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Abstract: Snow cover is an important parameter in the fields of computer model-
ing, engineering technology and energy development. With the extensive growth of
novel hardware and software compositions creating smart, cyber physical systems’
(CPS) efficient end-to-end workflows. In order to provide accurate snow detection
results for the CPS’s terminal, this paper proposed a snow cover detection algorithm
based on the unsupervised Gaussian mixture model (GMM) for the FY-4A satellite
data. At present, most snow cover detection algorithms mainly utilize the character-
istics of the optical spectrum, which is based on the normalized difference snow
index (NDSI) with thresholds in different wavebands. These algorithms require a
large amount of manually labeled data for statistical analysis to obtain the appropri-
ate thresholds for the study area. Consideration must be given to both the high and
low elevations in the study area. It is difficult to extract all snow by a fixed thresh-
old in mountainous and rugged terrains. In this research, we avoid relying on a
manual analysis for different elevations. Therefore, an algorithm based on the
GMM is proposed, integrating the threshold-based algorithm and the GMM. First,
the threshold-based algorithm with transferred thresholds from other satellites’ ana-
lysis results are used to coarsely classify the surface objects. These results are then
used to initialize the parameters of the GMM. Finally, the parameters of that model
are updated by an expectation-maximum (EM) iteration algorithm, and the final
results are outputted when the iterative conditions end. The results show that this
algorithm can adjust itself to mountainous terrain with different elevations, and
exhibits a better performance than the threshold-based algorithm. Compared with
orbit satellites’ snow products, the accuracy of the algorithm used for FY-4A is
improved by nearly 2%, and the snow detection rate is increased by nearly 6%.
Moreover, compared with microwave sensors’ snow products, the accuracy is
increased by nearly 3%. The validation results show that the proposed algorithm
can be adapted to a complex terrain environment in mountainous areas and exhibits
good performance under a transferred threshold without manually assigned labels.
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1 Introduction

Snow cover in the Qinghai-Tibetan Plateau (TP) plays an important role in hydrological processes,
surface radiation, and climate. The TP exerts profound influences not only on the local climate and
environment but also on the global atmospheric circulation through its thermal and mechanical forcing
[1]. According to the physical and optical characteristics of snow, it has higher reflectance in the visible
and near-infrared bands than other objects, and the reflectivity of pure snow can be as high as 70% or
more, which is similar to clouds but different from low-reflective water and land surfaces [2]. The
reflectivity of snow and ice in visible wavebands is stronger than that in short-wave infrared bands, and
most clouds have a higher reflectance in short infrared bands than snow. Therefore, the optical spectrum
in 1.55 μm and 1.75 μm can be used to separate snow from clouds [3]. Hall et al. [4] proposed a global
daily snow cover automated mapping algorithm called SNOWMAP by analyzing Landsat/TM data, this
algorithm is listed by the National Snow and Ice Data Center (NSIDC) as the standard algorithm for
MODIS ice and snow products. SNOWMAP uses a standard grouping technology, which mainly utilizes
the normalized difference snow index (NDSI) and other spectral band thresholds to identify snow.
However, this algorithm is limited by many factors. For example, the reflectivity of the same object
collected by different sensors will be different. Moreover, in low-resolution images, the amount of snow
contained in one pixel may impact the reflectivity greatly. According to the analysis of the spectral
characteristics of snow, the optical characteristics of snow are particularly similar to those of ice/water in
visible light and near-infrared wavebands, which is also the reason why it is difficult to distinguish snow
directly by a fixed threshold. Furthermore, its optical reflectivity is also determined by the snow depth,
snow grain size, and whether the snow is wet or dry [5]. The geographical and climatic environment of
the TP is complicated, and frozen soil and snow cover are mixed. Additionally, the elevation difference
between the east and the west is large, and the overlapping mountains lead to different light intensities.
Therefore, the snow cover in the TP cannot be obtained by a fixed threshold [4].

As machine learning becomes a hot research area, more and more people are introducing machine
learning algorithms to solve remote sensing problems. Duro et al. [6] compared the pixel-based and
object-based image classification algorithms by analyzing the application of multiple supervised machine
learning algorithms in feature classification; they investigated the decision tree (DT), random tree (RT)
and support vector machine (SVM). The results showed that the object-based image classification
algorithms exhibited better performance. He et al. [7] proposed an algorithm to map the snow cover in
mountainous terrain based on the SVM, and the results showed that this algorithm obtained better
performance than the threshold-based algorithm. The successful application of machine learning
algorithms in solving remote sensing problems shows that this method has potential in snow
identification for moderate resolution satellites’ data.

China’s new generation of the geostationary satellite FY-4A, has multi-temporal data that are appropriate
for cloud removal and snow cover monitoring. The onboard Advanced Geostationary Radiation Imager
(AGRI) has 14 channels, that can be used for snow identification. The threshold-based algorithm needs to
manually label data and analyze the reflectance of snow before the threshold can be obtained. Hence, we
proposed an automated snow cover mapping algorithm based on the GMM for snow cover mapping.
First, the coarse classification results are given by the threshold-based algorithm. Then the coarse
classification results are used to initialize the parameters of the GMM. Finally, the EM iteration
algorithms are used to update the parameters of the GMM and check the iterated condition. Lastly, the
classification results are outputted when the iterated conditions are satisfied. Since this algorithm is
mainly based on unsupervised machine learning algorithms, it can adapt to different conditions. This
algorithm does not require manual labels, and it can be used for the TP without any adjustments.
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We briefly review previous work on snow cover detection in Section 2, present a detailed description of
our datasets and method in Sections 3 and 4, and discuss the experimental validation of our method in Section
5. Conclusions are summarized in Section 6.

