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1 INTRODUCTION 
VISUAL tracking has very important practical 

applications in robotics (Chou and Nakajima, 2017), 

motion analysis (Syu, et. al., 2017), behavior 
recognition (Jo, et. al., 2017) and video surveillance 

(Yan, et. al., 2018), to name a few. Target tracking is 

essentially to obtain the location of interested target in 
the image through dealing with non-stationary, time-

varying video stream containing the target and the 
background (Yin, et. al., 2013). Guo et. al. (2016) 

trained an adaptive mask by a combination of color 
distribution and weighting information, and proposed 

a robust vehicle tracker to effectively detect and track 

vehicles in night scenarios. Hsia et. al. (2016) utilized 
an adaptive search pattern to refine the central area 

search which adapted the optimal search pattern 
methods, and proposed a directional prediction 

CamShift tracker to improve the tracking accuracy and 
speed. Lee et. al. (2019) adopted analytical learning 

method of validity level to develop a robust target 

tracking approach consisted of object detection, 
tracking and learning. Despite that the visual tracking 

technology has achieved rapid development and 
progress, and a large number of trackers have been 

proposed, there are still a series of challenges, such as 

background clutters, illumination change, scale 
variation, motion blur, occlusion, etc. Therefore, it can 

be said that developing a robust tracking algorithm is 
still a very tough work (Lin, et. al. 2018; Lu, et. al., 

2017; Zhang, et. al., 2014; Zin and Yamada, 2016). 
Henriques et. al. (2015) improved the Circulant 

Structure of Tracking-by-detection with Kernels 
(CSK) algorithm proposed by Henriques et. al., (2012) 

through extending the single-channel kernel 

correlation filter to multi-channel to gain multi-
dimensional image features, and applying the 

histogram of oriented gradient (HOG) feature instead 
of the original raw pixels, a Kernelized Correlation 

Filters (KCF) tracker is proposed. This tracker can not 
only solve the tracking problem in nonlinear 

condition, but also achieve the attractive results both 
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in accuracy and efficiency. However, the KCF tracker 

still has the following problems: 1) the tracker is 
sensitive to illumination; 2) the tracker does not have 

the capability of dealing with the change of the target 
scale; 3) the tracker is not able to handle the situation 

where the target is occluded. 
The main contributions of this paper are 

summarized as follows. To design a robust visual 

tracking model, the KCF tracker is improved from the 
following three aspects. The color attribute is applied 

to represent the target to overcome the shortcoming of 
illumination sensitivity, and then the low-dimensional 

and illumination-insensitive target features are 
adaptively selected with the locally linear embedding 

(LLE) method from the color feature space to preserve 
the target information. Considering the problem of 

target appearance updating in the process of occlusion, 

an effective appearance model updating strategy is 
proposed to avoid the tracking errors caused by partial 

or full occlusion. In addition, in order to further 
enhance the robustness of the proposed tracker, the 

previously obtained low-dimensional color features 
are combined with HOG features to serve as a basis 

for determining the position of the target. In recent 

years, smart video surveillance systems have been 
attracting increasing interests. In our follow-up work, 

the proposed tracker will be applied to the smart video 
system as it can provide a focus of attention for further 

investigation of this system. 
The remainder of this paper is organized as 

follows. Section 2 reviews some related works. 

Section 3 describes the original KCF tracker. Section 
4 describes the proposed algorithm in detail. Section 5 

presents experimental results and analyses . Section 6 
concludes this paper. 

2 RELATED WORKS 
DUE to the high computational efficiency of 

correlation filters, correlation filters have been widely 

used in target detection, target recognition and other 

fields. At present, some scholars have adopted 
correlation filters to the visual tracking community, 

and a series of correlation filter-based tracking 
algorithms have been presented. Such algorithms do 

not depend on the edge, texture and other features of 
the target, and has low computation complexity 

because fast Fourier transform is introduced in the 

computation, so these algorithms can run in real-time 
and achieve promising tracking capability. 

Bolme et. al. (2010) designed a minimum output 
sum of squared error (MOSSE) correlation filter used 

to model the target appearance, and it has the ability to 
deal with the change of the appearance. Henriques et. 

al. (2012) proposed CSK tracker which employs 
correlation filter in the kernel space. Henriques et. al. 

(2015) improved the CSK tracker and proposed the 

KCF tracker. The latter not only has significant 
tracking capability, but also has high efficiency. 

