
Comput Syst Sci & Eng (2018) 1: 41–52
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Rank-order-correlation-based
feature vector context
transformation for learning to rank
for information retrieval
Jen-Yuan Yeh∗

Dept. of Operation, Visitor Service, Collection and Information Management, National Museum of Natural Science, Taichung 40453, Taiwan
E-mail: jenyuan@mail.nmns.edu.tw

As a crucial task in information retrieval, ranking defines the preferential order among the retrieved documents for a given query. Supervised learning
has recently been dedicated to automatically learning ranking models by incorporating various models into one effective model. This paper proposes a
novel supervised learning method, in which instances are represented as bags of contexts of features, instead of bags of features. The method applies
rank-order correlations to measure the correlation relationships between features. The feature vectors of instances, i.e., the 1st-order raw feature vectors,
are then mapped into the feature correlation space via projection to derive the context-level feature vectors, i.e., the 2nd-order context feature vectors.
As for ranking model learning, Ranking SVM is employed with the 2nd-order context feature vectors as the input. The proposed method is evaluated
using the LETOR benchmark datasets and is found to perform well with competitive results. The results suggest that the learning method benefits from the
rank-order-correlation-based feature vector context transformation.
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1. INTRODUCTION

In information retrieval (IR), ranking is a crucial task that de-
fines the preferential order among the retrieved documents for
a given query. Traditional IR has adopted empirical ranking
models, such as the Boolean model, the vector space model,
and the probabilistic model, which are designed in unsupervised
manners [1]. In practice, the aforementioned models usually
suffer high costs for parameter tuning, and sometimes overfit-
ting occurs, especially when the models are carefully tuned to
fit particular needs [22]. Nowadays, as many IR results are
increasingly accompanied by relevance judgments, e.g., query
and click-through logs collected in search engines, supervised
learning methods, referred to as the learning to rank (LTR) meth-
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ods, have been devoted to automatically learning ranking models
(e.g., [5, 6, 12, 14, 18, 45, 53]). In general, supervised learning
allows the automatic tuning of parameters and the incorporation
of various models into a singular one with high effectiveness.1

Figure 1 presents the general paradigm of learning to rank for
IR. The learning process consists of two phases,namely, training
and test. First, the training phase is introduced. Given a query
collection, i.e., Q = {q1, q2, . . . , q|Q|}, and a document set, i.e.,
D = {d1, d2, . . . , d|D|}, a training instance is a query-document
pair, i.e., (qi , d j ) ∈ Q × D, upon which a relevance judgment
indicating the relationship between qi and d j is assigned by a
labeler. The relevance judgment can be (1) a class label, e.g.,
relevant or non-relevant; (2) a rating, e.g., a 3-star rating scaling

1Learning to rank is defined as having the following properties [22]: (1)
the promising capability of combining a large number of features (i.e., ranking
models); and (2) the capability of automatic learning based on the training data.
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from 0 to 2 for non-relevant, possibly relevant, and definitely
relevant; (3) an order, e.g., k, meaning that d j is ranked at the
k-th position in the ordering of documents when qi is consid-
ered; or (4) a score, e.g., sim(qi , d j ), specifying the degree of
relevance between qi and d j . For each instance, i.e., (qi , d j ),
a feature extractor produces a vector of features that describes
the match between qi and d j . Such features can be classical
IR models (e.g., term frequency, inverse document frequency,
and Okapi BM25 [32]) or newly developed models (e.g., Hos-
tRank [51], Feature Propagation [29, 36], and Topical PageRank
[26]). The inputs to the learning algorithm comprise training in-
stances, their feature vectors, and the corresponding relevance
judgments. The output is a ranking model, f , where f (qi , d j )

is supposed to give the “true” relevance judgment for qi and d j .
The learning algorithm attempts to learn a ranking model, such
that a performance measure, e.g., classification accuracy, error
rate, and Mean Average Precision (MAP) [1], with respect to the
output relevance judgments can be optimized. In the test phase,
the ranking model is applied to judge the relevance between each
document di in D and a new query q .

The feature vector model,2 a.k.a. the bag-of-features model,
is widely used for representing instances. The assumptions be-
hind the model include [2]: (1) the independence relationship
between features (i.e., each feature is a priori independent from
the others); (2) the flatness of the feature values (i.e., no hierar-
chy among the values); and (3) the certainty of the observations
(i.e., only one value for each feature). However, empirical ob-
servations have found that features, i.e., the ranking models in
this study, are not always independent. For example, TF-IDF
[1] and Okapi BM25 [32] are considered somewhat correlated
since both are designed based on term frequency and inverse
document frequency. In such cases, the feature vector model
neglects the correlations between features and treats the features
as independent coordinate axes.

This paper proposes to model instances as bags of contexts of
features, instead of bags of features. The contexts are extracted
from the feature correlation space that is built with rank-order
correlations to capture the correlation relationships between fea-
tures. The feature vectors of instances (hereafter called the 1st-
order raw feature vectors) are mapped into the feature correlation
space via projection for deriving the context-level feature vec-
tors (hereafter called the 2nd-order context feature vectors). The
2nd-order context feature vectors inherently take into account the
correlation relationships between features and are believed to be
capable of conquering the limitations for the 1st-order raw fea-
ture vectors. A new learning method, which extends Figure 1
by incorporating the 2nd-order context feature vectors and the
state-of-the-art learning algorithm, Ranking SVM [18], is also
developed.