2 Related Work

Research on Alpine glacier variations in the TP has achieved great success during the last few decades
[8–10]. Snow cover has received extensive attention in research [4,11,12]. Remote sensing techniques are
useful for acquiring near-real time snow cover data. There are several remote sensing algorithms and
satellite data used for monitoring snow cover [4,13–15]. For example, MODIS swath snow and ice
products [4], IMS [14], GlobSnow [13], and Fengyun-2 series snow products [16]. These products are
derived from optical sensors or microwave sensors. One major drawback of optical sensors such as those
used by MODIS is their inability to provide surface information under cloudy conditions. This strongly
limits the number of useful snow observations as abundant cloud cover is present in the Alpine region,
particularly during the winter season. Meanwhile, the major drawback of microwave sensors is that snow
detection is impacted by complicated environments, particularly in the Alpine region [17].

Various techniques have been developed to remove cloud masks from optical images. They mostly
include multi-day maximum snow cover composites [18], a combination of microwave and similar data
[13], and multi-temporal satellite data [19]. At present, the most used satellite orbit for snow detection is
the polar orbit, which enables high spatial resolution. The National Oceanic and Atmospheric
Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) has been used to map
the spatial extent of snow cover [20]. Hall et al. [21] proposed a method for mapping global snow cover
using MODIS data. Gascoin et al. [22] introduced high-resolution operational snow cover maps from
Sentinel-2 and Landsat-8 data. Pepe et al. [23] exploited the combined use of the ENVISAT Medium
Resolution Imaging Spectrometer Instrument (MERIS) and Advanced Along Track Scanning
Radiometer (AATSR) acquisitions and topographic data for mapping snow cover. In high latitudes,
where snow is most often present, the instruments on board geostationary satellites have low viewing
angles, resulting in poor spatial resolution. Although the polar orbit satellites offer a global view, they
produce few daily images (1–4 images) of a certain region. However, instruments on geostationary
satellites offer excellent temporal resolution data. This advantage can be used for cloud removal
because the clouds move out. De Ruyter de Wildt et al. [24] proposed an algorithm for deriving snow
cover maps from Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the second
generation of Meteosat (MSG) satellites. Furthermore, Siljamo et al. [25] introduced a new
geostationary snow cover product for SEVIRI on board the MSG satellites. Lastly, Yang et al. [19]
proposed a method for snow detection using a combination of the Visible and Infrared Spin Scan-
Radiometer (VISSR) on board the geostationary satellites FY-2D and FY-2E and the Microwave
Radiation Imager (MWRI) on board the polar orbiting satellite FY-3B.

Currently, most methods for snow-cover detection based on geostationary satellite data utilize spectral-
based threshold algorithms. This method depends on too many criteria and statistics of the threshold. Recent
advances in machine learning have convincingly demonstrated high capability in learning remote sensing
models with large datasets. Duro et al. [6] compared pixel-based and object-based image analysis
approaches for classifying broad land cover classes over agricultural landscapes using three supervised
machine learning algorithms: the decision tree (DT), random forest (RF), and the support vector machine
(SVM). Qian et al. [26] compared the performance of four machine learning classifiers-SVM, normal
Bayes (NB), classification and regression tree (CART) and K nearest neighbor (KNN) to classify very
high resolution images. Zhan [27] proposed a deep learning system to classify cloud and snow with fully
convolutional neural networks at the pixel level. Furthermore, Huang et al. [28] proposed a method using
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the SVM to classify the glacier areas. This means the machine learning algorithm has potential in snow cover
mapping using multi-spectral data with low spatial resolution.

3 Description of the Study Area and Data

3.1 The Qinghai-Tibetan Plateau
The TP is located in southwest China between the Pamirs and Hengduan mountains. It covers an area of

2:96 � 106 km2 at an average elevation of 4500 m [29]. Fig. 1 is the digital elevation model (DEM) of the
TP, and the color bar indicates the altitude. It can be seen from Fig. 1 that there is a great elevation difference
between the eastern and western parts of the TP. The western region of the TP is the Himalayas, with an
elevation of more than 4 km. There are many mountains as high as 5 km or even 7 km above sea level,
where the geographic environment is complex. The eastern part, at the end of the Himalayas, is lower
than the western part, usually below 4 km [30]. The mean annual temperature decreases from the edges
of the plateau towards the center with altitude, ranging from –15°C to 10°C [31]. According to the
research of Gao et al. [32], the total cloud cover in the TP is generally between 45% and 70%, reaching
maximum coverage in winter.

3.2 The Situ Station in TP
The data used in this research were collected from February 6, 2019 to February 11, 2019 and were

provided by the China Meteorological Administration (CMA). The distribution of in situ stations over TP
in China are shown in Fig. 1. The black dots show the geographical position of the stations, including
both manual and automatic weather stations. These data contain information of snow and precipitation.
The collection time is from 8:00 BJT to 8:00 BJT the next day.

3.3 Description of the FY-4A Data
FY-4A is situated at 104.7°E over the equator after May 25 2017. AGRI can generate an observation

image of the China region within one minute sometime, and the multi-spectral data has 14 channels
(Tab. 1). Channel 2 is a high-resolution visible channel that has a spatial resolution of 0.5 km at the

Figure 1: Distribution of meteorological stations over Qinghai-Tibetan Plateau in China. The dots show the
meteorological stations and the color bar indicates the altitude of the Qinghai-Tibetan Plateau
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sub-satellite point (SSP). Channels 1 and 3 have spatial resolutions of 1 km, and channels 4, 7 have spatial
resolutions of 2 km at the SSP. All of the other channels have a spatial resolution of 4 km at the SSP. The
wavebands of AGRI can be grouped into visible (VIS), near infrared (NIR), short-wavelength infrared
(SWIR), mid-wavelength infrared (MWIR), water vapor (WV) and long-wavelength infrared (LWIR). We
used data from 2019 to develop and test the method.