However, it is often sensitive to illumination, scale 

variation, occlusion and other disturbing factors. To 

solve the problem of the change of illumination and 
scale in the KCF algorithm, Li and Zhu (2014) 

proposed an effective scale adaptive tracking 
algorithm, which uses the features composed HOG 

and color-naming features to boost its performance. It 
can solve the problem of illumination and scale in the 

KCF tracker, but its computational complexity is too 

high. To handle the scale variation problem of the 
KCF tracker, Zhang, et. al. (2016) proposed an 

adaptive scale tracker based on KCF through 
designing a scale estimation strategy, and Ding, et. al. 

(2018) proposed a quadrangle KCF through estimating 
the scale of the object based on the positions of its 

four corners, which can deal with the scale variation 
that occurs when the targeted target is moving. To 

deal with the severe occlusion problem of the KCF 

tracker, Yang et. al. (2016) compared the confidence 
of the target with the maximum response score and 

trained an online support vector machine classifier. 
Yang, et. al. (2018) proposed a joint multi-feature 

correlation filter tracking algorithm based on HOG 
and color-naming features to improve the performance 

of the KCF algorithm in terms of occlusion and fast 

motion. 
However, most of the above-mentioned and other 

existing tracking methods are only limited to 
predicting the location of the target, without 

considering the effects of illumination change, scale 
variation, and occlusion at the same time, which limits 

the robustness of the tracking algorithms in the 

complex background to a certain extent. 

3 KCF TRACKER 
APPLYING the property of circulant matrix, the 

KCF tracker trains a classifier with a positive example 
and negative examples obtained by translating it 

(Henriques, et. al., 2015). For the sake of simplicity, 

let an 1n  vector x  denote the positive example. 

Assuming X  is an n n  circulant matrix, and it can 

be constructed by all possible circularly shifts to x , 
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where, the first row of X  is the vector x , and the 
second row is the result of shift x  by one element. In 

this way, all the other rows of X  can be derived. 
Since ridge regression has a simple closed-form 

solution for any input and does not require complex 
iterations, it is used in the training process of the KCF 

tracker. The purpose of the KCF tracker training is to 

find a function ( ) Tf z zw  to minimize the squared 
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error over the samples ix  and their regression targets 

iy , 

   
2 2

min i i

i

f x y  
w

w , 

 

(2) 

where, 0  , is a regularization parameter used to 

prevent over-fitting. According to the Representer 

theorem, we can get the optimal solution 

 i i

i

xw  of Eq.(2). The vector α  is composed 

of all the elements 
i . So the parameter of the 

solution we need to solve becomes α  from w . 

Finally, the simple closed-form solution of Eq.(2) is 

obtained by the Kernelized Regularized Least Square 
(KRLS) (Henriques, et. al., 2012), 

  
1

K 


 α I y ,  (3) 

where, I  is the identity matrix, K  is a Kernel 
function matrix, and each element of the vector y  is 

iy . Since K  is a circulant matrix, the following 

expression can be derived according to the property of 
the circulant matrix: 
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ˆ
ˆ xx 




y
α

k
 ,  (4) 

where, xx
k  is the first row of the circulant matrix 

 C xxK  k , and the hat  ̂ denotes the DFT of a 

vector. 

4 PROPOSED ALGORITHM 

4.1 Low-dimensional color features 
IN recent years, the color attribute plays an 

important role in the target recognition, target 

detection and some other communities. In this paper, 
the color attribute is utilized to represent the target to 

solve the illumination sensitive problem in the visual 
tracking. Berlin and Kay (1969) divided the colors 

into 11 categories: black, blue, brown, gray, green, 

orange, pink, purple, red white and yellow. In our 
tracker, these 11-dimensional color features are used 

to represent the target to solve the illumination 
sensitivity problem. Considering that the high 

dimensional feature representation will increase the 
computational complexity, the LLE algorithm 

(Roweis and Saul, 2000) is employed to reduce the 
dimension of the color features; on the other hand, it 

also plays an important role in preserving useful target 

information. 
The LLE algorithm utilizes linear reconstruction to 

reflect the non-linear structure in the high-dimensional 
data space, which enables the reduced dimension data 

maintain the original topology (Liu, et. al., 2016). 