The rest of this paper is structured as follows. Section 2
presents a brief review of the literature. Section 3 describes
the technical details of the proposed method. Section 4 provides
the experimental results, and Section 5 concludes this paper and
points out possible directions for further research.

2Each dimension in the feature vector model corresponds to a ranking (or
retrieval) model.

2. RELATED WORK

Previous studies of learning to rank fall into three categories
[22]: (1) the point-wise approach; (2) the pair-wise approach;
and (3) the list-wise approach.

In the point-wise approaches, each training instance is as-
sociated with a class or rating. The learning process finds a
model that maps instances into classes or rates close to their
true values. The point-wise approach can be further divided
into three subcategories, namely, regression-based (e.g., [11]),
classification-based (e.g., [25] and McRank [21]), and ordinal
regression-based (e.g., [16], [37] and Pranking [12]). A typical
example is Pranking [12], which trains a perceptron model to
directly maintain a totally-ordered set via projections. Another
one is McRank [21], which defines a 5-star rating and casts the
ranking problem as multiple classification in accordance with
an observation that perfect classifications lead to perfect DCG
(Discounted Cumulative Gain) [17] scores. The classification
model is learned via gradient boosting.

The pair-wise approaches take pairs of objects and their rela-
tive preferences as training instances and learn to classify each
object pair as correctly-ranked or incorrectly-ranked. Most ex-
isting methods are pair-wise approaches, e.g., Ranking SVM
[18], RankBoost [14], and RankNet [5]. Ranking SVM em-
ploys support vector machines (SVM) to classify object pairs
in consideration of large margin rank boundaries. Both Rank-
Boost and QBrank [57] conduct boosting to find a combined
ranking, which minimizes the number of mis-ordered pairs of
objects. RankNet defines cross entropy as a probabilistic cost
function on object pairs and uses neural network to optimize the
cost function. LambdaRank [4] also employs neural network but
uses gradient based on NDCG (Normalized Discounted Cumu-
lative Gain) [17] scores smoothed by the RankNet loss (also see
LambdaMART [3], the boosted tree version of LambdaRank).
FRank [43] adopts Fidelity to measure loss of ranking and uses a
generalized additive model to minimize the Fidelity loss. Semi-
RankSVM [27] extends Ranking SVM by a graph-based regu-
larized algorithm to learn a ranking function that minimizes the
least squares ranking loss.

Finally, the list-wise approaches use a list of ranked objects as
training instances and learn to predict the list of objects. There
are two sub-categories which are, respectively, based on the di-
rect optimization of IR evaluation measures (e.g., SoftRank [42],
AdaRank [50], and SVM�

map [56]) and the minimization of list-
wise ranking losses (e.g.,ListNet [6], and ListMLE [48]). Exam-
ples are briefed as follows. AdaRank [50], a learning algorithm
within the framework of boosting, repeatedly constructs “weak
rankers” and finally linearly combines the weak rankers to make
ranking predictions. SVM�

map [56] is a SVM-based learning al-
gorithm that efficiently finds a globally optimal solution to a
straightforward relaxation of MAP [1]. ListNet [6] introduces
a probabilistic-based list-wise loss function and adopts neural
network and gradient descent to train a list prediction model. In
ListMLE [48], the likelihood loss is employed as the surrogate
for the IR evaluation measures.

More examples are described as follows: [25] treats IR as
binary classification of relevance and explores the applicability
of discriminative classifiers to solve the problem. [18] takes
pairs of documents and their relative preferences derived from
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Figure 1 The general paradigm of learning to rank for IR [52].

click-through data (i.e., the log of links that users click on in
the presented ranking) as training instances and applies Rank-
ing SVM for learning better retrieval functions. [7] modifies the
“Hinge Loss” function in Ranking SVM to consider two essen-
tial factors for IR: (1) to have high accuracy on the top-ranked
documents, and (2) to avoid training a biased model towards
queries with many relevant documents. [49] uses Ranking SVM
to address definition search, where the retrieved definitional ex-
cerpts of a term are ranked according to their likelihood of being
good definitions. [54] extends SVM selecting sampling tech-
niques in classification for learning to rank. [24] proposes a
multiple nested ranker approach to re-rank the top scoring doc-
uments of the result list, in which RankNet is applied to learn
a new ranking at each iteration. RankCosine [30] uses cosine
similarity between the ranking list and the ground truth as a
query-level loss function. RV-SVM [55] develops the 1-norm
Ranking SVM, which is based on 1-norm objective function, for
faster training using much less support vectors than the standard
Ranking SVM.

Other research directions, which are receiving increasing at-
tention in recent years, include [8]: online learning to rank for
quickly learning the best re-ranking of the top position of the
original ranked list based on real-time user click feedback (e.g.,
[9, 10, 34, 35]); large-scale learning to rank which leverages
both the learning theory and computational theory for ranking
when facing large-scale training data (e.g., [31, 41, 47]); learn-
ing to rank for diversity that optimizes not only for relevancy,
but also for diversity (i.e., for minimum redundancy) by taking
into account document similarity and ranking context (e.g., [33,
38]); and robust learning to rank which optimizes the tradeoffs
between model effectiveness and robustness for real-world re-
trieval scenarios (e.g., [20, 46]).

3. THE PROPOSED METHOD

Figure 2 gives an overview of the proposed method, which is
essentially an extension of Figure 1. Newly added modules
are marked in gray. Feature Correlation stores the correlation
relationships between features in a matrix, in which the rela-
tionships are measured by rank-order correlation coefficients.