3.4 Comparison Data
A series of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow products at various spatial and

temporal resolutions from the Terra satellite has been available since February 2000 [18]. In this research the
MODIS snow products MOD10A1 and MYD10A1 V6 from February 6, 2019 to February 11, 2019 are
used for comparison with FY-4A results. The MOD10A1 and MYD10A1 are derived from Terra and Aqua
satellites’ data, which transit TP in the morning and afternoon, respectively. Additionally, the snow products
derived from microwave sensors are used for comparison. The GlobSnow SE V2 database with 1 km
resolution is used, which was established by the European Space Agency’s Data User Element (DUE)
project GlobSnow to create a snow extent (SE) and snow water equivalent (SWE) database [13]. IMS snow
products are produced and provided by the National Oceanic and Atmospheric Administration (NOAA).
This product is derived from different data, including that from the NOAA polar orbit satellite, GOES, GMS,
the MT-SAT multi-functional transport satellite, METEO-SAT, US Department of Defense (US DOD) polar
orbit satellites, American National Defense Meteorological Satellite Program (DMSP), and US National Ice
Center (NIC) Sea Ice products. In this paper, the IMS v3 product is used. In order to compare the results of
this article with the snow products of geostationary satellites, this article uses the Fengyun-2 snow product
for comparison. The FY-2 swath snow products are derived from FY-2F, FY-2G and FY-2H.

4 Mathematical Technology

An automated snow cover mapping algorithm is proposed in this research. This algorithm can be used
for rugged terrain without analyzing a fixed threshold for different object surfaces. This algorithm is divided

Table 1: FY-4 advanced geostationary radiation image (AGRI) bands (1 km resolution)

Number Channel Spatial resolution (km) Central wavelength (µm) Wavelength (µm)

1 VIS-blue 1 0.47 0.45–0.49

2 VIS-red 0.5–1 0.65 0.55–0.75

3 NIR 1 0.83 0.75–0.90

4 SWIR 2 1.375 1.36–1.39

5 2 1.61 1.58–1.64

6 2–4 2.25 2.1–2.35

7 MWIR 2 3.75 3.5–4.0 (high)

8 4 3.75 3.5–4.0 (low)

9 WV 4 6.25 5.8–6.7

10 4 7.1 6.9–7.3

11 LWIR 4 8.5 8.0–9.0

12 4 10.7 10.3–11.3

13 4 12.0 11.5–12.5

14 4 13.5 13.2–13.8
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into three steps, a threshold-based algorithm is improved according to the terrain. The mask obtained from the
first step can be used as a pseudo label to reclassify the snow by the GMM. Finally, the parameter of the GMM
is iterated with the EM algorithm and the classification is outputted when the iteration conditions are satisfied.

4.1 Description of the Threshold-Based Algorithm for Mapping Snow Cover
4.1.1 Snow Cover Consideration

Dozier et al. [3] found that planetary reflectance of snow Rp in Landsat TM 0.45 μm is greater than about
0.16; Rpð1:57Þ is less than about 0.2; and the NDSI is greater than about 0.4. Since the AGRI on board FY-4A
contains a 1.6 μm (FY Band 5) channel, the value of the NDSI can be calculated by FY-4A/AGRI data. FY is
the FY-4A’s abbreviation. The NDSI may be calculated using FY-4A/AGRI data as follows:

NDSI ¼ FY Band 2� FY Band 5

FY Band 2þ FY Band 5
: (1)

Considering the complex environment of TP, some other wavebands will be used to assist the
identification. Snow and ice are considerably more reflective in the visible spectrum than in the short-
wave IR part of the spectrum, and the reflectance of most clouds remains high in the short-wave IR,
while the reflectance of snow is low [34]. These bands mainly correct the pixels that are misidentified as
snow. The primary change in reflectance occurs in the visible wavelengths as snow has a much higher
visible reflectance than soil, leaves or trees [18]. This behavior can be captured by the normalized
difference vegetation index (NDVI) [34]. If the NDVI = ~0.1, the pixel may be mapped as snow even if
the NDSI is <0.4 [37]. The NDVI using FY-4A/AGRI can be formulated as follows:

NDVI ¼ FY Band 3� FY Band 2

FY Band 3þ FY Band 2
: (2)

4.1.2 Cloud Cover Consideration
The NDSI is capable of separating most snow and clouds [19]. The combination of r0:64 > 0:25 and

r1:6 > 0:30 can be used to distinguish many clouds from snow, where r represent the reflectivity of the
objects [3]. Cumulus clouds are generally readily distinguished from snow because the reflectance of
cumulus clouds remains high in the region of the spectrum from 1.58 to 1.64 μm (FY Band 5), whereas
the reflectance of snow drops. In the same way, the cirrus clouds remain high in the region of the
spectrum from 1.36 to 1.39 μm (FY Band 4). Since the elevation of the TP is high, the clouds may be
higher than that in the plain. The range of 1.36–1.39 μm is very suitable for distinguishing between high
clouds and surface snow, because it mainly detects radiation from levels above 500 hPa and hardly any
surface radiation [24]. Thus, the clouds can be distinguished by the combination of 0.65 μm (FY Band
2), 1.61 μm (FY Band 5), and 1.375 μm (FY Band 4). If r0:65 > 0:25 and r1:61 > 0:30 or r1:375 > 0:058,
the pixel will be regarded as cloud.

4.1.3 Ice Cover Consideration
According to the research of Paul et al. [38], channels 3, 4, and 5 of Landsat Thematic Mapper (TM) can

be used for glacier debris recognition. FY bands 2, 3 and 4 are used to separate glacier debris from snow. The
formulation is noted as formulation (3), where a and b denote constants.

