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Abstract: Modeling and analysis of thin film flow with respect to magneto hydro
dynamical effect has been an important theme in the field of fluid dynamics, due
to its vast industrial applications. The analysis involves studying the behavior and
response of governing equations on the basis of various parameters such as thick-
ness of the film, film surface profile, shear stress, liquid velocity, volumetric flux,
vorticity, gravity, viscosity among others, along with different boundary condi-
tions. In this article, we extend this analysis in fractional space using a homotopy
based scheme, considering the case of a Non-Newtonian Pseudo-Plastic fluid for
lifting and drainage on a vertical wall. After applying similarity transformations,
the given problems are reduced to highly non-linear and inhomogeneous ordinary
differential equations. Moreover, fractional differential equations are obtained
using basic definitions of fractional calculus. The Homotopy Perturbation Method
(HPM), along with fractional calculus is used for obtaining approximate solutions.
Physical quantities such as the velocity profile, volume flux and average velocity
respectively for lift and drainage cases have been calculated. To the best of our
knowledge, the given problems have not been attempted before in fractional
space. Validity and convergence of the obtained solutions are confirmed by find-
ing residual errors. From a physical perspective, a comprehensive study of the
effects of various parameters on the velocity profile is also performed. Study
reveals that Stokes number St, non-Newtonian parameter � and magnetic para-
meter M have inverse relationship with fluid velocity in lifting case. In the drai-
nage case, Stokes number St and non-Newtonian parameter � have direct
relationship with fluid velocity, but magnetic parameterM shows inverse relation-
ship with velocity. The investigation also shows that the fractional parameter �
has direct relationship with the fluid velocity in lifting case, while it has inverse
relationship with velocity in the drainage case.

Keywords: Pseudo-plastic fluid; magneto hydro dynamic; fractional differential
equation; homotopy perturbation method

1 Introduction

Free drainage refers to a phenomena where a fluid flows down a vertical object such that it adheres to the
objects form and is subject to gravitational and viscous forces [1]. The fluid is bounded with a free surface
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(usually air), and there is no forced addition of liquids. The thickness δ of the drained fluid is much shorter
than the length of the object such that the flow takes place along a longer dimension. The flow is considered
to be one-dimensional as the flow velocity is much greater than the velocity perpendicular to the belt.
Drainage can be observed in many naturally occurring phenomena such as movement of rain droplets
down a window pane, eye tears, and lava flows. Industrial and engineering applications are found in oil
refining processes, chip manufacturing, nuclear reactors, construction and civil works, irrigation, laser
cutting, paint finishing, among others [2–5]. Since flow conditions can be significantly affected by both
external and internal macroscopic instabilities, a significant amount of work has been performed to
understand the underlying fundamental flow characteristics. A brief of this body of work is provided in
the remainder of this section.

The initial work with respect to the problem was performed on the basis of Newtonian fluids [4], where
acceleration terms were omitted and the resulting process was a balance between viscous and gravitational
forces. Although the approach was valid for large temporal ranges, it was not sufficient for non-linear
analysis required in non-Newtonian fluids such as pastes, gels, molten plastics, lubricants containing
polymer additives, blood, and food items such as honey and ketchup [6]. As such, Siddiqui et al. [7,8]
have approached the drainage problem with respect to Phan-Thein-Tanner fluids; a third grade fluid,
flowing down an inclined plane. Siddiqui et al. [9] have also approached the problem using fourth-grade
fluid on vertical cylinder. In terms of flow types, initial studies involved analysis of laminar flows were
performed by Yih [10]. The analysis was extended to turbulent flows by Landau [11] and Stuart [12].
Stability analysis taking into account surface tension was performed by Nakaya [13] and Lin [14]. Ullah
et al. [15] study thin film flow of a generalized Maxwell fluid along with slip conditions, confronting
withdrawal and drainage on non-isothermal cylindrical surfaces. Ruan et al. [16] examine the dynamics
of a thin film formed by a distributed liquid source on a vertical solid wall. Ahmad et al. [17] proposed a
modified nanofluid model for homogeneous–heterogeneous reactions in a gravity driven liquid films.

In this article, we extend the study of fluid drainage and lifting to fractional space by representing the
problem as Fractional Differential Equations (FDEs), and obtaining a solution using Homotopy
Perturbation Method (HPM), proposed by He et al. [18–21]. The HPM essentially combines both
homotopy and classical perturbation techniques, and has been successfully applied to solve many linear
[18–21] and non-linear problems [22–36]. The FDEs are generalizations of ordinary differential equations
to non-integer order. The usage of FDEs allow us to model and observe more complex spatial and
temporal phenomena concerning the fluid flow by taking into account non-local relations [37]. To the
best of our knowledge, the analysis of thin film flow in fractional space has not yet been performed.

2 Preliminaries

2.1 Fractional Calculus
FDEs have been the focus of many studies in physics, biology, engineering, signal processing, control

theory, and finance due to its ability to capture complex non-linear phenomena not commonly captured by
ordinary differential equations [11–13]. Before proceeding to the remainder sections describing the lifting
and drainage model in fractional space, we present a few basic definitions and properties of fractional
calculus that will be used in later sections.

Definition 2.1.1: A real function h tð Þ; t. 0, is said to be in the space Cl;l 2 R, if there exists a real
number p.l such that h tð Þ ¼ tph1 tð Þ;where h1ðtÞ 2 Cð0;1Þ, and it is said to be in the space Cn

l if and
only if

hn 2 Cl; n 2 N : (1)
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Definition 2.1.2: The fractional derivative Da of h tð Þ in the Caputo sense is defined as

DahðtÞ ¼ 1

�ðn� aÞ
Z t

0
t � sð Þn�a�1hn sð Þds; (2)

For n� 1, a, n; n 2 N ; t. 0; h 2 Cn
�1:

The following are two basic properties of the Caputo fractional derivative [30]:

(1) Let h 2 Cn
�1; n 2 N . Then Dah; 0 � a � n is well defined and Dah 2 C�1.

(2) Let n� 1 � a � n; n 2 N and h 2 Cn
l; l � �1. Then

J aDah tð Þ ¼ h tð Þ �
Xn�1

k¼0
hk 0þð Þ t

k

k!