Vector Transformation considers the feature correlation matrix
as an intermediary context space for transformation and derives
the 2nd-order context feature vectors by projecting the 1st-order
raw feature vectors into the space. Last, Learning Algorithm:
Ranking SVM takes the 2nd-order context feature vectors as the
input to train a linear binary classifier by Ranking SVM [18]
for judging, as regards a particular query, the binary ordering
relations between documents.

The details of the proposed method are elaborated in the fol-
lowing subsections. The symbols used are denoted as follows:

• F : the feature set. F = { f1, . . . , fk}, |F | = k;

• Q : the query set. Q = {q1, . . . , qm}, |Q| = m;

• D : the document set. D = {d1, . . . , dn}, |D| = n;

• D(qi) : the retrieved document set for qi . D(qi ) =
{di,1, . . . , di,ni }, D(qi ) ⊆ D, |D(qi )| = ni ;

• f : the ranking model f (·). f (q, d) indicates the relevance
judgment for document d with respect to query q .

3.1 Relevance labeling

The relevance labeling annotates instances with proper relevance
judgments, which play the role of answers (or observations) that
guide the learning algorithm to train an effective ranking model.
The labeling scheme in this paper is n-star rating for different
levels of relevance. In terms of the 3-star rating, for example,
the relevance judgments are quantified as 0 for not relevant, 1
for possibly relevant, and 2 for definitely relevant.

3.2 Feature vector extraction and context
transformation

The three following steps are carried out in the process: (1)
1st-order raw feature vector extraction; (2) feature correlation
extraction; and (3) 2nd-order context feature vector transforma-
tion.

(1) 1st-order raw feature vector extraction
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Figure 2 Overview of the proposed method.

With the feature set F comprising a |F |-dimensional vector
space, each query-document pair (qi , di, j ) is represented as a
vector of numerical features:

�di, j =< wi, j,1, . . . , wi, j,k >, (1)

where wi, j,k = f_val( fk , qi , di, j ) describes the match, regard-
ing fk , between qi and di, j . The function, f_val, is a feature
extraction function, defined as:

f_val(·):{( fk, qi , di, j )| fk ∈ F, qi ∈ Q, di, j ∈ D(qi )} → [0, 1].
(2)

Here, �di, j is named “1st-order raw feature vector,” to be dis-
tinguishable from “2nd-order context feature vector,” as will be
explained later.

(2) Feature correlation extraction
For query qi , a document sequence Ři,k can be established by

ordering documents in D(qi ) in accordance with their feature
values, calculated by Eq. (2), when fk is considered.

Ři,k(D(qi )) = [ri,k(di, jl ) � · · · � ri,k(di, jni
)], (3)

where ri,k is an order function that maps each document in D(qi )

to an appropriate position in Ři,k . For instance, ri,k (di, jl ) = l im-
plies that di, jl is at the l-th position in Ři,k . ri,k (di,p) � ri,k(di,t )

is satisfied if and only if p and t exist and f_val( fk , qi , di,p) ≥
f_val( fk , qi , di,t ); in other words, when f_val( fk, qi , di,p) ≥
f_val( fk , qi , di,t ), ri,k (di,p) � ri,k (di,t ) suggests that di,p is
ranked at a higher position in the list than di,t .

Given qi and D(qi ), k document sequences
{Ři,1(D(qi )), . . . , Ři,k (D(qi ))} can be produced. It be-
comes possible to assess the correlation between two sequences
using rank-order correlation coefficients, such as Pearson’s
r [28], Spearman’s rho (ρ) [40], and Kendall’s tau (τ ) [19].
Here, the correlations between sequences are referred to as
the correlations between features with respect to the given
query. To get an overall feature correlation in consideration of
all queries in Q, a simple strategy is utilized to compute the
correlation between fi and f j , i.e., ci, j , based on the rule of
macro-correlation, as presented below:

ci, j = 1

|Q|
|Q|∑

t

F_RCorr(Řt,i (D(qt )), Řt, j (D(qt ))), (4)

where F_RCorr is a rank-order correlation coefficient function
to measure the rank-order correlation between two document
sequences Řt,i (D(qt )) and Řt, j (D(qt )). F_RCorr is formulated
as:

F_RCorr(·) : {(Řt,i (D(qt )), Řt, j (D(qt )))|qt ∈ Q

and fi , f j ∈ F} → [0, 1]. (5)

Finally, a feature correlation matrix, C , is generated by Eq.
(6):

C =

⎛
⎜⎜⎝

f1 · · · fk

f1 c1,1 · · · c1,k

...
...

. . .
...

fk ck,1 · · · ck,k

⎞
⎟⎟⎠ (6)

It is recalled that, by Eq. (4), ci, j = c j,i holds. The matrix C
is evidently a symmetric matrix so that Eq. (7) is satisfied.

Ci = Ĉi , i.e., ∀p, ci,p = ĉi,p , (7)

where Ci =< ci,1, . . . , ci,k > is the i -th row vector of C , and
Ĉi =< ĉi,1, . . . , ĉi,k > is the i -th column vector of C . Notably,
the row vector (or the column vector) provides a mathematical
formalization for fi , as shown:3

�fi = Ci =< ci,1, . . . , ci,k >

= Ĉi =< ĉi,1, . . . , ĉi,k > . (8)

Table 1 lists the rank-order correlation coefficients used for
F_RCorr. For example, in terms of Kendall’s tau (τ ), values of
the coefficient range from −1 (i.e., 100% negative association,
or perfect inversion) to +1 (i.e., 100% positive association, or
perfect agreement). A value of 0 indicates the absence of as-
sociation. Considering that correlation coefficients may have a
different range of values (e.g., Kendall’s tau (τ ) versus Kendall
tau distance), the comparison between them in such cases may
lead to insignificant contrast. Therefore, each coefficient value
is further normalized into a common range of [0, 1] for fair com-
parisons, where 0 represents no association and +1 represents
perfect agreement.