FY Band 3

FY Band 4
< a � FY Band 2

FY Band 4
þ b (3)

4.1.4 Water Mask Consideration
Xu [39] proposed a modified normalized difference water index (MNWDI) to detect the water body.

This algorithm was based on the NDWI [40]. Xu found that the NDWI could not completely suppress the
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information irrelevant to the water body, and many non-water body information, especially the water body
information within the city, were still included in the extraction of the water body information. Hence, he
proposed the MNDWI to identify water bodies. This index uses the green and moderate infrared
wavebands, which are denoted as RGreen and RMIR. RGreen and RMIR are the radiances in the green visible
and moderate infrared wavebands. The MNDWI can be formulated as formulation (4) when using FY-
4A/AGRI data, and the MNDWI > 0.1 can be thought of as a body of water.

MNDWI ¼ FY Band 2� FY Band 5

FY Band 2þ FY Band 5
(4)

4.2 Use of Gaussian Mixture Model for Filtering
4.2.1 Gaussian Mixture Model

The gaussian mixture model (GMM) is used to estimate the probability density of samples [35]. We
assume that different object surfaces satisfy a normal distribution with different parameters, and the
GMM is seen as a linear combination of probability density function of normal distribution. As seen in
formulation (5), the distribution is determined by the mean l and variance � of the object. The linear
combination of (5) is formulated in (6), where ai is the mixed coefficient. The sum of ai is 1, and is

denoted as
Pk
i¼1

ai ¼ 1. k is the total number of class. The input of (6) is FY-4A/AGRI 2 km imagery with

7 channels, which is denoted as xj ¼ fx1j ; x2j ;…; x7j g, where xj 2 RH�W�7. H and W means height and

width of the image, respectively. zj is the prediction class of xj. The posterior probability distribution of
different objects can be denoted as PM ðzj ¼ ijxjÞ, and is calculated by formulation (7).

pðxjl;�Þ ¼ 1

ð2pÞn2j�j12
e�

1
2ðx�lÞT��1ðx�lÞ (5)

pM ðxÞ ¼
Xk
i¼1

ai � pðxjli;�iÞ (6)

pM ðzj ¼ ijxjÞ ¼ pðzj ¼ iÞ � pM ðxjjzj ¼ iÞ
pM ðxjÞ (7)

4.2.2 Updating the Parameters
The expectation-maximization (EM) algorithm allows us to estimate the value of potential parameters. The

EM algorithm can be divided into two steps. First, the values of cji are calculated according to the initial
parameters (E step). Then, the values of parameters li, �i and ai are updated during the iteration using the
following formulations (M step). In the following formulations, the PM ðzj ¼ i j xjÞ is denoted as cji for simplicity.

li ¼

Pm
j¼1

cjixj

Pm
j¼1

cji

(8)
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�i ¼

Pm
j¼1

cjiðxj � liÞðxj � liÞT

Pm
j¼1

cji

(9)

ai ¼ 1

m

Xm
j¼1

cji (10)

4.3 Adaptive Classification Model
We proposed an adaptive classification model called the threshold-based adaptive Gaussian mixture

model integration (TA-GMMI) algorithm. In this method, the masks of different objects are marked using
the threshold-based algorithm. These coarse classification results are used in the initial process of
the GMM. A flow chart of different objects is shown in Fig. 2. The parameters in Algorithm 1 lines 2–4
are initialized using the masks of cloud, snow, ice, water, and soil. The loop started in the first line of the
algorithm acts to superimpose all of the data in a day to find the largest union set that belongs to
the snow category. The EM algorithm is used to update the parameters of the GMM. In lines 6 and 7, the
posterior probability is first calculated using the initialized parameters of means and covariance (E step).
The purpose of initializing the parameters is to obtain the specific classification object. Then the new
values of these parameters are updated by the formulation in lines 9–13 (M step). In lines 17–20, the
different objects are classified into different classes. Line 21 shows the maximum union of all recognition
results in a day.

4.4 Assessment Criterion
The results of TA-GMMI will be compared with in situ station data. The confusion matrix comparing the

daily snow cover product data against in situ observations is shown in Tab. 2. TP and TN represent the total
number of correct snow and no snow detections, respectively. FP and FN represent the total number of
incorrect snow and no snow detections, respectively. We use overall accuracy, snow detection rate,
omission error and commission error as evaluation indicators.

Figure 2: The flow chart of different objects

1156 CMES, 2020, vol.124, no.3



The overall accuracy is defined as

Overall accuracy ¼ TPþTN

TP þ FP þ FN þ TN
(11)

The snow detection rate is defined as the ratio of snow cover pixels detected by snow products to the
total number of snow cover events:

Algorithm 1: TA-GMMI algorithm

Input: Dataset D ¼ fx1; x2;…; xmg, where xd ¼ fxd1; xd2;…; xdp j d ¼ 1; 2;…;mg.
Process:

1: for n ¼ 1; 2;…;m do:

2: use threshold to achieve the coarse classification results. The pixels of the figure can be classified into
different classes fC1;C2;…;Ckg, and Ckj ¼ Ckj [ fxnj g; 1 � j � p.

3: calculate the means of different classes using the coarse classification results. l ¼ fl1; l2;…; lkg,
� ¼ f�1;�2;…;�kg.