2.2 Basic Theory of Homotopy Perturbation Method (HPM)
To illustrate the basic idea of the HPM for solving nonlinear differential equations, consider the

following nonlinear differential equation:

AðuÞ � f ðrÞ ¼ 0; r 2 Ω (3)

With boundary conditions

B u;
du

dx

� �
¼ 0; reΦ (4)

where A is the general differential operator, B is a boundary operator, f rð Þ is a known analytic function and
Φ is the boundary over the domainΩ. Generally A can be divided into a linear part L and a nonlinear part N .
Eq. (3) can be written as

L uð Þ þ N uð Þ � f rð Þ ¼ 0; r 2 Ω (5)

By the homotopy technique, we construct a homotopy V r; pð Þ: Ω� 0; 1½ � ! <, which satisfies:

H V ; pð Þ ¼ 1� pð Þ L Vð Þ � L u0ð Þ½ � þ p A Vð Þ � f rð Þ½ � ¼ 0; p 2 0; 1½ �; r 2 � (6)

or

H V ; pð Þ ¼ L Vð Þ � L u0ð Þ þ pL u0ð Þ þ p N Vð Þ � f rð Þ½ � ¼ 0 (7)

where p 2 0; 1½ � is an embedding parameter, while u0 is an initial approximation of Eq. (3), which satisfies
the boundary conditions. From Eqs. (5) and (6) we have

H V ; 0ð Þ ¼ L Vð Þ � L u0ð Þ
H V ; 1ð Þ ¼ A Vð Þ � f rð Þ (8)

Thus, the changing process of p from zero to unity is just that of V r; pð Þ from u0 rð Þ to u rð Þ.
According to HPM, we initially use the embedding parameter p as a small parameter and assume that the

solution of (3) and (4) can be written as a power series in p.

V ¼ v0 þ pv1 þ p2v2 þ p3v3 þ . . . (9)
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Setting p ¼ 1 results in the approximate solution of (3)

u ¼ lim
p!1

V ¼ v0 þ v1 þ v2 . . . (10)

2.3 Governing Equations
The basic equations governing the motion of an isothermal, homogeneous and incompressible fluid as

[9] are given as:

divV ¼ 0; (11)

q
DV
Dt

¼ qf � gradP þ divS (12)

where V is the velocity vector, q is the constant density and f is the body force per unit mass, P denotes the

dynamic pressure and
D

Dt
denotes the material derivative which is defined as

D �ð Þ
Dt

¼ @

@t
�ð Þ � V:rð Þ �ð Þ

Here S is the extra stress tensor for pseudo-plastic fluid model [24], defined as

Sþ �1S
r þ 1

2
�1 � l1ð Þ A1Sþ SA1ð Þ ¼ g0A1; (13)

where g0 is the zero shear viscosity, �1 is the relaxation time and l1 is the material constant.

The first Rivlin–Ericksen tensor A1 is defined as

A1 ¼ gradVð Þ þ gradVð ÞT (14)

The contra variant convicted derivative denoted by super imposed r over S is defined as

Sr ¼ DS
Dt

� gradVð ÞTSþ S gradVð Þ
h i

(15)

3 Formulation of the Electrically Conducted Paint Film Flow in Lifting Case

We consider a container filled with an incompressible non-Newtonian Pseudo-Plastic fluid. Awide belt
is passing through this container which moves vertically upward with a constant speed U0. The belt take up a
thin film of fluid having uniform thickness d. The gravity tries to make the fluid drain down the belt. It is also
assume that the flow is laminar and uniform, and the pressure is atmospheric pressure. Let x-axis be normal to
the belt and the z-axis is along the belt which is in upward direction.

The boundary conditions for the problem are:

(i) There is no-slip at the wall

at x ¼ 0; w ¼ U0 (16)

(ii) At the free surface, the shear is negligible, thus

at x ¼ d; Sxz ¼ 0 (17)

where Sxz is the shear stress component of the pseudo-plastic fluid.
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The velocity field with magnetic effect for the stated problem defines as

V ¼ 0; 0; �rB2
0w xð Þ� �

(18)

and extra stress tensor as

S ¼ S xð Þ (19)

By inserting (18) in (11) and (12), the continuity Eq. (11) is identically satisfied and Eq. (12) takes the
following form

0 ¼ dSxx
dx

þ qf1 (20)

0 ¼ dSzx
dx

þ qf3 � rB2
0w xð Þ (21)

where f1 and f3 are components of body force in x and z directions, respectively.

Since the z-axis is in upward direction and gravity acts in the negative z-direction (downward), this
means that gz ¼ �g, hence the above equations become

0 ¼ dSxx
dx

(22)

0 ¼ dSzx
dx

� qg � rB2
0w xð Þ (23)

The non-zero components of S are obtained by inserting Eqs. (14), (15) and (18) in Eq. (13)

Sxx ¼
�g0 �1 � l1ð Þ dw

dx

� �2
1þ �1

2 � l12
� �

dw
dx

� �2 ; Szz ¼ g0 �1 þ l1ð Þ dw
dx

� �2
1þ �1

2 � l12
� �

dw
dx

� �2 ; Szx ¼ g0
dw
dx

1þ �1
2 � l12

� �
dw
dx

� �2 (24)

Substituting the value of Szx in Eq. (23), we get

d

dx

g0
dw

dx

1þ �1
2 � l12

� � dw

dx

� �2

2
6664

3
7775 ¼ qg þ rB2

0w xð Þ (25)

Applying the non-dimensional parameters w� ¼ w

U0
and x� ¼ x

d
in Eq. (25), we get

d

dx

dw

dx

1þ b
dw

dx

� �2

2
6664

3
7775 ¼ St þM2w xð Þ (26)

with
dw

dx
¼ 0 at x ¼ 1 ,
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w ¼ 1 at x ¼ 0,

where b ¼ �1
2 � l1

2
� �

U0
2

d2
denotes the non-Newtonian parameter, St ¼ qgd2

leff U0
represents the stokes

number and M2 ¼ rB2
0d

leff
is the MHD parameter.

Eq. (24) can be written as a second order differential equation as follows

d2w

dx2
� b

dw

dx

� �2 d2w

dx2
� b2St

dw

dx

� �4

� 2bSt
dw

dx

� �2

�M2b2w xð Þ dw

dx

� �4

� 2bM2w xð Þ dw

dx

� �2

�M2w xð Þ ¼ St;

(27)

with the wall and free surface boundary conditions, respectively;

w ¼ 1 at x ¼ 0,
dw

dx
¼ 0 at x ¼ 1.