Therefore, in our tracker, the LLE algorithm is 

adopted to reduce the dimension of the color features, 
which can effectively reduce the loss of target 

information caused by the dimensionality reduction. In 
this work, the principle of reducing the dimension of 

the color features is as follows: 

(1) Find   nearest neighbour samples for each 

given sample. For the point 
ix  of the sample in the 

high-dimensional space, the distances between the 

point 
ix

 
and the other N-1 sample points are 

calculated and sorted, and the top   points are 

selected as nearest neighbour points of 
ix . 

(2) The original high-dimensional data is linearly 

expressed by the nearest neighbour points, and then 
the low-dimensional spatial data is obtained. An error 

function is defined as below: 

  
2

'

1 1

min
N

i ij ij

i j

x x


 
 

  W , (5) 

where,  1,2,ijx j   is the j
th
 nearest neighbour 

point of ix . 
'

ij  is the weight between ix
 
and ijx , 

and it needs to satisfy two constraints: (1) each data 

ix  must be reconstructed by its nearest neighbour 

points; otherwise, ' 0ij  ; (2) each row of the weights 

is summed to1, that is 
'

1

1ij

j






 . To solve the matrix 

W ,  we need to minimize the Eq.(5), and the local 

optimal reconstruction weight matrix is constructed. 
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In general, 
iQ  is a singular matrix. 

(3) The output vector of the sample point is 

calculated by '

ij  in Eq.(6) and its nearest neighbour 

point ix . To map all the sample data into the low-

dimensional space, and output the low-dimensional 
data under the premise of preserving the sample 

topology, we need to construct a cost function and 
minimize it in the mapping process: 

  
2

'

1 1

min
N

i ij ij

i j

u u


 
 

  U , (7) 

where,   U
 
denotes the value of the cost function, 

iu  is the output vector of ix .  1,2, ,iju   is the j
th
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nearest neighbour point of 
iu , and it needs to meet 

two conditions, 
1

0
N

ii
u


 , and 

1

N T

i ii
u u


 I . By 

minimizing the cost function   U  to seek the 

optimal solution 
iu , then   U  can be written as, 

  
1 1

min
N N

T

ij i j

i j

u u
 

U M , (8) 

where, M  is an N N symmetric matrix, and its 

expression is    
T

  M I W I W . From Eq.(8), to 

minimize the above cost function, U  can be the 

constructed by the smallest d  non-zero eigenvalues 

of M . 

The number   of the nearest neighbour points and 

the feature dimension d  determine the performance 

of the LLE algorithm (Roweis and Saul, 2000). If   

is too large, it will not represent the local features, and 

its performance is similar to the principal component 

analysis (PCA) algorithm; otherwise, it is incapable of 
reflecting the topological structure of the low-

dimensional sample data. In this paper, through a large 
number of experimental verification, it can get better 

results when   is set to 7. If d  is too large, the 

selected samples are usually affected by noise; 

otherwise, it is incapable of reflecting the feature of 
the samples. After a large number of experiments, we 

choose d  to be 3. In the proposed tracker, the LLE 

algorithm is used to reduce the dimension of the color 

features, which can effectively reduce the loss of 
target information caused by the dimension reduction 

process. 

4.2 Fast scale detection 
In the actual scene, the scale of the target usually 

varies indefinitely. An effective target scale detection 
strategy can give an important boost to the tracking 

accuracy of the algorithm. As the KCF tracker uses 
the fixed template size, and does not have the ability 

to adapt to scale varies, it is easy to be influenced by 
scale variation. To handle this problem, a multi-scale 

filter is introduced to predict the target scale of the 

current frame through the previous frame (Li and Zhu, 
2014). The calculation of the scale filter and the 

location filter is performed in parallel, which 
effectively improved the tracking efficiency. The steps 

of the scale detection are as follows. 

Firstly, a series of multi-scale image blocks 
j

sz  are 

acquired at and around the target location 1tp  of the 

previous frame. Suppose l h  denotes the size of the 

target at the current frame t , and tS  denotes the size 

of the scale filter. The size of the image blocks 
j

sz  is 

hala jj  , where, a  represents the scale factor, 

1 1

2 2

t tS S
j

      
     

    
，，

.

 

Then, the HOG features are extracted from the 

acquired multi-scale image blocks 
j

sz , and the 

Hanning Window is used to eliminate the edge 

interference, then the training samples are obtained. 
Finally, the sample set is trained by the KRLS 

classifier, and the scale detection is performed 

according to the maximum response of the scale filter. 