4: initialize the parameters of the Gaussian mixture model fai;li;�ij1 � i � kg
5: repeat:

6: for j ¼ 1; 2;…; p do:

7: cji ¼ pM ðzj ¼ ijxjÞð1 � i � kÞ
8: end for

9: for i = 1, 2,…, k do:

10: update li
0
by using formulation (8)

11: update �i
0
by using formulation (9)

12: update ai by using formulation (10)

13: end for

14: update fai;li;�ij1 � i � kg with fai 0 ;li 0 ;�i
0 j1 � i � kg

15: until that satisfy the condition that

16: Ci ¼ [ð1 � i � kÞ
Continuation of Algorithm 1

17: for j = 1, 2,…, p do:

18: cj ¼ argmax
i2f1;2;…;kg

cji

19: Ckj ¼ Ckj [ fxjg
20: end for

21: Csnow ¼ Cd
kj
[ fxd�1

j g
22: end for

Output: the results of the classification Csnow

CMES, 2020, vol.124, no.3 1157



Snowdetection rate ¼ TP

TP þ FN
(12)

FN represents the total number of missing snow pixels, which indicates that the snow product identified
uncovered land (no snow) at a certain location, but snow was present in the in situ observation. This event
was described as an omission error:

Omission error ¼ FN

TP þ FN þ FP þ TN
(13)

When snow product data indicated snow cover, but the in situ observation was snow-free, the event was
labeled as a commission error. The commission error is formulated as follows:

Commission error ¼ FP

TP þ FN þ FP þ TN
(14)

Continuous indices are employed to evaluate the skill of each algorithm in snow detection. Statistics in
this category include the root-mean-square error (RMSE), correlation coefficient (CC), and mean absolute
error (MAE), which are calculated by the following equations:

RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðSimi � ObsiÞ2
s

; (15)

CC ¼

1

n

Xn
i¼1

ðSimi � SimiÞðObsi � ObsiÞ

rSimrObs
; (16)

MAE ¼ 1

n

Xn
i¼1

jSimi � Obsij; (17)

where “Sim” stands for simulation and “Obs” stands for truth labels.

5 Experiment

5.1 Comparison with Other Snow Products
In order to verify the feasibility of the algorithm, we use a variety of international mainstream snow

products. In addition to snow products derived from optical sensor data, snow products derived from
microwave sensors’ data are also used for comparison.

As can be seen from Tab. 3, the TA-GMMI achieves the highest overall accuracy at 77.9% in this
research, demonstrating an increase of by nearly 2% compared with MOD10A1, and nearly 1%
compared with MYD10A1; moreover, the snow detection rate increases by nearly 6%. This means that

Table 2: Confusion matrix comparing daily snow cover product against in situ observations

Ground Observation Daily Snow-Cover Product

Snow No Snow

Snow TP FN

No snow FP TN
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TA-GMMI used for FY-4A/AGRI multi-temporal data is not only feasible but can get more accurate snow
detections than polar orbit satellite’s snow products under clouds. Compared with the snow products derived
from the FY-2 swath satellite, the snow detection rate is low and the omission error is relatively high;
however, its commission error is the lowest of several geostationary satellite snow products (FY-2 swath
snow products). This indicates that FY-2 series snow cover products are more inclined to recognize snow
pixels, resulting in a higher commission error. It can be seen that the performance of the proposed
algorithm based on Fengyun-4 satellite data is between that of ice and snow products made from polar
orbit satellite and geostationary orbit satellite data, and can guarantee high identification accuracy and
high snow detection rate. By comparing the results of the proposed algorithm to those of the microwave
snow cover products GlobSnow SE and IMS, their accuracy is improved by 0.39% and 3.4%,
respectively, and the snow detection rate is increased by 42.86% and 16.57%, respectively. Thus, our
algorithm can detect more snow cover than microwave snow cover products. The microwave snow
products are not disturbed by clouds, which means that the multi-temporal data of FY-4A can detect
snow cover under clouds. Furthermore, the snow detection rate is also reduced: 3.8% lower than that of
IMS and 9.82% lower than that of GlobSnow SE. This decrease indicates that there are more pixels
missed by microwave snow products in cloud-free pixels, and some of these pixels could be detected by
TA-GMMI algorithm. However, the reason why the accuracy of microwave data in Qinghai-Tibetan
Plateau is not very high may be that the accuracy is affected by terrain, snow depth and so on.

5.2 Comparison of FY-4A and MOD10A1
MODIS snow cover products have good performance under clear skies [18]. Cloud obscuration is the

main limit of the MODIS snow cover products. The daily snow cover product MOD10A1 is compared with
FY-4A images Fig. 3a shows the result of MOD10A1 while Fig. 3b shows the result of TA-GMMI for FY-
4A/AGRI. In order to verify the capability of cloud removal using FY-4A, we chose a cloudy day. It can be
seen that the TA-GMMI detected more snow in the middle of the TP (blue box). In Fig. 3a, the snow in the
middle of the TP cannot be identified because of cloud obscuration. In Fig. 3b, we can see that the cloud
content is very low. In the middle of the TP, the cloud can be removed by the multi-temporal data of
FY-4A/AGRI.

5.3 Ablation Experiment
In order to verify that the TA-GMMI algorithm will improve the recognition accuracy, we compare this

algorithm to the threshold-based algorithm and MODIS daily snow products. We compare the results with

Table 3: Results of different snow products

Snow products Assessment Index

OA SD OE CE

MOD10A1 75.79 7.42 21.20 3.01

MYD10A1 76.44 39.13 21.72 1.83

GlobSnow SE 76.70 2.28 22.38 0.910

IMS 73.69 28.57 16.36 9.94

FY-2F 74.86 57.95 9.63 15.49

FY-2G 72.82 63.42 8.32 18.85

FY-2H 71.87 57.38 9.76 18.35

FY-4A (ours) 77.09 45.14 12.56 10.34
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MODIS snow products to show that the use of FY-4A/AGRI data can reduce identification errors. We use the
mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (CC) to measure the
results, which are shown in Tab. 4.

