set is limited, the synthetic graph can not be fully updated
and may differ from the original graph largely. Therefore, the
performance may not necessary outperform other methods sig-
nificantly. This result shows that Graph Update is more suitable
in scenarios that need to answer a large amount of queries.

5.4 Performance Evaluation on Diverse Pri-
vacy Budgets

In addition, we test the performance of Graph Update with vary-
ing privacy budgets ε from 0.1 to 1 with 0.1 step, and a query
set with 100 queries.

It is observed that as ε increases, the M AE evaluation be-
comes better, which means that the lower the privacy preserva-
tion level, the better the utility. In Fig. 7a, the M AE of Graph
Update is 1035.40 when ε = 0.1. Even though it preserves a
strict privacy guarantee, the query answer is inaccurate and can
not be used in real world. When ε = 0.7, the M AE drops to
144.0774, retaining an acceptable utility in the result. The same
trend can be observed on other datasets. For example, when
ε = 0.7, the M AE is 141.7209 in Fig. 7b, and is 153.0225 in
Fig. 7c. Both show great improvement compared to ε = 0.1.
These results confirm that the utility is enhanced as the privacy
budget increases.

We observe that the M AE decreases faster when ε ascends
from 0.1 to 0.4, than when ε ascends from 0.4 to 1. This indicates
that a larger utility cost is needed to achieve a higher privacy level
(ε = 0.1). We also observe that Graph Update and other methods
perform stably when ε ≥ 0.7. This indicates that Graph Update
is capable of retaining the utility for data release while satisfying
a suitable privacy preservation requirement.

Figure 7 also shows that Graph Update has a lower M AE
on all values of ε in all datasets. In Figure 7a when ε = 0.3,
Graph Update has an M AE of 285.2505 while the Laplace
method has 633.0361, with an improvement of 55.41%. When
ε = 1, Graph Update achieves an M AE of 91.8746 and out-
performs Laplace which has 197.0926. These results imply that
Graph Update outperforms Laplace when answering a large set
of queries. When compared with other methods, Graph Update
still has lower M AE . When ε = 0.3, the Correlated has a M AE
of 351.5872, which is higher than Graph Update. This trend is
consistent with the increase in ε. When ε reaches 1, Correlated
is 133.1599, which is higher than that of Graph Update with
M AE = 91.8746.

The evaluation shows that the Graph Update method retains
a higher accuracy compared to other methods when answering
large sets of queries, and its performance is significantly en-
hanced with the increase in the privacy budget. We can select a
suitable privacy budget to achieve a better trade-off.

6. CONCLUSIONS

Nowadays, the privacy problem has aroused people’s attention
[3, 12, 20]. Especially the online social network data, which
contains a massive personal information. How to release social
network data is a hot topic that attracts lots of attention. However,
existing methods cannot provide accurate results when releasing
large numbers of queries due to the huge noises added to query
results. This paper proposed an interaction method that transfers
the query release problem to an iteration based update process,
so as to providing a practical solution for publishing a sequence
of queries with high accuracy. We evaluate our methods on nu-
merous graphs. Through extensive experiments on real datasets
we have shown that our method is effective and outperforms the
Laplace method and the correlated method. In the future, we will
consider much more complied quires, such as cut queries and tri-
angle queries, which can allow researchers get more information
of the dataset while still can guarantee users’ privacy.
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