Let 
jf  represent the HOG features extracted from the 

image blocks 
j

sz , then the expression of the scale 

filter can be expressed, 
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where, j

sy  is the Gaussian label output of the sample 

j

sg , jF  is the Fourier transform of the feature jf , *

jF  

is the conjugate of jF , and the symbol  represents 

element-wise multiplication in the Fourier domain. 

  1

s s sy F R , (10) 

where,  s sR F r , the elements of the vector sr  are 

 ,
i is s sr k x z . sx  denotes the scale model obtained 

in the previous frame, and 
is

z  denotes the acquired 

sample in the current frame. jF  is the Fourier 

transform of the feature jf , and 
*

jF  is the conjugate 

of jF . The scale filter’s response value sG  can be 

calculated by Eq.(9), and the target scale of the current 

frame is obtained by calculating the scale filter’s 

maximum response maxG . Then, the scale model 

updating is carried out according to Eq.(11) and 

Eq.(12). 

  
1

ˆ1
t t ts s s 

  α α α , (11) 

  
t 1 1s 1

t ts s 
 
  x x x , (12) 

where, the hat ^ also denotes the DFT of a vector, 
ts

α  

and 
1ts 

α  are the updated coefficient vectors of the 

current frame and the next frame respectively. 
1tsx  

denotes the appearance model learned from the 

previous frame, 
tsx  and 

1tsx  represent the updated 
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model of the current frame and the next frame, 

respectively. 

4.3 Adaptive appearance model updating 
The appearance model updating strategy is critical 

for tracking algorithm. If the appearance model is not 
updated, the original appearance model cannot meet 

the tracking requirements due to the appearance 
change caused by illumination, scale, occlusion, etc. 

To solve this problem, a novel effective appearance 
model updating strategy based on Peak-to-Sidelobe 

Ratio (PSR) (Li, et. al., 2015) is proposed. According 

to the PSR value at the target location to determine 

whether the target is occluded, and the weight 
t  of 

the appearance model is adaptively updated, which 

makes the proposed algorithm have the anti-occlusion 

ability. Firstly, the initial frame 0x  is regarded as the 

training sample, and the initial classifier coefficients 
α  are obtained through training. Then, the weight of 

the appearance model is calculated from the PSR 
values of each frame. If the PSR value is less than the 

set threshold, it indicates that the target is occluded, 

and the template weight of the current frame is 
assigned as 0 and the appearance model will not be 

updated. Otherwise, the template weight is calculated 
according to the PSR value of the current frame, and 

then the new appearance model is updated. The 
proposed appearance model updating strategy is as 

follows, 

  t 1
ˆ1 t t t tω    α α α , (13) 

  t 1 11 t t t t    x x x , (14) 
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0 P

1, P

t resh

t

t resh

P

P



 



，
,  (15) 

where, tP  denotes the PSR value of the t
th
 frame, and 

 max[ ]
t

f z
P






 .   and   denote the mean and 

standard deviation of the target box of the current 

frame, respectively. 

4.4 Target status determined 
Although the color features are somewhat robust to 

illumination variation, they are difficult to adapt to 
severe illumination variation. Considering that the 

HOG feature also has good invariance to illumination, 

we utilize the previously obtained low-dimensional 
color features and the HOG features to serve as the 

basis for determining the target state (the position of 
the target). 

It is assumed that the thresholds corresponding to 

the color feature and the HOG features are 
color

threshP  and 

HOG

threshP , respectively. If the PSR value of the current 

frame, including Pcolor

t  and 
HOGPt  corresponding to 

these two kinds of features, satisfies color

t thresh

colorP P  and 

HOG

t thresh

HOGP P , which indicates that the current 

tracking result is very reliable, the state 
tS  of the 

target is determined by these two kinds of features, 

   t t

2 1
=

3 3

color HOG

tS S S
，

 (16) 

where, 
t

colorS  denotes the target state of the current 

frame determined by the color feature, and 
t

HOGS  

denotes the target state of the current frame 

determined by the HOG features. 