3Methods of feature clustering and feature selection can be developed based
on the context formalizations of features.
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Table 1 The rank-order correlation coefficients used for F_RCorr.
ID Rank-order correlation coeffi-

cient
Range of values before nor-
malization

Normalization method Range of values after
normalization

G Goodman and Kruskal’s
Gamma (G) [15]

[−1,+1] where −1: perfect
inversion; 0: no association;
and +1: perfect agreement.

Set values in [−1,0) to 0. [0, +1] where 0: no as-
sociation; and +1: per-
fect agreement.

K1 Kendall’s tau (τ ) [19]
P Pearson’s r [28]
SD Somer’s d [39]
SR Spearman’s rho (ρ) [40]
K2 Kendall tau distance [19] [0, +1] where 0: perfect

agreement; and +1: perfect
inversion.

1. Set value x to a new value
1 − x
2. Set values in [0, 0.5) to 0
3. Normalize values in [0.5, 1]
to [0, 1] by min-max normal-
ization.

[0, +1] where 0: no as-
sociation; and +1: per-
fect agreement.

In consideration of one rank-order correlation coefficient used
for F_RCorr, there are in total |Q| feature correlation values for
fi and f j , according to Eq. (5). In the implementation, the
distribution of |Q| feature correlation values is found to be not
concentrated, which might cause the distortion of ci, j . Thus,
Box-and-Whisker Plot [44], a.k.a. Boxplot, is employed to filter
out potential outliers. The outlier detection process is detailed
as follows. First, all feature correlation values are arranged in
sequence from low to high. Then, the value of the 25th per-
centile and the value of the 75th percentile are defined as Q1
and Q3, respectively. The interquartile range, IQR = Q3 − Q1,
is computed. Finally, ci, j is calculated as the mean of feature
correlation values in range of [Q1 −1.5× IQR, Q3+1.5× IQR].
Note that feature correlation values outside the range are treated
as outliers and are discarded during the computation of Eq. (4).

(3) 2nd-order context feature vector transformation.
In contrast to the 1st-order raw feature vector introduced in

Eq. (1), i.e., �di, j =< wi, j,1, . . . , wi, j,k >, the 2nd-order context
feature vector of �di, j is specified as:

�d(2)i, j =< w
(2)
i, j,1, . . . , w

(2)
i, j,k >, (9)

where w(2)i, j,k is transformed from wi, j,k based on the feature
correlation matrix C .

The proposed 2nd-order context transformation method,
named as Latent Semantic Analysis Based, applies latent se-
mantic analysis (LSA) [13, 23] to project �di, j into a space with
latent semantic dimensions that is derived from the feature cor-
relation matrix C . The transformation process consists of three
steps which are in sequence singular value decomposition, di-
mensionality reduction, and folding-in. Firstly, singular value
decomposition (SVD) is performed on the feature correlation
matrix C . The SVD of C is defined as C = U SV T , where
U is a k × k column-orthonormal matrix of left singular vec-
tors in columns; S is a matrix with singular values (s1, . . . , sk)

sorted in descending order in diagonal and zeros elsewhere;
and V is a k × k orthonormal matrix of right singular vec-
tors in columns. Suppose that the rank of C is p, S satisfies
s1 ≥ s2 ≥ . . . ≥ sp > sp+1 = · · · = sk = 0. Dimensionality
reduction follows to keep only z(z < p) singular values of S for
obtaining a z × z matrix Cz . Note that Cz is an approximation
of C , i.e., Cz = Uz Sz V T

z ≈ C , in which Sz represents the latent

semantic structure derived from C . Finally, folding-in folds �di, j

into the latent semantic space Sz to obtain �d(2)i, j by Eq. (10):

�d(2)i, j = �dT
i, j Uz S−1

z , (10)

It is worth noting that by dimensionality reduction related fea-
tures are mapped onto the same dimensions of the reduced space
Sz and unrelated features are mapped onto different dimensions.
This operation reflects a grouping of features into z linearly-
independent base vectors, i.e., the contexts of features in this
study. It can be said that the dimensions of the reduced space
correspond to the axes of greatest variation [23]. Thus, folding
�di, j into the latent semantic space Sz means to represent �di, j by
these base vectors.

3.3 Ranking model learning and ranking pre-
diction

To learn the ranking model, Ranking SVM [18] is employed4

since previous studies have already demonstrated its feasibil-
ity and effectiveness. The 2nd-order context feature vectors of
query-documentpairs are viewed as instances. Pairs of instances
and their relative preferences are inputted into Ranking SVM.
The algorithm targets binary ordering relations between docu-
ments with respect to a query and tries to learn a model that can
minimize the number of discordant pairs based on the observed
parts of the target ranking. In the implementation, SVMrank, a
toolkit for efficiently training Ranking SVMs, is used.5

The output ranking model is a linear binary classifier, which
is capable of determining whether a pair of documents is in
concordant order. As for ranking prediction, given a new query
q and its retrieved document set D(q), the output of the ranking
model comprises binary ordering relations between documents,
according to which the final ordering of documents in D(q) can
be established.