After using basic definitions of fractional calculus discussed in the previous section, the fractional form
of Eq. (27) is:

d2w xð Þ
dx2

� bðDaw xð ÞÞ2 d
2w xð Þ
dx2

� b2StðDaw xð ÞÞ4 � 2bStðDaw xð ÞÞ2 �M2b2w xð ÞðDaw xð ÞÞ4

� 2bM2w xð ÞðDaw xð ÞÞ2 �M2w xð Þ ¼ St;
(28)

with the following boundary conditions:

w 0ð Þ ¼ 1;w0 1ð Þ ¼ 0; 0 < a < 1; t. 0: (29)

4 Application of HPM to Fractional Differential Equation in Lifting Case

According to HPM, we can construct the following homotopy �� 0; 1½ � ! R for Eq. (28)

ð1� pÞ d
2wðxÞ
dx2

þ p½d
2wðxÞ
dx2

� bðDaw xð ÞÞ2 d
2w

dx2
� b2StðDaw xð ÞÞ4 � 2bStðDaw xð ÞÞ2�

M2b2w xð ÞðDaw xð ÞÞ4 � 2bM2w xð ÞðDaw xð ÞÞ2 �M2w xð Þ � St� ¼ 0
(30)

Using (28) and (29) various order problems are as follows:

4.1 Zeroth-Order Problem

w0
00
xð Þ ¼ 0;w0 0ð Þ ¼ 1;w

0
0 1ð Þ ¼ 0 (31)

4.2 First-Order Problem

� St � 2StbðDaw0ðxÞÞ2 � Stb
2ðDaw0ðxÞÞ4 �M2w0ðxÞ � 2M2bðDaw0ðxÞÞ2w0ðxÞ �

M2b2ðDaw0ðxÞÞ4w0ðxÞ � bðDaw0ðxÞÞ2w0
00 xð Þ þ w1

00 xð Þ ¼ 0;w1 0ð Þ ¼ 0;w1
0ð1Þ ¼ 0

(32)
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4.3 Second-Order Problem

� 4StbðDaw0ðxÞÞðDaw1ðxÞÞ � 4Stb
2ðDaw0ðxÞÞ3ðDaw1ðxÞÞ � 4M2bðDaw0ðxÞÞðDaw1ðxÞÞw0ðxÞ �

4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw0ðxÞ �M2w1ðxÞ � 2M2bðDaw0ðxÞÞ2w1ðxÞ �M2b2ðDaw0ðxÞÞ4w1ðxÞ �
2bðDaw0ðxÞÞðDaw1ðxÞÞw0

00 xð Þ � bðDaw0ðxÞÞ2w1
00 xð Þ þ w2

00 xð Þ ¼ 0;w2 0ð Þ ¼ 0;w2
0ð1Þ ¼ 0

(33)

4.4 Third-Order Problem

� 2StbðDaw1ðxÞÞ2 � 6Stb
2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2 � 4StbðDaw0ðxÞÞðDaw2ðxÞÞ �

4Stb
2ðDaw0ðxÞÞ3ðDaw2ðxÞÞ � 2M2bðDaw1ðxÞÞ2w0ðxÞ � 6M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2w0ðxÞ �

4M2bðDaw0ðxÞÞðDaw2ðxÞÞw0ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw2ðxÞÞw0ðxÞ �
4M2bðDaw0ðxÞÞðDaw1ðxÞÞw1ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw1ðxÞ �M2w2ðxÞ �
2M2bðDaw0ðxÞÞ2w2ðxÞ �M2b2ðDaw0ðxÞÞ4w2ðxÞ � bðDaw1ðxÞÞ2w0

00 xð Þ �
2bðDaw0ðxÞÞðDaw2ðxÞÞw0

00 xð Þ � 2bðDaw0ðxÞÞðDaw1ðxÞÞw1
00 xð Þ � bðDaw0ðxÞÞ2w2

00 xð Þ þ w3
00 xð Þ ¼ 0;

w3 0ð Þ ¼ 0;w3
0
1ð Þ ¼ 0

(34)

4.5 Fourth-Order Problem

� 4Stb
2ðDaw0ðxÞÞðDaw1ðxÞÞ3 � 4StbðDaw1ðxÞÞðDaw2ðxÞÞ � 12Stb

2ðDaw0ðxÞÞ2ðDaw1ðxÞÞðDaw2ðxÞÞ �
4StbðDaw0ðxÞÞðDaw3ðxÞÞ � 4Stb

2ðDaw0ðxÞÞ3ðDaw3ðxÞÞ � 4M2b2ðDaw0ðxÞÞðDaw1ðxÞÞ3w0ðxÞ �
4M2bðDaw1ðxÞÞðDaw2ðxÞÞw0ðxÞ � 12M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞðDaw2ðxÞÞw0ðxÞ �
4M2bðDaw0ðxÞÞðDaw3ðxÞÞw0ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw3ðxÞÞw0ðxÞ � 2M2bðDaw1ðxÞÞ2w1ðxÞ �
6M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2w1ðxÞ � 4M2bðDaw0ðxÞÞðDaw2ðxÞÞw1ðxÞ �
4M2b2ðDaw0ðxÞÞ3ðDaw2ðxÞÞw1ðxÞ � 4M2bðDaw0ðxÞÞðDaw1ðxÞÞw2ðxÞ �
4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw2ðxÞ �M2w3ðxÞ � 2M2bðDaw0ðxÞÞ2w3ðxÞ �
M2b2ðDaw0ðxÞÞ4w3ðxÞ � 2bðDaw1ðxÞÞðDaw2ðxÞÞw0

00 xð Þ � 2bðDaw0ðxÞÞðDaw3ðxÞÞw0
00 xð Þ �

bðDaw1ðxÞÞ2w1
00 xð Þ � 2bðDaw0ðxÞÞðDaw2ðxÞÞw1

00 xð Þ � 2bðDaw0ðxÞÞðDaw1ðxÞÞw2
00 xð Þ �

bðDaw0ðxÞÞ2w3
00 xð Þ þ w4

00 xð Þ ¼ 0;w4 0ð Þ ¼ 0;w4
0 1ð Þ ¼ 0

(35)

Using Caputo definition while keeping a ¼ 0:99; b ¼ 0:1; St ¼ 0:1 and M ¼ 0: 1 fixed, the
approximate solution is

W ðxÞ ¼ 1� 0:0000775435xþ 0:000124893x2:04 � 2:56792� 10�6x3 � 0:0000908513x3:04 þ
0:0000312582x4:04 þ 2:48889� 10�8x5 � 4:88682� 10�6x5:04 þ 8:09076� 10�7x6:04 �
1:77778� 10�9x7 þ 2:22222� 10�10x8 þ 1=2ð�0:28xþ 0:14x2Þ þ
1=24ð0:0448x� 0:0224x3 þ 0:0056x4Þ þ ð0:000105828ð�3:63975x2:96 þ 4:99946x4 þ 0:117591x4:96 �
3:35361x5 þ 0:830102x6 � 0:0176386x6:96 þ 0:00293977x7:96ÞÞ=x1:96

(36)
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The residual of the problem is