Secondly, if only one of the features has a PSR 
value greater than the corresponding threshold, the 

target state of the current frame is determined by the 
feature alone, 

 

c

t th t th

t th t th

P P
S

P P

color color olor HOG HOG

t resh resh

t HOG HOG HOG color color

t resh resh

S P and P

S P and P

  
 

 

，

，
, 

  (17) 

Finally, if the PSRs of both kinds of features are 

less than their corresponding thresholds, which 
indicates that the reliability of the tracking results is 

low. For this case, according to the target states 
respectively obtained by these two kinds of features, 

the state closer to the target of the previous frame is 
selected as the target state of the current frame, 

 
    2 2

1 1
,

S argmin S , S
color HOG
t t

color HOG

t t t t t
S S

S S   

, (18) 

where 1tS   stands for the target state of the previous 

frame. 

5 EXPERIMENTS AND RESULTS 
IN order to verify the effectiveness of our 

algorithm, one hundred video sequences of the OTB-
2015 benchmark (Wu, et. al., 2015) are tested, and 

obtained results are compared with KCF (Henriques, 
et. al., 2015) tracker, discriminative scale space 

tracker (DSST) (Danelljan, et. al., 2014), and 
discriminant correlation filters network (DCFNet) 

(Wang, et. al., 2017) tracker. The experiment is 

implemented in MATLAB software, which runs on an 
Intel (R) Core (TM) i5-4590M CPU @ 3.30GHz with 

8G of memory. In the experiment, the parameters of 
the other three algorithms are kept their original 

settings. The parameters of our algorithm are as 

follows:   is set to 0.2, the learning factor   is set to 

0.075, the number 
 
of nearest neighbours is 7, the 

feature dimension d  is set to 3, and the number of the 

scale of the filter is set to 33. The thresholds 
color

threshP  

and 
HOG

threshP  corresponding to the color feature and the 

HOG features are set to 4/5 of the PSR value 
corresponding to the second frame, respectively.  
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Figure 1. Precision and Success Plots for OPE, SRE and TRE. The Legend contains the ACU score for each tracker. 

 

 

 

 
Figure 2. ACU results of each tracker on sequences with different challenge for OPE about precision 
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Figure 3.  ACU results of each tracker on sequences with different challenge for OPE about success 

5.1  Quantitative Analysis 
To verify the accuracy and robustness of the 

proposed tracker, and considering that a tracker may 

be very sensitive to initialization, distance precision 
(DP), overlap success (OS), one-pass evaluation 

(OPE), temporal robustness evaluation (TRE), and 
spatial robustness evaluation (SRE) criteria (Wu, et. 

al., 2015), were selected to quantitatively evaluate 

these four algorithms in our experiment. The DP is 
defined as the percentage of frames whose centre 

location error (CLE) within a threshold of 20 pixels. 
The OS is defined as the percentage of frames where 

the bounding box overlap surpasses a threshold of 0.5. 
 

Table 1. Quantitative comparison of 4 trackers on 100 
sequences 

Criteria KCF DSST DCFNet Ours 

DP 0.668 0.665 0.778 0.805 

OS 0.528 0.588 0.729 0.698 

 

5.1.1 Overall  Performance Analysis  
The precision and success plots for OPE, TRE and 

SRE including the area-under-the curve (ACU) score 

over all 100 sequences are illustrated in Figure 1. As 
can be seen from Figure 1, although our algorithm is 

more sensitive to different bounding boxes than the 
DCFNet algorithm in terms of spatial robustness, it 

still has the best tracking performance among all four 

trackers in terms of time robustness. The DP and OS 
comparison of these four trackers is shown in Table 1. 

(Italic and bold format indicates the performance of 

the corresponding algorithm is optimal, underline 

indicates the performance of the corresponding 
algorithm is suboptimal.) From Table 1, we can see 

that the performance of the proposed tracker is 
optimal or suboptimal and our tracker performs well 

against the KCF (by 13.7%, 17%), DSST (by 14%, 
11.4%) and DCFNet (by 2.7%, -3.1%) in terms of DP 

and OS, respectively. 

5.1.2 Attribute-Based Performance Analysis  

In order to fully evaluate the robustness of the 

proposed algorithm, we further evaluated the 

performance of the algorithm using 11 attributes on 

the OTB-100 video dataset as shown in Figure 2 and 3.  
It can be seen from Figure 2 and 3, for the 

disturbing factors such as illumination (precision plots: 
76.7% and success plots: 63.4%), scale changes 

(precision plots: 72.8% and success plots: 57.7%), 
occlusion (precision plots: 72.6% and success plots: 

59.2%), the robustness of our tracker is better than that 

of the other three trackers. 