4The learning algorithm inside the proposed method is not limited to Ranking
SVM. Other learning algorithms that represent query-document pairs as vectors
of features can be integrated. This issue is left for future work.

5Available at http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
Note that SVMrank learns an unbiased classification rule using linear kernel.
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4. EXPERIMENTS

This section describes the datasets and evaluation measures, and
reports the preliminary experimental results.

4.1 The LETOR benchmark datasets

The LETOR 3.0 and LETOR 4.0 benchmark datasets6 are used to
evaluate the effectiveness of the proposed method. The LETOR
datasets are created as query-document pairs, each containing a
feature vector and its corresponding relevance judgment. The
5-fold partitions are provided for cross-validation. In each fold,
three subsets are used for learning, one subset for validation,
and the other one for testing. The proposed method is tested
on the TD2003, TD2004, and MQ2008 datasets, the statistics of
which are listed in Table 2. Table 3 provides an illustration of
the sample data, with each row standing for a query-document
pair.

4.2 Evaluation measures

The standard P@n, NDCG@n, and MAP measures are used in
the evaluation.

(1) Precision at position n (P@n) [1]
For a given query, its precision of the top n results of the

ranking list is defined as:

P@n = # of relevant documents in top n results

n
. (11)

Note that, when computing P@n, a document with the relevance
judgment of either definitely or possibly relevant is regarded as a
document relevant to the given query. The mean P@n is reported
by averaging the P@n values of all queries.

(2) Mean Average Precision (MAP) [1]
For a given query, its average precision, AP , is computed by

Eq. (12), where N is the number of retrieved documents and
rel(n) is either 1 or 0, indicating whether the n-th document is
relevant to the query or not. The MAP is obtained as the mean
average precision over a set of queries.

AP =
∑N

n=1 P@n × rel(n)

# of relevant documents for the query
. (12)

(3) Normalized Discounted Cumulative Gain (NDCG) [17]
For a query, the NDCG of its ranking list at position n is

calculated by:

NDCG@n = Zn

n∑
j=1

{
2r( j ) − 1, j = 1
2r( j)−1
log( j ) , j > 1

, (13)

where r( j) is the rating of the j -th document in the list, and the
normalization constant Zn is set so that the perfect list receives
an NDCG of 1. The r( j) is set to the relevance judgment, i.e.,
2 when the j -th document is definitely relevant to the query, 1

6Available at http://research.microsoft.com/en-us/um/beijing/projects/letor/
default.aspx.

when the j -th document is possibly relevant to the query, and
0 when the j -th document is irrelevant to the query. The mean
NDCG@n is reported by averaging the NDCG@n values of all
queries.

4.3 Experimental settings

In the experiments, 5-fold cross-validation is conducted and the
average score is reported. For each fold, the training set is first
used to learn a ranking model. The feature correlation matrix
(see Eq. (6)) is also built using the training set. The validation
set is used for tuning model parameters, and the ranking model is
then applied on the testing set. The standard LETOR evaluation
tools are used in order to avoid differences in the evaluation
results caused by different implementations of the evaluation
measures.

Two types of parameters need to be determined, namely,
the z value for dimensionality reduction in the latent-semantic-
analysis-based 2nd-order context transformation method, and
the SVMrank learning-specific options. For the z value, a naïve
method that sets z with a reduction ratio is adopted. As an ex-
ample, supposing that the rank of the feature correlation matrix
C is p, z is set to 0.2 × p when a reduction ratio of 20% is
considered. The possible ratio takes the values (10%, 20%, …,
90%). For each fold, the ratio with the best MAP performance
on the validation set is selected and its performance on the test-
ing set is reported. The SVMrank learning-specific options are
set with “−c <C> −e 0.001 −1 1,” where <C>, the trade-off
between training error and margin, takes the values (0.00001,
0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005,
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10). Similarly, for each
fold, the<C> value with the best MAP performance on the val-
idation set is selected and its performance on the testing set is
reported.

4.4 Results

The evaluation results are given in Tables 4–12. The baseline,
RankSVM-Struct 7 [18], takes the 1st-order raw feature vectors
as the input. Various models of the proposed method are exam-
ined and indicated in forms of {G, K1, P, SD, SR, K2}-L, where
the previous part denotes the rank-order correlation coefficient
used for F_RCorr (see Table 1) and the later part specifies the
proposed 2nd-order context transformation method, i.e., Latent
Semantic Analysis Based (see Section 3.2). For example, the
model K1-L employs “Kendall’s tau (τ )” for measuring the fea-
ture correlations and “Latent Semantic Analysis Based” for per-
forming the 2nd-order context transformation. The values in the
parentheses suggest the relative improvements of the proposed
method when being compared with RankSVM-Struct. Last, in
each column, the best performance is given in bold.

Tables 4–6 list the results on TD2003. It can be seen that
the proposed models significantly outperform RankSVM-Struct
in terms of P@[1, 3] and NDCG@[1, 3]. As for P@[5, 10]
and NDCG@[5, 10], some of the proposed models generate

7The literature has denoted SVMrank , which is a particular implementation
of Ranking SVM, as RankSVM-Struct.
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Table 2 Statistics of the evaluation datasets.
TD2003 TD2004 MQ2008

No. of queries 50 75 784
No. of documents 47,240 70,097 14,384
No. of query-document
pairs

49,058 74,146 15,211

No. of features 64 64 46
Possible relevance judg-
ments

0: not relevant; and 1: relevant 0: not relevant; and 1: relevant 2: definitely relevant; 1:
possibly relevant; and 0:
not relevant

Avg. no. of instances in
the training set

29,435 44,488 9,127

Avg. no. of instances in
the validation set

9,812 14,829 3,042

Avg. no. of instances in
the testing set

9,812 14,829 3,042

Table 3 Sample data excerpted from the MQ2008 dataset.