R ¼ d2W xð Þ
dx2

� bðDaW xð ÞÞ2 d
2W xð Þ
dx2

� b2StðDaW xð ÞÞ4 � 2bStðDaW xð ÞÞ2 �M2b2w xð ÞðDaW xð ÞÞ4 �
2bM2W xð ÞðDaW xð ÞÞ2 �M2W xð Þ � St

(37)

5 Flow Rate and Average Velocity in Lifting Case

Flow rate per unit width is given by

Q ¼
Z1

0

W xð Þdx; (38)

Q ¼ �945 �4þ að Þ �18S3 �3þ að Þ2 �576þ 1172a� 925a2 þ 343a3 � 60a4 þ 4a5ð Þ
� �

þ M8 �25344þ 69048a� 79018a2 þ 48835a3 � 17582a4 þ 3693a5 � 420a6ð
þ 20a7Þ þM2S2 �42 �3þ að Þ2 �576þ 1172a� 925a2 þ 343a3 � 60a4 þ 4a5ð Þ

�
þ S �103680þ 282048a� 321330a2 þ 197121a3 � 70234a4 þ 14555a5ð
� 1628a6 þ 76a7ÞÞ þM6 �12 �3þ að Þ2 �576þ 1172a� 925a2 þ 343a3 � 60a4ð

�
þ 4a5Þ þ S �126720þ 341952a� 387650a2 þ 237197a3 � 84458a4 þ 17519a5ð
� 1964a6 þ 92a7ÞÞ þM4S �36 �3þ að Þ2 �576þ 1172a� 925a2 þ 343a3ð

�
� 60a4 þ 4a5Þ þ S �205056þ 554952a� 629962a2 þ 385483a3 � 137110a4ð
þ 28381a5 � 3172a6 þ 148a7ÞÞÞbþ 4 62M8 � 945 �3þ Sð Þ þ 189M2 �5þ 2Sð Þð
� 9M4 �42þ 17Sð Þ þM6 �153þ 62Sð ÞÞ �315þ 286a� 84a2ð
þ 8a3Þ� 5� a½ �2

�
= 11340 �315þ 286a� 84a2 þ 8a3ð Þ� 5� a½ �2
�

The average velocity �V for lifting problem is given by

�V ¼ Q: (39)

6 Formulation of the Electrically Conducted Paint Film Flow in Drainage Case

Now we consider the fluid falling on the stationary infinite stationary belt. Due to gravity the flow is in
the downward direction, which means that gz ¼ g, so the Eq. (23) become:

0 ¼ dSzx
dx

þ qg � rB2
0w xð Þ (40)

From Eq. (24) substituting the value of Szx in Eq. (40), we get

d

dx

g0
dw

dx

1þ �1
2 � l12

� � dw

dx

� �2

2
6664

3
7775 ¼ �qg þ rB2

0w xð Þ (41)
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After applying the non-dimensional parameters w� ¼ w

U0
and x� ¼ x

d
we get the following:

d

dx

dw

dx

1þ b
dw

dx

� �2

2
6664

3
7775 ¼ �St þM2w xð Þ (42)

with
dw

dx
¼ 0 at x ¼ 1,

w ¼ 0 at x ¼ 0,

where b ¼ �1
2 � l1

2
� �

U0
2

d2
denotes the non-Newtonian parameter, St ¼ qgd2

leff U0
represents the stokes

number and M2 ¼ rB2
0d

leff
is the MHD parameter.

Eq. (42) can be written as a second order differential equation as follows

d2w

dx2
� b

dw

dx

� �2 d2w

dx2
þ St

dw

dx

� �4

þ 2bSt
dw

dx

� �2

�M2b2w xð Þ dw

dx

� �4

� 2bM2w xð Þ dw

dx

� �2

�

M2w xð Þ ¼ �St;

(43)

with the wall and free surface boundary conditions, respectively;

w ¼ 0 at x ¼ 0,
dw

dx
¼ 0 at x ¼ 1.

After using basic definitions of fractional calculus discussed in previous section, Eq. (43) change to the
following fractional differential equation:

d2w xð Þ
dx2

� bðDaw xð ÞÞ2 d
2w xð Þ
dx2

þ b2StðDaw xð ÞÞ4 þ 2bStðDaw xð ÞÞ2 �M2b2w xð ÞðDaw xð ÞÞ4 �
2bM2w xð ÞðDaw xð ÞÞ2 �M2w xð Þ ¼ �St

(44)

with the following boundary conditions:

w 0ð Þ ¼ 0;w0 1ð Þ ¼ 0; 0 < a < 1 (45)

7 Application of HPM to Fractional Differential Equation in Drainage Case

We construct the following homotopy Ω� 0; 1½ � ! R for Eq. (44)

1� pð Þ d
2w

dx2
þ p

�
d2w

dx2
� bðDaw xð ÞÞ2 d

2w

dx2
þ b2StðDaw xð ÞÞ4 þ 2bStðDaw xð ÞÞ2 �M2b2w xð ÞðDaw xð ÞÞ4 �

2bM2w xð ÞðDaw xð ÞÞ2 �M2w xð Þ þ St

	
¼ 0:

(46)

Using (44) and (45) various order problems are as follows:
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7.1 Zeroth-Order Problem

w0
00
xð Þ ¼ 0;w0 0ð Þ ¼ 0; w

0
0 1ð Þ ¼ 0: (47)

7.2 First-Order Problem

St þ 2StbðDaw0 xð ÞÞ2 þ Stb
2ðDaw0 xð ÞÞ4 �M2w0 xð Þ � 2M2bðDaw0 xð ÞÞ2w0 xð Þ �

M2b2ðDaw0 xð ÞÞ4w0 xð Þ � bðDaw0 xð ÞÞ2w0
00
xð Þ þ w1

00
xð Þ ¼ 0; w1 0ð Þ ¼ 0;w1

0
1ð Þ ¼ 0:

(48)

7.3 Second-Order Problem

4StbðDaw0ðxÞÞðDaw1ðxÞÞ þ 4Stb
2ðDaw0ðxÞÞ3ðDaw1ðxÞÞ � 4M2bðDaw0ðxÞÞðDaw1ðxÞÞw0ðxÞ �

4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw0ðxÞ �M2w1ðxÞ � 2M2bðDaw0ðxÞÞ2w1ðxÞ �M2b2ðDaw0ðxÞÞ4w1ðxÞ �
2bðDaw0ðxÞÞðDaw1ðxÞÞw0

00 xð Þ � bðDaw0ðxÞÞ2w1
00 xð Þ þ w2

00 xð Þ ¼ 0;w2 0ð Þ ¼ 0;w2
0ð1Þ ¼ 0:

(49)

7.4 Third-Order Problem

2StbðDaw1ðxÞÞ2 þ 6Stb
2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2 þ 4StbðDaw0ðxÞÞðDaw2ðxÞÞ þ