The comparison of results show that the threshold-based algorithm and TA-GMMI algorithm used for
FY-4A/AGRI data exhibit better performance than MODIS snow products. From Tab. 4, we can see that the
MAE and RMSE of snow cover products derived from FY-4A/AGRI data is much lower than that of
MODIS. The main reason for this is that the objects can be detected when the cloud moves away. Since
MOD10A1 and MYD10A1 obtain one image each day, it is difficult for them to identify the objects
clearly under the cloud. Compared with the threshold-based algorithm, the MAE and RMSE of TA-
GMMI are decreased, and the CC is improved. This means that the TA-GMMI algorithm can achieve
more accurate results than the threshold-based algorithm. This also indicates that the TA-GMMI can be
adaptive without adjusting the threshold.
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Table 4: Results of ablation experiment

Snow products Algorithm MAE (%) RMSE (%) CC (%)

MOD10A1 SNOWMAP 34.04 71.35 92.09

MYD10A1 SNOWMAP 43.39 83.51 91.20

FY-4A Threshold-based algorithm 12.64 47.39 91.49

FY-4A TA-GMMI 6.77 23.67 92.19
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Figure 4: Statistical results of the MOD10A1, MYD10A1 and FY-4A in the TP
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5.4 Evolution Analysis
The snowfall statistics of the TP, Shigatze and Yushu regions are used for analysis. The statistics are

presented in Figs. 4 and 5 to visually show the changes in snowfall. Figs. 4, 5a and 5b show the changes
in snow and clouds in the TP, Shigatze and Yushu regions, respectively. The chart for Shigatze shows
that the snow cover lasts from February 6, 2019 to February 11, 2019. The daily snow cover mapping
results in Shigatze (Fig. 6) shows that after February 6, 2019, the snow cover expanded from the
southwest to the northeast and reached the widest range on February 10, 2019. Fig. 7 contains the snow
cover map in Yushu from February 25, 2019 to February 28, 2019. The chart of snow cover in Yushu
shows that the snow levels were high in February and extended largely after February 25. According to
the daily snow maps, we can see that the snow coverage increased from February 25 to February 28, and
the coverage was the widest on February 28, covering almost the entire Yushu area. Past news and
weather forecast data show that heavy snowfall occurred in Shigatze from the 6th to 10th of February,
especially in Keelung, Nyalam County and some townships. Heavy snowfall also occurred in Yushu from
the 25th to 28th in February. For precipitation and surface temperature data, please refer to the website
http://data.cma.cn/data/online/t/1. According to the past weather forecast, precipitation data and news, the
time of the two massive snowfall is basically the same as the time we monitored the snow cover change.
Furthermore, the snowfall occurred in the same location. Accurate monitoring of the two massive
snowfalls shows that by using FY-4A data and the TA-GMMI algorithm we can accurately detect snow
changes and greatly reduce cloud interference. It also shows that the algorithm proposed in this paper is
feasible and reliable and can be used for daily snow monitoring tasks.

Comparing the data of MOD10A1 and MYD10A1 at the same period (Fig. 4), the snow cover of
MOD10A1 and MYD10A1 fluctuated greatly from February 6 to February 10. There is a decrease in the
TP between February 6 and February 9, because the optical sensor is obscured by clouds during snowfall.
The MOD10A1 and MYD10A1 data were inconsistent with the observations of previous news and
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Figure 7: Changes in snow cover in Yushu from February 25, 2019 to February 28, 2019
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weather forecast data. This indicates that the change has a great lag, and it is impossible to accurately and
timely express the changes in snow cover in the TP. This finding also proves that the results of this paper
are very useful for snow cover monitoring of the TP. From February 25 to February 28, heavy snowfall
occurred in the TP, but MOD10A1 and MYD10A1 did not detect snow fluctuations. This is because
ground objects cannot be detected due to cloud occlusion, therefore, the changes in snow cover on the
surface cannot be captured. Ultimately, the results of TA-GMMI can be used for snow cover monitoring
in the TP. Moreover, these results can provide stable and accurate monitoring results and reflect the real
change in snow cover.

6 Conclusion

In this study, an algorithm based on the Gaussian mixture model is proposed for FY-4A multi-temporal
images. It integrates the threshold-based algorithm and the Gaussian mixture model algorithms. In order to
verify the feasibility of this hybrid algorithm, we compared its results with those of mainstream snow
products. Compared with snow products with only one image per day, nearly 90% of cloud cover can be
reduced. Compared with the snow cover products, our algorithm can obtain a lower cloud cover and a
higher snow detection rate. Contrasting geostationary satellites’ snow cover products, this algorithm can
obtain a lower commission error. Moreover, compared to polar orbit satellite’s snow cover products, our
algorithm can obtain a lower omission error. The results show that FY-4A/AGRI’s multi-temporal image
can effectively reduce the interference caused by clouds. The proposed algorithm also exhibits a better
performance than the threshold-based algorithm. This means that our algorithm can adjust to complex
mountainous terrain under a fixed threshold. This will greatly reduce the difficulty of manual labeling.
Finally, we take the two snow disasters that happened on the Qinghai-Tibetan Plateau as examples. The
snow content in the TP is counted, and a line chart shows that the snow cover underwent two huge
changes in February 2019. A comparison to meteorological data and news reports shows that the two
changes are due to the time and place of the snowfall. The successful monitoring process shows that the
algorithm is feasible and can conduct snow monitoring.

Acknowledgement: Thanks to the National Meteorological Information Center of China Meteorological
Administration for offering the meteorological data.

Funding Statement: This study was jointly supported by National Science Foundation of China
(41661144039, 41875027 and 41871238).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Li, C., Su, F., Yang, D., Tong, K., Kan, B. et al. (2018). Spatiotemporal variation of snow cover over the Tibetan

Plateau based on MODIS snow product, 2001–2014. International Journal of Climatology, 38(2), 708–728. DOI
10.1002/joc.5204.