Relevance label Query f1 f2 . . . f46 Note
2 qid:10032 1:0.056537 2:0.000000 … 46:0.076923 #doc: GX029-35-5894638
0 qid:10032 1:0.279152 2:0.000000 … 46:1.000000 #doc: GX030-77-6315042
0 qid:10032 1:0.130742 2:0.000000 … 46:1.000000 #doc: GX140-98-13566007
1 qid:10032 1:0.593640 2:1.000000 … 46:0.000000 #doc: GX256-43-0740276

… … … … … … …

worse results than RankSVM-Struct; for instance, G-L has de-
creases of 8.7% and 2.22%, regarding P@5 and NDCG@5,
respectively. When considering MAP, Table 6 shows that the
proposed models are superior to RankSVM-Struct, except that
G-L and P-L have slight decreases of 0.26% and 0.22%, re-
spectively. The maximum and minimum increases of improve-
ment are 6.3% (for SD-L) and 2.8% (for SR-L). The average
MAP of the proposed models is 0.2785, indicating an increase
of 2.65%, compared with RankSVMStruct. In Table 6, the MAP
scores of several representative baselines, including ListNet [6],
AdaRank [50] (in two versions, namely, AdaRank-NDCG and
AdaRank-MAP), and RankBoost [14], are also provided. Ev-
idently, the proposed method performs well with competitive
results. The best model, SD-L, for example, outperforms List-
Net, AdaRank-MAP, AdaRank-NDCG, and RankBoost with in-
creases of 4.76%, 26.33%, 21.79%, and 26.82%, respectively.0.

Tables 7-9 list the results on TD2004. For all measures, P-L
is observed as having significant improvements when compared
with RankSVM-Struct. Both SR-L and K2-L have satisfying im-
provements when P@[1, 3] and NDCG@[1, 3] are considered.
Other models, namely, G-L, K1-L, and SD-L, have worse results
than RankSVM-Struct. As for MAP, Table 9 indicates that the
proposed models are superior to RankSVM-Struct. The max-
imum and minimum increases of improvement are 6.01% (for
P-L) and 2.41% (for K1-L), respectively. The average MAP of
the proposed models is 0.2286, implying an increase of 4.11%,
compared to RankSVM-Struct. Again, the proposed method is
found to be competitive in comparison to other baselines. For
instance, the best model, P-L, outperforms ListNet, AdaRank-
MAP, and AdaRank-NDCG with increases of 4.35%, 6.35%,
and 20.25%, respectively. Unfortunately, none of the proposed
models could beat RankBoost.

Tables 10–12 list the results on MQ2008. The proposed mod-

els are observed as having better performance than RankSVM-
Struct, as regards P@1 and NDCG@1. Some statistics are as
follows. The increases of improvement for K1-L are 4.47%
for P@1 and 4.08% for NDCG@1. As for P@[3, 5, 10] and
NDCG@[3, 5, 10], the proposed models do not work well as
expected. Some models obtain slight increases of improvement,
while others perform with worse results. Regarding MAP, Ta-
ble 12 suggests that although the proposed models outperform
RankSVM-Struct, the improvements are not significant enough,
except for K2-L, which has an increase of 1.21%. The average
MAP of the proposed models is 0.4725, denoting an increase of
0.62%, compared to RankSVM-Struct. However, none of the
proposed models perform better than the other baselines.

Table 13 lists the upper-bound results of the proposed models
on MQ2008. The results are obtained by the following steps.
First, ranking models are trained with all possible combinations
of parameters. For each fold, 171 (9 × 19 = 171; 9 values for
z and 19 values for <C> in Section 4.3) ranking models are
produced. Second, all the models are evaluated using the testing
set and the best model is picked.8 Finally, the scores of the best
model are reported. Table 13 shows that with the proper parame-
ters, the proposed models can perform better than RankSVM-
Struct with significant increases of improvement. It is conjec-
tured that the testing sets and the validation sets in MQ2008
have diverse properties. In such a case, the use of the valida-
tion set fails to select a good model for the testing set, which
might explain why the proposed method leads to insignificant
improvements compared to RankSVM-Struct when it is evalu-
ated on MQ2008 (see Table 12).

Overall, the proposed method behaves differently on differ-

8Since the picked model is with the best parameters that are directly optimized
using the testing set, the results in Table 13 are regarded as the upper-bound
results.
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Table 4 P@[1, 3, 5, 10] on TD2003.
Model P@1 P@3 P@5 P@10
RankSVM-Struct 0.3400 0.2867 0.2760 0.1860
G-L 0.4200 (+23.53%) 0.3067 (+6.98%) 0.2520 (−8.70%) 0.1920 (+3.23%)
K1-L 0.4000 (+17.65%) 0.3133 (+9.28%) 0.2480 (−10.14%) 0.1960 (+5.38%)
P-L 0.4000 (+17.65%) 0.2867 (0.00%) 0.2360 (−14.49%) 0.1780 (−4.30%)
SD-L 0.3800 (+11.76%) 0.3000 (+4.64%) 0.2760 (0.00%) 0.1980 (+6.45%)
SR-L 0.4000 (+17.65%) 0.3000 (+4.64%) 0.2520 (−8.70%) 0.1860 (0.00%)
K2-L 0.3570 (+5.00%) 0.3015 (+5.16%) 0.2380 (−13.77%) 0.2023 (+8.76%)