4Stb
2ðDaw0ðxÞÞ3ðDaw2ðxÞÞ � 2M2bðDaw1ðxÞÞ2w0ðxÞ � 6M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2w0ðxÞ �

4M2bðDaw0ðxÞÞðDaw2ðxÞÞw0ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw2ðxÞÞw0ðxÞ �
4M2bðDaw0ðxÞÞðDaw1ðxÞÞw1ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw1ðxÞ �M2w2ðxÞ �
2M2bðDaw0ðxÞÞ2w2ðxÞ �M2b2ðDaw0ðxÞÞ4w2ðxÞ � bðDaw1ðxÞÞ2w0

00 xð Þ �
2bðDaw0ðxÞÞðDaw2ðxÞÞw0

00 xð Þ � 2bðDaw0ðxÞÞðDaw1ðxÞÞw1
00 xð Þ � bðDaw0ðxÞÞ2w2

00 xð Þ þ w3
00 xð Þ ¼ 0;

w3 0ð Þ ¼ 0;w3
0
1ð Þ ¼ 0

(50)

7.5 Fourth-Order Problem

4Stb
2ðDaw0ðxÞÞðDaw1ðxÞÞ3 þ 4StbðDaw1ðxÞÞðDaw2ðxÞÞ þ 12Stb

2ðDaw0ðxÞÞ2ðDaw1ðxÞÞðDaw2ðxÞÞ þ
4StbðDaw0ðxÞÞðDaw3ðxÞÞ þ 4Stb

2ðDaw0ðxÞÞ3ðDaw3ðxÞÞ � 4M2b2ðDaw0ðxÞÞðDaw1ðxÞÞ3w0ðxÞ �
4M2bðDaw1ðxÞÞðDaw2ðxÞÞw0ðxÞ � 12M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞðDaw2ðxÞÞw0ðxÞ �
4M2bðDaw0ðxÞÞðDaw3ðxÞÞw0ðxÞ � 4M2b2ðDaw0ðxÞÞ3ðDaw3ðxÞÞw0ðxÞ � 2M2bðDaw1ðxÞÞ2w1ðxÞ �
6M2b2ðDaw0ðxÞÞ2ðDaw1ðxÞÞ2w1ðxÞ � 4M2bðDaw0ðxÞÞðDaw2ðxÞÞw1ðxÞ �
4M2b2ðDaw0ðxÞÞ3ðDaw2ðxÞÞw1ðxÞ � 4M2bðDaw0ðxÞÞðDaw1ðxÞÞw2ðxÞ �
4M2b2ðDaw0ðxÞÞ3ðDaw1ðxÞÞw2ðxÞ �M2w3ðxÞ � 2M2bðDaw0ðxÞÞ2w3ðxÞ �
M2b2ðDaw0ðxÞÞ4w3ðxÞ � 2bðDaw1ðxÞÞðDaw2ðxÞÞw0

00 xð Þ � 2bðDaw0ðxÞÞðDaw3ðxÞÞw0
00 xð Þ �

bðDaw1ðxÞÞ2w1
00 xð Þ � 2bðDaw0ðxÞÞðDaw2ðxÞÞw1

00 xð Þ � 2bðDaw0ðxÞÞðDaw1ðxÞÞw2
00 xð Þ �

bðDaw0ðxÞÞ2w3
00 xð Þ þ w4

00 xð Þ ¼ 0;w4 0ð Þ ¼ 0;w4
0 1ð Þ ¼ 0:

(51)

Using Caputo definition while keeping a ¼ 0:99; b ¼ 0:1; St ¼ 0:1 and M ¼ 0: 1 fixed, the
approximate solution in drainage case is

834 CMES, 2020, vol.124, no.3



W ðxÞ ¼ 0:000029643x� 0:0000484352x2:02 þ 1:67006� 10�6x3 þ 0:0000329444x3:02 �
8:20867� 10�7x4:01 � 8:7445� 10�6x4:02 � 2:77778� 10�10x5 þ 1:63846� 10�7x5:01 þ
3:28098� 10�7x5:02 � 5:45014� 10�8x6:02 þ 1:98413� 10�11x7 � 2:48016� 10�12x8 þ
1=2ð0:2x� 0:1x2Þ þ 1=24ð�0:008xþ 0:004x3 � 0:001x4Þ � ð0:0000228589ð�43:8358x1:99 þ
43:344x3 þ 0:0243037x3:99 � 14:4x4 � 0:00364556x5:99 þ 0:000607593x6:99ÞÞ=x0:99

(52)

The residual of the problem is

R ¼ d2W xð Þ
dx2

� bðDaW xð ÞÞ2 d
2W xð Þ
dx2

þ b2StðDaW xð ÞÞ4þ
2bStðDaW xð ÞÞ2 �M2b2W xð ÞðDaW xð ÞÞ4 � 2bM2W xð ÞðDaW xð ÞÞ2 �M2W xð Þ þ St

(53)

8 Flow Rate and Average Velocity in Drainage Case

Flow rate per unit width is given by

Q ¼
Z1

0

w xð Þdx (54)

Q ¼ Sð11340Sð�70560þ 153524a� 135635a2 þ 63636a3 � 17227a4 þ 2702a5 � 228a6 þ 8a7Þ
b�½7� a�2 þ ð�5þ aÞ�½5� a�ð1890S2ð28� 11aþ a2Þð30� 11aþ a2Þ2ð�3ð�3þ aÞ2
ð�576þ 1172a� 925a2 þ 343a3 � 60a4 þ 4a5Þ þM2ð�39168þ 106500a� 121156a2 þ
74143a3 � 26326a4 þ 5431a5 � 604a6 þ 28a7ÞÞb� 945M2Sð2056320� 4851948aþ 4762928a2 �
2561589a3 þ 830250a4 � 166755a5 þ 20334a6 � 1380a7 þ 40a8Þb�½7� a� � 4ð�945þ 378M2 �
153M4 þ 62M6Þð2205� 2317aþ 874a2 � 140a3 þ 8a4Þ�½7� a�2ÞÞÞ=ð11340ð�7þ aÞð�5þ aÞ
ð�9þ 2aÞð35� 24aþ 4a2Þ�½5� a��½7� a�2

(55)

The average velocity �V for drainage problem is given by
�V ¼ Q.