2. Hou, H. S., Yang, H. Y. (2009). A general introduction to MODIS snow products and its researching application.
Remote Sensing Technology and Application, 24(02), 252–256.

3. Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of
Environment, 28(1), 9–22. DOI 10.1016/0034-4257(89)90101-6.

4. Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, V. V., Bayr, K. J. (2002). MODIS snow-cover products.
Remote Sensing of Environment, 83(1–2), 181–194. DOI 10.1016/S0034-4257(02)00095-0.

5. Xu, W., Ma, H., Wu, D., Yuan, W. (2017). Assessment of the daily cloud-free MODIS snow-cover product for
monitoring the snow-cover phenology over the Qinghai-Tibetan plateau. Remote Sensing, 9(6), 585. DOI
10.3390/rs9060585.

CMES, 2020, vol.124, no.3 1163

http://dx.doi.org/10.1002/joc.5204
http://dx.doi.org/10.1016/0034-4257(89)90101-6
http://dx.doi.org/10.1016/S0034-4257(02)00095-0
http://dx.doi.org/10.3390/rs9060585


6. Duro, D. C., Franklin, S. E., Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis
with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG
imagery. Remote Sensing of Environment, 118, 259–272. DOI 10.1016/j.rse.2011.11.020.

7. He, G., Xiao, P., Feng, X., Zhang, X., Wang, Z. et al. (2015). Extracting snow cover in mountain areas based on
SAR and optical data. IEEE Geoscience and Remote Sensing Letters, 12(5), 1136–1140. DOI 10.1109/
LGRS.2014.2386275.

8. Mayewski, P. A., Jeschke, P. A. (1979). Himalayan and Trans-Himalayan glacier fluctuations since AD 1812.
Arctic and Alpine Research, 11(3), 267–287. DOI 10.2307/1550417.

9. Bishop, M. P., Olsenholler, J. A., Shroder, J. F., Barry, R. G., Raup, B. H. et al. (2004). Global land ice
measurements from space (GLIMS): remote sensing and GIS investigations of the Earth’s cryosphere.
Geocarto International, 19(2), 57–84. DOI 10.1080/10106040408542307.

10. Ye, Q., Kang, S., Chen, F., Wang, J. (2006). Monitoring glacier variations on Geladandong mountain, central
Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology, 52
(179), 537–545. DOI 10.3189/172756506781828359.

11. Pu, Z., Xu, L., Salomonson, V. V. (2007). MODIS/Terra observed seasonal variations of snow cover over the
Tibetan Plateau. Geophysical Research Letters, 34(6), L06706.

12. Notarnicola, C., Duguay, M., Moelg, N., Schellenberger, T., Tetzlaff, A. et al. (2013). Snow cover maps from
MODIS images at 250 m resolution, part 1: algorithm description. Remote Sensing, 5(1), 110–126. DOI
10.3390/rs5010110.

13. Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A. et al. (2015). Introduction to GlobSnow
Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96–
108. DOI 10.1016/j.rse.2014.09.018.

14. Mazari, N., Tekeli, A. E., Xie, H., Sharif, H. I., Hassan, A. A. E. (2013). Assessment of ice mapping system and
moderate resolution imaging spectroradiometer snow cover maps over Colorado Plateau. Journal of Applied
Remote Sensing, 7(1), 073540. DOI 10.1117/1.JRS.7.073540.

15. Zhu, Z., Wang, S., Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159,
269–277. DOI 10.1016/j.rse.2014.12.014.

16. Li, S., Yan, H., Liu, C. (2007). Study of snow detection using FY-2C satellite data. Journal of Remote Sensing, 11,
406–413.

17. Liu, X., Jin, X., Ke, C. Q. (2014). Accuracy evaluation of the IMS snow and ice products in stable snow covers
regions in China. Journal of Glaciology and Geocryology, 36, 500–507.

18. Hall, D. K., Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological Processes: An
International Journal, 21(12), 1534–1547. DOI 10.1002/hyp.6715.

19. Yang, J., Jiang, L., Shi, J., Wu, S., Sun, R. et al. (2014). Monitoring snow cover using Chinese meteorological
satellite data over China. Remote Sensing of Environment, 143, 192–203. DOI 10.1016/j.rse.2013.12.022.

20. Harrison, A. R., Lucas, R. M. (1989). Multi-spectral classification of snow using NOAA AVHRR imagery.
International Journal of Remote Sensing, 10(4–5), 907–916. DOI 10.1080/01431168908903930.

21. Hall, D. K., Riggs, G. A., Salomonson, V. V. (1995). Development of methods for mapping global snow cover
using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140.
DOI 10.1016/0034-4257(95)00137-P.

22. Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., Hagolle, O. (2019). Theia Snow collection: high-resolution
operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth System Science Data, 11(2), 493–514.
DOI 10.5194/essd-11-493-2019.

23. Pepe, M., Brivio, P. A., Rampini, A., Nodari, F. R., Boschetti, M. (2005). Snow cover monitoring in Alpine regions
using ENVISAT optical data. International Journal of Remote Sensing, 26(21), 4661–4667. DOI 10.1080/
01431160500206635.

24. De Ruyter de Wildt, M., Seiz, G., Gruen, A. (2007). Operational snow mapping using multitemporal Meteosat
SEVIRI imagery. Remote Sensing of Environment, 109(1), 29–41. DOI 10.1016/j.rse.2006.12.008.