Table 5 NDCG@[1, 3, 5, 10] on TD2003.
Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
RankSVM-Struct 0.3400 0.3430 0.3654 0.3467
G-L 0.4200 (+23.53%) 0.3652 (+6.47%) 0.3573 (−2.22%) 0.3554 (+2.51%)
K1-L 0.4000 (+17.65%) 0.3700 (+7.87%) 0.3517 (−3.75%) 0.3594 (+3.66%)
P-L 0.4000 (+17.65%) 0.3499 (+2.01%) 0.3381 (−7.47%) 0.3360 (−3.09%)
SD-L 0.3800 (+11.76%) 0.3703 (+7.96%) 0.3784 (+3.56%) 0.3698 (+6.66%)
SR-L 0.4000 (+17.65%) 0.3628 (+5.77%) 0.3577 (−2.11%) 0.3539 (+2.08%)
K2-L 0.3570 (+5.00%) 0.3650 (+6.41%) 0.3489 (−4.52%) 0.3692 (+6.49%)

Table 6 MAP on TD2003.
Model MAP
RankSVM-Struct 0.2713
G-L 0.2706 (−0.26%)
K1-L 0.2812 (+3.65%)
P-L 0.2707 (−0.22%)
SD-L 0.2884 (+6.30%)
SR-L 0.2789 (+2.80%)
K2-L 0.2811 (+3.61%)
Avg. MAP of the proposed models 0.2785 (+2.65%)
ListNet 0.2753
AdaRank-MAP 0.2283
AdaRank-NDCG 0.2368
RankBoost 0.2274

Table 7 P@[1, 3, 5, 10] on TD2004.
Model P@1 P@3 P@5 P@10
RankSVM-Struct 0.3467 0.3333 0.2960 0.2560
G-L 0.2933 (−15.40%) 0.3244 (−2.67%) 0.2880 (−2.70%) 0.2573 (+0.51%)
K1-L 0.3200 (−7.70%) 0.3067 (−7.98%) 0.2747 (−7.20%) 0.2560 (0.00%)
P-L 0.3600 (+3.84%) 0.3556 (+6.69%) 0.3040 (+2.70%) 0.2627 (+2.62%)
SD-L 0.3067 (−11.54%) 0.3156 (−5.31%) 0.2907 (−1.79%) 0.2600 (+1.56%)
SR-L 0.4000 (+15.37%) 0.3333 (0.00%) 0.2907 (−1.79%) 0.2533 (−1.05%)
K2-L 0.4133 (+19.21%) 0.3467 (+4.02%) 0.2933 (−0.91%) 0.2560 (0.00%)

Table 8 NDCG@[1, 3, 5, 10] on TD2004.
Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
RankSVM-Struct 0.3467 0.3371 0.3192 0.3090
G-L 0.2933 (−15.40%) 0.3232 (−4.12%) 0.3059 (−4.17%) 0.3042 (−1.55%)
K1-L 0.3200 (−7.70%) 0.3123 (−7.36%) 0.2970 (−6.95%) 0.3003 (−2.82%)
P-L 0.3600 (+3.84%) 0.3624 (+7.51%) 0.3336 (+4.51%) 0.3207 (+3.79%)
SD-L 0.3067 (−11.54%) 0.3131 (−7.12%) 0.3033 (−4.98%) 0.3032 (−1.88%)
SR-L 0.4000 (+15.37%) 0.3389 (+0.53%) 0.3160 (−1.00%) 0.3078 (−0.39%)
K2-L 0.4133 (+19.21%) 0.3579 (+6.17%) 0.3260 (+2.13%) 0.3150 (+1.94%)
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Table 9 MAP on TD2004.
Model MAP
RankSVM-Struct 0.2196
G-L 0.2252 (+2.55%)
K1-L 0.2249 (+2.41%)
P-L 0.2328 (+6.01%)
SD-L 0.2259 (+2.87%)
SR-L 0.2303 (+4.87%)
K2-L 0.2326 (+5.92%)
Avg. MAP of the proposed models 0.2286 (+4.11%)
ListNet 0.2231
AdaRank-MAP 0.2189
AdaRank-NDCG 0.1936
RankBoost 0.2614

Table 10 P@[1, 3, 5, 10] on MQ2008.

Model P@1 P@3 P@5 P@10
RankSVM-Struct 0.4273 0.3903 0.3474 0.2491
G-L 0.4298 (+0.59%) 0.3839 (−1.64%) 0.3469 (−0.14%) 0.2476 (−0.60%)
K1-L 0.4464 (+4.47%) 0.3890 (−0.33%) 0.3449 (−0.72%) 0.2472 (−0.76%)
P-L 0.4336 (+1.47%) 0.3810 (−2.38%) 0.3472 (−0.06%) 0.2451 (−1.61%)
SD-L 0.4299 (+0.61%) 0.3907 (+0.10%) 0.3454 (−0.58%) 0.2484 (−0.28%)
SR-L 0.4388 (+2.69%) 0.3890 (−0.33%) 0.3436 (−1.09%) 0.2454 (−1.49%)
K2-L 0.4451 (+4.17%) 0.3822 (−2.08%) 0.3436 (−1.09%) 0.2477 (−0.56%)

Table 11 NDCG@[1, 3, 5, 10] on MQ2008.

Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
RankSVM-Struct 0.3627 0.4286 0.4695 0.2279
G-L 0.3618 (−0.25%) 0.4277 (−0.21%) 0.4729 (+0.72%) 0.2269 (−0.44%)
K1-L 0.3775 (+4.08%) 0.4304 (+0.42%) 0.4719 (+0.51%) 0.2261 (−0.79%)
P-L 0.3622 (−0.14%) 0.4242 (−1.03%) 0.4729 (+0.72%) 0.2248 (−1.36%)
SD-L 0.3635 (+0.22%) 0.4316 (+0.70%) 0.4736 (+0.87%) 0.2283 (+0.18%)
SR-L 0.3665 (+1.05%) 0.4331 (+1.05%) 0.4719 (+0.51%) 0.2254 (−1.10%)
K2-L 0.3771 (+3.97%) 0.4255 (−0.72%) 0.4712 (+0.36%) 0.2263 (−0.70%)

Table 12 MAP on MQ2008.

Model MAP
RankSVM-Struct 0.4696
G-L 0.4707 (+0.23%)
K1-L 0.4739 (+0.92%)
P-L 0.4705 (+0.19%)
SD-L 0.4713 (+0.36%)
SR-L 0.4734 (+0.81%)
K2-L 0.4753 (+1.21%)
Avg. MAP of the proposed models 0.4725 (+0.62%)
ListNet 0.4775
AdaRank-MAP 0.4764
AdaRank-NDCG 0.4824
RankBoost 0.4775

ent datasets. Similar phenomena happen to the other baselines.
With regard to MAP, the proposed method is found to be superior
to RankSVM-Struct with significant increases of improvement
on TD2003 and TD2004 and a slight increase of improvement

on MQ2008 (see Table 6, Table 9, and Table 12). The results
suggest that the learning method benefits from the rank-order-
correlation-based feature vector context transformation, which
attempts to represent instances as vectors of contexts that take
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Table 13 Upper-bound performance of P@1, NDCG@1, and MAP on MQ2008.

Model P@1 NDCG@1 MAP
RankSVM-Struct 0.4273 0.3627 0.4696
G-L 0.4502 (+5.36%) 0.3814 (+5.16%) 0.4778 (+1.75%)
K1-L 0.4477 (+4.77%) 0.3813 (+5.13%) 0.4765 (+1.47%)
P-L 0.4438 (+3.86%) 0.3716 (+2.45%) 0.4760 (+1.36%)
SD-L 0.4464 (+4.47%) 0.3733 (+2.92%) 0.4765 (+1.47%)
SR-L 0.4553 (+6.55%) 0.3814 (+5.16%) 0.4779 (+1.77%)
K2-L 0.4617 (+8.05%) 0.3894 (+7.36%) 0.4813 (+2.49%)

into account the correlation relationships between features. The
proposed method is also observed as having good performance
in terms of P@1 and NDCG@1, implying that the ranking model
trained by the proposed method tends to rank the relevant docu-
ment in the first place of the retrieved list. Furthermore, accord-
ing to MAP, we can rank the proposed models in sequence as
SD-L > K1-L > K2-L > SR-L > P-L > G-L for TD2003, P-L >
K2-L > SR-L > SD-L > G-L > K1-L for TD2004, and K2-L >
K1-L > SR-L > SD-L > G-L > P-L for MQ2008. Then, a final
ranking of the proposed models can be built as K2-L > SD-L >
K1-L = SR-L > P-L > G-L, according to the average rank-order
of every model.

5. CONCLUSION AND FUTURE WORK

In this paper, a novel supervised learning method for learning to
rank is developed. The method proposes to model instances as
bags of contexts of features, instead of as bags of features, i.e.,
vectors of features, which most supervised learning methods
adopt. It applies rank-order correlations to measure the corre-
lation relationships between features. The feature vectors of in-
stances, i.e., the 1st-order raw feature vectors, are then mapped
into the feature correlation space via projection to derive the
context-level feature vectors, i.e., the 2nd-order context feature
vectors. The following six rank-order correlation coefficients
are considered for feature correlation extraction (see Table 1):
Goodman and Kruskal’s Gamma (G), Kendall’s tau (τ ), Pear-
son’s r , Somer’s d , Spearman’s rho (ρ), and Kendall tau distance.
One 2nd-order context transformation method is proposed, i.e.,
Latent Semantic Analysis Based (see Section 3.2), which pro-
duces the 2nd-order context feature vector by directly folding the
1st-order raw feature vector into the latent semantic space of the
feature correlation matrix. In terms of ranking model learning,
Ranking SVM is employed with the 2nd-order context feature
vectors as the input. The proposed method is evaluated using
the LETOR benchmark datasets and is found to perform well
with competitive results. The results suggest that the learning
method benefits from the rank-order-correlation-based feature
vector context transformation.

Future work will continue to investigate the effectiveness of
the proposed method by introducing other rank-order correla-
tion coefficients for feature correlation extraction and different
projection techniques for the 2nd-order context transformation.
Another interesting objective is to test other learning algorithms
by incorporating the 2nd-order context feature vectors. Lastly,
considering that a row vector (or a column vector) of the feature
correlation matrix provides a context-level mathematical formal-
ization for feature fi , it would be beneficial to design feature se-
lection or feature clustering technologies for detecting redundant
features based on the context formalizations of features.
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