9 Result and Discussion

In this article homotopy based fractional analysis of thin film flow of pseudo-plastic fluid for lifting and
drainage on a vertical wall has been performed. Different parameters like fractional parameter a, non
Newtonian parameter b, Stokes number St and MHD parameter M are involved in the fractional
differential equations. We present our discussion of results based on these parameters and their different
compositions. The problems have been solved for various values of fluid parameters and results are
presented in Tabs. 1–4 in lifting case while Tabs. 5–8 in drainage case. Tabs. 1 and 5 show the solutions
along with residual errors for various values of fractional parameter a, keeping other parameters fixed in
lifting and drainage cases respectively. Tabs. 2 and 6 show the solutions along with residual errors for
various values of non−Newtonian parameter b, keeping other parameters fixed in lifting and drainage
cases respectively. Similarly, Tabs. 3 and 7 indicate solutions along with residual errors for various values
of Stoke number St, keeping other parameters fixed in lifting and drainage cases. Likewise, Tabs. 4 and 8
represent solutions along with residual errors for various values of magnetic parameter M keeping other
parameters fixed in lifting and drainage cases respectively. Residual errors in each table indicate that the

CMES, 2020, vol.124, no.3 835



obtained solutions are valid and consistent. Furthermore, effects of various parameters on the velocity
profiles have been investigated graphically. Figs. 1–4 show the effect of various parameter on the velocity
profile in lifting case. Fig. 1 indicates the effect of a on the fluid velocity. It has been observed that
increase in a increases the fluid velocity. Figs. 2–4 show the effect of b, St and M on the velocity profile
respectively. It is seen that in all three cases velocity profile decreases with the increase in values of
parameters. Similarly, Figs. 5–10 show the effect of various fluid parameters and their compositions on
the velocity profiles in drainage case. Fig. 5 presents the effect of a on the velocity profile. It has been
observed that fluid velocity decreases with an increase in a. Figs. 6 and 7 present the effect of b and St
on the velocity profile. In both the cases it is seen that fluid velocity increases with an increase in fluid

Table 1: Solution along with residual error for various a keeping b ¼ 0:1; St ¼ 0:01; M ¼ 0:1 fixed in
lifting case

x a ¼ 0:4 a ¼ 0:8 a ¼ 0:99

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 0.998107 −4.07394 × 10−8 0.998107 −2.32826 × 10−7 0.998107 −4.60032 × 10−7

0.2 0.996413 −8.12241 × 10−8 0.996413 −2.52818 × 10−7 0.996413 −3.67883 × 10−7

0.3 0.994919 −1.13542 × 10−7 0.994919 −2.39928 × 10−7 0.994919 −2.83792 × 10−7

0.4 0.993625 −1.36232 × 10−7 0.993625 −2.11985 × 10−7 0.993625 −2.09925 × 10−7

0.5 0.992529 −1.49245 × 10−7 0.992529 −1.76944 × 10−7 0.992529 −1.4692 × 10−7

0.6 0.991634 −1.5319 × 10−7 0.991634 −1.39493 × 10−7 0.991634 −9.50203 × 10−8

0.7 0.990937 −1.49052 × 10−7 0.990937 −1.02817 × 10−7 0.990937 −5.43252 × 10−8

0.8 0.990439 −1.38069 × 10−7 0.990439 −6.92838 × 10−8 0.990439 −2.48839 × 10−8

0.9 0.990141 −1.21661 × 10−7 0.990141 −4.07647 × 10−8 0.990141 −6.73152 × 10−9

1. 0.990041 −1.01389 × 10−7 0.990041 −1.88132 × 10−8 0.990041 9.12055 × 10−11

Table 2: Solution along with residual error for various b keeping a ¼ 0:98; St ¼ 0:01; M ¼ 0:1 fixed in
lifting case

x b ¼ 0:1 b ¼ 0:7 b ¼ 0:9

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 0.998107 −4.45173 × 10−7 0.998106 −3.12238 × 10−6 0.998106 −4.01713 × 10−6

0.2 0.996413 −3.61947 × 10−7 0.996412 −2.53771 × 10−6 0.996412 −3.26452 × 10−6

0.3 0.994919 −2.8246 × 10−7 0.994918 −1.97972 × 10−6 0.994918 −2.54642 × 10−6

0.4 0.993625 −2.11108 × 10−7 0.993624 −1.47915 × 10−6 0.993623 −1.90238 × 10−6

0.5 0.992529 −1.49353 × 10−7 0.992529 −1.04617 × 10−6 0.992528 −1.34539 × 10−6

0.6 0.991634 −9.78623 × 10−7 0.991633 −6.85328 × 10−7 0.991632 −8.81274 × 10−7

0.7 0.990937 −5.69938 × 10−8 0.990936 −3.9904 × 10−7 0.990936 −5.13101 × 10−7

0.8 0.990439 −2.69702 × 10−8 0.990438 −1.88786 × 10−7 0.990438 −2.42738 × 10−7

0.9 0.990141 −7.95239 × 10−9 0.99014 −5.56335 × 10−8 0.99014 −7.15301 × 10−8

1. 0.990041 −7.66525 × 10−11 0.99004 −4.96159 × 10−10 0.99004 −6.36304 × 10−10
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parameters. Fig. 8 shows the effect of M on the velocity profile. It has been observed that velocity profile
decreases with an increase in M. Fig. 9 shows the effect of increasing St and M simultaneously. It has
been observed that velocity profiles increases with an increase in be St and M . Comparison of the effects
of St and M shows that St is more dominant parameter as compared to M in this case. Fig. 10 indicates
the effect of increasing b and M simultineousely. It is seen that velocity profile decreases with an increase
in b and M . Analysis of the effects of b and M shows that M is more dominant parameter as compared
to b. Furthermore, the effect of increasing values of St; b and M simultaneously on the velocity profile
while keeping a fixed in lifting and drainage case has been presented in Figs. 11 and 12 respectively.

Table 3: Solution along with residual error for various St keeping a ¼ 0:99; b ¼ 0:1; M ¼ 0:1 fixed in
lifting case

x St ¼ 0:001 St ¼ 0:1 St ¼ 0:2

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 0.998959 −1.01087 × 10−7 0.989576 −1.80123 × 10−5 0.980043 −8.54622 × 10−5