5.2 Qualitative Analysis 
In this paper, the comparison results of above four 

tracking algorithms for different benchmark video 

sequences are presented, and the tracking robustness 
of the algorithm is analysed in detail from four 

perspectives. In order to clearly illustrate the 

experimental results, only parts of the tracking results 
are shown. 

Robustness to illumination variation. In the 
Singer1 and Singer2 video sequences shown in 

Figures 4(a) and 4(b), respectively, there is a 
challenge of illumination variation. The targets in 
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both videos are heavily affected by illumination 

variation, such as frames 120 and 339 in Singer1 
sequences and frames 75 and 156 in Singer2 

sequences. DCFNet drifted at frame 59 of Singer2, 
resulting in tracking failure in subsequent frames, but 

KCF, DSST and our trackers all track targets well. 
This is mainly because both color features and HOG 

features are robust to illumination variation. Among 

them, KCF and DSST adopt HOG features, and our 
tracker uses both color features and HOG features. 

Robustness to scale variation. For the Car24 and 
Car1 video sequences shown in Figures 4(c) and 4(d), 

respectively, the main interference is scale variation. 
In the first few frames, the scale of the target changes 

little, and all trackers can better track the target, such 
as frames 434 in Car24 sequences and frames 31 in 

Car1 sequences. In the subsequent frames of the video, 

when the target scale changes, although all trackers 
can still track the target, KCF does not have the ability 

to scale estimation, while DSST, DCFNet and our 
algorithm can estimate the target scale, such as frames 

624 and 2522 in Car24, and frames 191 and 193 in 
Car1. 

Robustness to partial occlusion. In the Jogging2 

and Subway video sequences shown in Figures 4(e) 
and 4(f), respectively, there is a challenge of occlusion. 
In the Jogging2 sequence, there are occlusions of the 
column, such as the 54

th
 frame and the 57

th
 frame, and 

in the Subway sequence, there are pedestrian 

occlusions, such as the 43
rd

 frame and the 95
th
 frame. 

After the target moves out of the occlusion, only 

DCFNet and our algorithm are able to reacquire the 
target in the Jogging2 sequence, such as the 65

th
 frame; 

in the Subway sequence, DSST, DCFNet and our 
algorithm can recapture and track the target, such as 

the 145
th
 frame. The main reason is that when 

occlusion occurs, it can be judged whether the target is 
occluded according to the PSR value, which largely 

avoids updating the background information to the 
template. 

Robustness to deformation. Both the Bird2 and 
Panda video sequences, shown in Figures 4(g) and 

4(h), respectively, have the challenge of deformation. 
In the Birds sequence, the target is moving and 

flipping at the same time, such as the 48
th
 frame and 

the 51
st
 frame, and the same situation exists in the 

Panda sequence, such as the 171
st
 frame and the 288

th
 

frame. Only DCFNet and our algorithm can complete 
the whole tracking, while DSST and KCF lose the 

target, such as the 82
nd

 frame in Bird2 sequence and 
the 215

th
 frame in Panda sequence. This is because the 

color features are robust to deformation, and DCFNet 

constructs a unique feature extractor whose trained 
features are also robust to deformation, while DSST 

and KCF only use HOG features which is not robust 
to deformation. 

 

      
(a) Singer1 

   
 (b) Singer2 

  
 (c) Car24 

 
 (d) Car1 

      
(e) Jogging2 

   
 (f) Subway 

  

(g) Bird2 
    

(h) Panda 

                                                                                   KCF                 DSST                DCFNet                  Ours  

Figure 4. Different tracking results corresponding to different algorithms 
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6 CONCLUSION 
TO overcome the shortcoming that the KCF tracker 

is not good at dealing with illumination variation, 
scale variation and occlusion, a robust tracking model 

based on KCF is proposed. In this work, the proposed 
model is improved from the following three aspects: 

the color feature is employed to represent the target, 
and the low-dimensional and illumination-insensitive 

target feature is obtained adaptively by the LLE 

algorithm. To make the appearance model adaptively 
update as the target appearance changes, an effective 

appearance model updating strategy is proposed. In 
addition, the obtained low-dimensional color features 

are combined with HOG features for determining the 
target state. One hundred video sequences of the OTB-

2015 benchmark were selected for experiments, and 

the experimental results  demonstrate that the 
performance of the proposed tracker is robust to 

illumination change, scale variation, partial occlusion 
and deformation. 
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