1164 CMES, 2020, vol.124, no.3

http://dx.doi.org/10.1016/j.rse.2011.11.020
http://dx.doi.org/10.1109/LGRS.2014.2386275
http://dx.doi.org/10.1109/LGRS.2014.2386275
http://dx.doi.org/10.2307/1550417
http://dx.doi.org/10.1080/10106040408542307
http://dx.doi.org/10.3189/172756506781828359
http://dx.doi.org/10.3390/rs5010110
http://dx.doi.org/10.1016/j.rse.2014.09.018
http://dx.doi.org/10.1117/1.JRS.7.073540
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1002/hyp.6715
http://dx.doi.org/10.1016/j.rse.2013.12.022
http://dx.doi.org/10.1080/01431168908903930
http://dx.doi.org/10.1016/0034-4257(95)00137-P
http://dx.doi.org/10.5194/essd-11-493-2019
http://dx.doi.org/10.1080/01431160500206635
http://dx.doi.org/10.1080/01431160500206635
http://dx.doi.org/10.1016/j.rse.2006.12.008


25. Siljamo, N., Otto, H. (2011). New geostationary satellite-based snow-cover algorithm. Journal of Applied
Meteorology and Climatology, 50(6), 1275–1290. DOI 10.1175/2010JAMC2568.1.

26. Qian, Y., Zhou, W., Yan, J., Li, W., Han, L. (2015). Comparing machine learning classifiers for object-based land
cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168. DOI 10.3390/rs70100153.

27. Zhan, Y., Wang, J., Shi, J., Cheng, G., Yao, L. et al. (2017). Distinguishing cloud and snow in satellite images via
deep convolutional network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1785–1789. DOI 10.1109/
LGRS.2017.2735801.

28. Huang, L., Li, Z., Tian, B. S., Chen, Q., Liu, J. L. et al. (2011). Classification and snow line detection for glacial
areas using the polarimetric SAR image. Remote Sensing of Environment, 115(7), 1721–1732. DOI 10.1016/j.
rse.2011.03.004.

29. Zhang, Y. L., Li, B. Y., Zheng, D. (2002). A discussion on the boundary and area of the Tibetan Plateau in China.
Geographical Research, 21, 1–8.

30. Liu, R. G., Liu, Y., Xu, X. L., Ge, Q. S. (2017). Change of geographical environment in southern margin of Tibetan
Plateau since 1980s. Bulletin of Chinese Academy of Sciences, 32(09), 1003–1013.

31. You, Q., Fraedrich, K., Ren, G., Pepin, N., Kang, S. (2013). Variability of temperature in the Tibetan Plateau based
on homogenized surface stations and reanalysis data. International Journal of Climatology, 33(6), 1337–1347.
DOI 10.1002/joc.3512.

32. Gao, X. X., Chen, Y., Zhang, W., Lu, P. X. (2017). Climate characteristics of clouds and their influence on the land-
atmosphere system in the Qinghai-Tibetan Plateau. Journal of Lanzhou University (Natural Sciences), 53(04),
459–466+480.

33. Riggs, G. A., Hall, D. K., Salomonson, V. V. (1994). A snow index for the Landsat thematic mapper and moderate
resolution imaging spectroradiometer. Proceedings of IGARSS’94—1994 IEEE International Geoscience and
Remote Sensing Symposium, 4, 1942–1944.

34. Hall, D. K., Riggs, G. A., Salomonson, V. V. (1995). Development of methods for mapping global snow cover
using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140.
DOI 10.1016/0034-4257(95)00137-P.

35. Burton-Johnson, A., Black, M., Fretwell, P., Joseph, K. G. (2016). An automated methodology for differentiating
rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: A new rock outcrop map and area
estimation for the entire Antarctic continent. Cryosphere, 10(4), 1665–1677. DOI 10.5194/tc-10-1665-2016.

36. Verbeek, J. J., Vlassis, N., Kröse, B. (2003). Efficient greedy learningof Gaussian mixture models. Neural
computation, 15(2), 469–485.

37. Klein, A. G., Hall, D. K., Riggs, G. A. (1998). Improving snow cover mapping in forests through the use of a
canopy reflectance model. Hydrological Processes, 12(10–11), 1723–1744. DOI 10.1002/(SICI)1099-1085
(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2.

38. Paul, F., Kääb, A., Maisch, M., Kellenberger, T. (2002). The new remote-sensing-derived Swiss glacier inventory:
I. Methods. Annals of Glaciology, 34, 355–361. DOI 10.3189/172756402781817941.

39. Xu, H. Q. (2005). A study information extraction of water body with the modified normalized difference water
index (MNDWI). Journal of Remote Sensing, 9(5), 589–595.

40. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index in the delineation of open water
features. International Journal of Remote Sensing, 17(7), 1425–1432. DOI 10.1080/01431169608948714.

CMES, 2020, vol.124, no.3 1165

http://dx.doi.org/10.1175/2010JAMC2568.1
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.1109/LGRS.2017.2735801
http://dx.doi.org/10.1109/LGRS.2017.2735801
http://dx.doi.org/10.1016/j.rse.2011.03.004
http://dx.doi.org/10.1016/j.rse.2011.03.004
http://dx.doi.org/10.1002/joc.3512
http://dx.doi.org/10.1016/0034-4257(95)00137-P
http://dx.doi.org/10.5194/tc-10-1665-2016
http://dx.doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3C1723::AID-HYP691%3E3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3C1723::AID-HYP691%3E3.0.CO;2-2
http://dx.doi.org/10.3189/172756402781817941
http://dx.doi.org/10.1080/01431169608948714

	Threshold-Based Adaptive Gaussian Mixture Model Integration (TA-GMMI) Algorithm for Mapping Snow Cover in Mountainous Terrain
	Introduction
	Related Work
	Description of the Study Area and Data
	Mathematical Technology
	Experiment
	Conclusion
	flink7
	References