0.2 0.998027 −8.08669 × 10−8 0.980253 −1.41422 × 10−5 0.962206 −6.35375 × 10−5

0.3 0.997205 −6.24053 × 10−8 0.972031 −1.07202 × 10−5 0.946481 −4.56017 × 10−5

0.4 0.996494 −4.61809 × 10−8 0.964908 −7.79753 × 10−6 0.932865 −3.14378 × 10−5

0.5 0.995891 −3.23373 × 10−8 0.958883 −5.36609 × 10−6 0.921351 −2.05334 × 10−5

0.6 0.995399 −2.093 × 10−8 0.953955 −3.40574 × 10−6 0.911936 −1.23685 × 10−5

0.7 0.995015 −1.19832 × 10−8 0.950123 −1.89559 × 10−6 0.904617 −6.48547 × 10−6

0.8 0.994742 −5.50929* × 10−9 0.947386 −8.17842 × 10−7 0.899391 −2.51417 × 10−6

0.9 0.994578 −1.51721 × 10−9 0.945744 −1.59423 × 10−7 0.896256 −1.83059 × 10−7

1. 0.994523 −1.66439 × 10−11 0.945197 8.70732 × 10−8 0.895212 6.74562 × 10−7

Table 4: Solution along with residual error for various M keeping a ¼ 0:95; b ¼ 0:2; St ¼ 0:01 fixed in
lifting case

x M ¼ 0:1 M ¼ 0:2 M ¼ 0:4

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 0.998959 −1.76926 × 10−7 0.996158 −8.57303 × 10−6 0.985464 −3.83351 × 10−4

0.2 0.998027 −1.51174 × 10−7 0.992724 −7.22586 × 10−6 0.972526 −3.0003 × 10−4

0.3 0.997205 −1.22117 × 10−7 0.989698 −5.76626 × 10−6 0.961164 −2.23198 × 10−4

0.4 0.996494 −9.41009 × 10−8 0.987078 −4.39662 × 10−6 0.951358 −1.59816 × 10−4

0.5 0.995891 −6.87105 × 10−8 0.984862 −3.18221 × 10−6 0.943091 −1.09947 × 10−4

0.6 0.995399 −4.67421 × 10−8 0.983051 −2.15019 × 10−6 0.936348 −7.20354 × 10−5

0.7 0.995015 −2.86698 × 10−8 0.981643 −1.31335 × 10−6 0.931115 −4.42125 × 10−5

0.8 0.994742 −1.48104 × 10−8 0.980638 −6.78498 × 10−7 0.927385 −2.47737 × 10−5

0.9 0.994578 −5.39594 × 10−9 0.980035 −2.50285 × 10−7 0.92515 −1.23902 × 10−5

1. 0.994523 −6.10912 × 10−10 0.979834 −3.31801 × 10−8 0.924405 −6.22141 × 10−6
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Analysis shows that increasing these parameters simultaneously has opposite effect in lifting and drainage
cases. Beside the above mentioned findings, different physical quantities such as volume flux and average
velocities have been calculated in lifting and drainage cases.

Table 5: Solution along with residual error for various a keeping b ¼ 0:1; St ¼ 0:01; M ¼ 0:1 fixed in
drainage case

x a ¼ 0:4 a ¼ 0:6 a ¼ 0:99

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 9.47543 × 10−4 −5.25718 × 10−6 9.47608 × 10−4 −8.29812 × 10−6 9.47604 × 10−4 −1.75534 × 10−5

0.2 1.79513 × 10−3 −7.42904 × 10−6 1.79523 × 10−3 −1.0098 × 10−5 1.79512 × 10−3 −1.57478 × 10−5

0.3 2.54282 × 10−3 −8.79233 × 10−6 2.54293 × 10−3 −1.0882 × 10−5 2.54266 × 10−3 −1.38731 × 10−5

0.4 3.19067 × 10−3 −9.64093 × 10−6 3.19077 × 10−3 −1.1098 × 10−5 3.19031 × 10−3 −1.19651 × 10−5

0.5 3.73875 × 10−3 −1.01013 × 10−5 3.73882 × 10−3 −1.09218 × 10−5 3.73816 × 10−3 −1.00358 × 10−5

0.6 4.1871 × 10−3 −1.02438 × 10−5 4.18714 × 10−3 −1.04452 × 10−5 4.18629 × 10−3 −8.09066 × 10−6

0.7 4.53576 × 10−3 −1.01135 × 10−5 4.53576 × 10−3 −9.7244 × 10−6 4.53474 × 10−3 −6.13279 × 10−6

0.8 4.78478 × 10−3 −9.74146 × 10−6 4.78474 × 10−3 −8.79663 × 10−6 7.8359 × 10−3 −4.16411 × 10−6

0.9 4.93417 × 10−3 −9.15068 × 10−6 4.93411 × 10−3 −7.68844 × 10−6 4.93288 × 10−3 −2.18589 × 10−6

1. 4.98397 × 10−3 −8.35861 × 10−6 4.9839 × 10−3 −6.41959 × 10−6 4.98263 × 10−3 −1.99057 × 10−7

Table 6: Solution along with residual error for various b keeping a ¼ 0:99; St ¼ 0:01; M ¼ 0:3 fixed in
drainage case

x b ¼ 0:1 b ¼ 0:3 b ¼ 0:5

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 9.22069 × 10−4 −1.75523 × 10−5 9.23843 × 10−4 −5.26607 × 10−5 9.25616 × 10−3 −8.77648 × 10−5

0.2 1.74478 × 10−3 −1.57411 × 10−5 1.74798 × 10−3 −4.7235 × 10−5 1.75117 × 10−3 −7.87259 × 10−5

0.3 2.4689 × 10−3 −1.38608 × 10−5 2.4732 × 10−3 −4.16014 × 10−5 2.4775 × 10−3 −6.934 × 10−5

0.4 3.09509 × 10−3 −1.19476 × 10−5 3.10022 × 10−3 −3.58684 × 10−5 3.10535 × 10−3 −5.97879 × 10−5

0.5 3.62395 × 10−3 −1.00135 × 10−5 3.62966 × 10−3 −3.00719 × 10−5 3.63538 × 10−3 −5.01296 × 10−5

0.6 4.05595 × 10−3 −8.06428 × 10−6 4.06206 × 10−3 −2.4229 × 10−5 4.06818 × 10−3 −4.03934 × 10−5

0.7 4.39152 × 10−3 −6.10308 × 10−6 4.39787 × 10−3 −1.83493 × 10−5 4.40422 × 10−3 −3.05953 × 10−5

0.8 4.63097 × 10−3 −4.13194 × 10−6 4.63744 × 10−3 −1.24386 × 10−5 4.64391 × 10−3 −2.07453 × 10−5

0.9 4.77453 × 10−3 −2.15222 × 10−6 4.78105 × 10−3 −6.50116 × 10−6 4.78757 × 10−3 −1.08501 × 10−5

1. 4.82237 × 10−3 −1.64864 × 10−7 4.82889 × 10−3 −5.39668 × 10−7 4.83541 × 10−3 −9.1447 × 10−7
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Table 7: Solution along with residual error for various St keeping a ¼ 0:98; b ¼ 0:1; M ¼ 0:1 fixed in
drainage case

x St ¼ 0:001 St ¼ 0:01 St ¼ 0:1

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 9.46787 × 10−5 −1.74065 × 10−7 9.47607 × 10−4 −1.727 × 10−5 9.56054 × 10−3 −1.58533 × 10−3

0.2 1.79365 × 10−4 −1.57324 × 10−7 1.79513 × 10−3 −1.5621 × 10−5 1.81039 × 10−2 −1.44697 × 10−3

0.3 2.54068 × 10−4 −1.39275 × 10−7 2.54268 × 10−3 −1.38403 × 10−5 2.56327 × 10−2 −1.29428 × 10−3

0.4 3.18794 × 10−4 −1.20634 × 10−7 3.19034 × 10−3 −1.19981 × 10−5 3.21497 × 10−2 −1.13284 × 10−3

0.5 3.73551 × 10−4 −1.01639 × 10−7 3.7382 × 10−3 −1.01176 × 10−5 3.76574 × 10−2 −9.64475 × 10−4

0.6 4.18345 × 10−4 −8.24003 × 10−8 4.18633 × 10−3 −8.20969 × 10−6 4.21585 × 10−2 −7.90064 × 10−4

0.7 4.53179 × 10−4 −6.29806 × 10−8 4.53479 × 10−3 −6.2804 × 10−6 4.56554 × 10−2 −6.101 × 10−4

0.8 4.78058 × 10−4 −4.34186 × 10−8 4.78365 × 10−3 −4.33352 × 10−6 4.81505 × 10−2 −4.24902 × 10−4

0.9 4.92984 × 10−4 −2.37402 × 10−8 4.93293 × 10−3 −2.3716 × 10−6 4.96459 × 10−2 −2.34695 × 10−4

1. 4.97959 × 10−4 −3.96393 × 10−9 4.98269 × 10−3 −3.96428 × 10−7 5.01439 × 10−2 −3.96463 × 10−5

Table 8: Solution along with residual error for various M keeping a ¼ 0:99; b ¼ 0:1; St ¼ 0:01 fixed in
drainage case

x M ¼ 0:1 M ¼ 0:3 M ¼ 0:5

Solution Residual Error Solution Residual Error Solution Residual Error

0.1 9.47604 × 10−4 −1.75534 × 10−5 9.22069 × 10−4 −1.75523 × 10−5 8.75377 × 10−4 −1.73369 × 10−5

0.2 1.79512 × 10−3 −1.57478 × 10−5 1.74478 × 10−3 −1.57411 × 10−5 1.65275 × 10−3 −1.53105 × 10−5

0.3 2.54266 × 10−3 −1.38731 × 10−5 2.4689 × 10−3 −1.38608 × 10−5 2.33408 × 10−3 −1.32259 × 10−5

0.4 3.19031 × 10−3 −1.19651 × 10−5 3.09509 × 10−3 −1.19476 × 10−5 2.92108 × 10−3 −1.11242 × 10−5

0.5 3.73816 × 10−3 −1.00358 × 10−5 3.62395 × 10−3 −1.00135 × 10−5 3.41527 × 10−3 −9.02234 × 10−6

0.6 4.18629 × 10−3 −8.09066 × 10−6 4.05595 × 10−3 −8.06428 × 10−6 3.81788 × 10−3 −6.93001 × 10−6

0.7 4.53474 × 10−3 −6.13279 × 10−6 4.39152 × 10−3 −6.10308 × 10−6 4.12994 × 10−3 −4.85386 × 10−6

0.8 4.78359 × 10−3 −4.16411 × 10−6 4.63097 × 10−3 −4.13194 × 10−6 4.35226 × 10−3 −2.79863 × 10−6

0.9 4.93288 × 10−3 −2.18589 × 10−6 4.77453 × 10−3 −2.15222 × 10−6 4.48542 × 10−3 −7.67659 × 10−7

1. 4.98263 × 10−3 −1.99057 × 10−7 4.82237 × 10−3 −1.64864 × 10−7 4.52976 × 10−3 1.23692 × 10−6

CMES, 2020, vol.124, no.3 839



Figure 1: Effect of a on the velocity profile keeping b ¼ 1; St ¼ 0:4; M ¼ 0:3 fixed in lifting case

Figure 2: Effect of b on the velocity profile keeping a ¼ 0:98; St ¼ 0:4; M ¼ 0:3 fixed in lifting case

Figure 3: Effect of St on the velocity profile keeping a ¼ 0:99; b ¼ 0:1; M ¼ 0:1 fixed in lifting case
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Figure 5: Effect of a on the velocity profile keeping b ¼ 0:9; St ¼ 0:2; M ¼ 0:3 fixed in drainage case

Figure 4: The effect of M on the velocity profile keeping a ¼ 0:95; b ¼ 0:2; St ¼ 0:1 fixed in lifting case

Figure 6: Effect of b on the velocity profile keeping a ¼ 0:95; St ¼ 0:3; M ¼ 0:3 fixed in drainage case
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Figure 8: The effect ofM on the velocity profile keeping a ¼ 0:95; b ¼ 0:2; St ¼ 0:1 fixed in drainage case

Figure 7: The effect of St on the velocity profile keeping a ¼ 0:98; b ¼ 0:2; M ¼ 0:2 fixed in drainage case

Figure 9: The effect of increasing St and M simultaneously on the velocity profile while keeping
a ¼ 0:98; b ¼ 0:1 fixed in drainage case
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Figure 10: The effect of increasing M and b simultaneously on the velocity profile while keeping
a ¼ 0:95; S ¼ 0:2 fixed in drainage case

Figure 11: The effect of increasing St;b and M simultaneously on the velocity profile while keeping
a ¼ 0:99 fixed in lifting case

Figure 12: The effect of increasing St;b and M simultaneously on the velocity profile while keeping
a ¼ 0:98 fixed in drainage case
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10 Conclusions

In this article, we find homotopy based solutions of thin film flow of pseudo-plastic fluid in fractional
space for lifting and drainage cases. Validity and convergence of obtained approximate solutions have been
confirmed by finding residual errors. Some key findings related to effect of various parameters on the velocity
profile in fractional environment has been observed. It is found that fractional parameter a has direct
relationship with velocity profile in lifting case while it has inverse relationship with fluid velocity in
drainage case. Consequently it is concluded that a is showing opposite behavior on the velocity profile in
lifting and drainage scenarios. It has also been observed that magnetic parameter M has shown similar
effect on the velocity profile in both lifting and drainage cases. Investigation also reveals that non-
Newtonian parameter b is showing opposite effects on the velocity profiles in lifting and drainage cases.
Furthermore, stokes number St is showing opposite behavior in lifting and drainage cases. We also try
different compositions of fluid parameters in drainage case and found that St is more influenced parameter
as compared to M (See Fig. 9), while M is more influenced than b (See Fig. 10).
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