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Abstract: Comic character detection is becoming an exciting and growing
research area in the domain of machine learning. In this regard, recently, many
methods are proposed to provide adequate performance. However, most of these
methods utilized the custom datasets, containing a few hundred images and fewer
classes, to evaluate the performances of their models without comparing it, with
some standard datasets. This article takes advantage of utilizing a standard pub-
licly dataset taken from a competition, and proposes a generic data balancing
technique for imbalanced dataset to enhance and enable the in-depth training of
the CNN. In addition, to classify the superheroes efficiently, a custom 17-layer
deep convolutional neural network is also proposed. The computed results
achieved overall classification accuracy of 97.9% which is significantly superior
to the accuracy of competition’s winner.

Keywords: Superheroes; deep convolutional neural network; data augmentation;
transfer learning; machine learning

1 Introduction

The graphical comic arts were introduced in the mid of 19th century to explain a story, different
characters, events or some particular buildings [1]. These comic arts were initially printed on papers but
evolved to the digital characters with the passage of time. At the end of 20th century, these characters
were introduced as superheroes in many animated movies and thus the fame of these superheroes
increased exponentially [2]. Nowadays, these superheroes are used everywhere, either on comic books, or
fashion accessories, school bags or room walls as the sensation of these superheroes is increasing rapidly.
With the recent success of machine learning in many fields such as video surveillance [3,4], biometrics
[5–7], medical [8,9], agriculture [10–12], social network [13], and few other [14,15], the researchers have
drawn their attention towards the understanding and learning the visual features of comic characters to
better identify and classify the superheroes. The classification methods simply train on few images before
classifying the image into one of the predefined class, while the identification methods extract different
features i.e., statistical [16], color [17], geometrical and shape, to identify and locate a character onto
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another image [18–20]. This complex learning and empathetic of graphical predictors can help the operative
processing, repossession and localization of comic characters. There exist many machine learning techniques
to copy the styles of characters [21], avatar creation [22], coloring characters automatically [23] and anime
character creation [24].

The DCNN have achieved considerable accomplishments in the field of image processing [25–29] and
related domains [30–37]. Many pre-trained CNN models are already proposed, which are trained on large
datasets like ImageNet [38], which contains 1000 different classes. AlexNet [39], VGG19 [40] and
GoogleNet [41] are few of the famous pre-trained models which are widely used and performed
exceptionally well on many domains [42–45]. All of these models are pre-trained on data containing
different categories, thus the training data of these model is as complex as their structures [46]. Training
these models further with more data and classes will increase the complexity and training time. Therefore,
a simple 17-layer deep convolutional neural network is proposed in this article, which trains multiple
classifiers to effectively classify the data into most related classes.

Previous techniques had used effective handcrafted features to classify the painting images [47].
Another method was proposed utilizing CNN models to classify the art images. This method initially
extracts the deep features and then utilized support vector machine as a classifier to achieve an enhanced
classification accuracy [48]. A WikiArt dataset containing 27 art style classes and 1000 artists was used to
train the traditional classifiers [49]. CNN classifiers were employed to localize the authorship
photographic and illustrative images [50,51]. With the introduction of famous comic dataset Manga109,
many researchers employed super resolution classification on this dataset [52–54].

A new custom large-scale dataset was introduced for contemporary artworks having comic images [55].
Comic objects were detected using the concept of general object recognition by detecting four types of comic
objects [56]. There are also previous studies for detecting the comic faces [57,58] and comic character
detection [59]. Another milestone for comic classification was achieved by utilizing the computational
predictors from comic line-segments. The authors also revealed comic classification is fundamentally
different from the fine-art classification, so convolutional neural networks are not involved to understand
the characteristics of drawing styles in comic lines [60].

Faces in Japanese comics called mangas were identified using Viola-Jones framework [61] and then
detected sufficiently [62,63]. The concept of applying the prior techniques for detection and recognition
of human faces was proved wrong as it was clearly identified that the size, organ positions and color
shades of human are different from the comic characters. Thus an improved and comic face related face
detection method was proposed which utilized skin edges and color regions [64]. Another technique
utilized the color attributes to detect the comic characters [65]. Graph theory was used to detect the comic
characters by representing the color regions as nodes and panels as attributed adjacency graphs [66]. The
same idea was implemented using the SIFT features with redundant values to accurately classify the
repeated multiple objects [67]. Approximate nearest neighbors (ANN) search and local feature extraction
was used for character retrieval [68]. Query-by-example (QBE) model was implemented using a Frequent
Subgraph Mining (FSM) techniques for comic detection [69].

1.1 Motivation
The use of superheroes on fashion accessories is increasing worldwide as the demand for items

containing a superhero is uprooting. Since, there exist so many superheroes, and one can simply not
recognize or memorize them; thus, there is a need for an automated system, which can classify any
product having a superhero image and help the consumer to identify and recognize the product that sets
primary motivation of the study. Another motivation of this work is to exploit standard datasets for comic
classification to set a baseline for the other researchers.
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1.2 Applications
Although, the proposed system is tested on product images but not limited to this domain and can solve

the many problems of other areas. One of the main applications of this work is to identify all the comic
medical images, which involve any medical character, i.e., doctor, nurse, paramedic staff, then classify
those images according to these comic characters. This can help to categorize the medical images into a
specific folder. Another application may involve on detection of medical comic characters in a movie or
video, to identify, locate and describe a medical comic character. This can help to recognize and
discriminate a medical comic character from a video.

2 Objectives and Contribution

Classifying the superheroes from multiple types of products is an exciting task due to the placement and
size of the images has huge diversity. This task becomes even more difficult when the dataset is extremely
imbalanced, and the image sizes are extremely small. The main purpose of this article is to propose an
automated system, which not only overcomes these issues but also performs the tasks of training,
classification, and prediction with efficiency. The fundamental contributions of this article are:

� A general data balancing algorithm is proposed, which is not limited to the selected dataset only. It
calculates the difference between a majority and minority classes, and populates the dataset with
augmented images, obtained by performing steps such as image flipping, adding gamma correction and
injecting gaussian noise. It increases the training of the model, which ultimately improves the
performance of the proposed model.

� A 17-layer deep CNN model is proposed, which contains six (6) convolutional layers with attached ReLU
and max-pooling layers and two (2) fully connected layers. The settings of the proposed CNN model are
adopted after intensive experiments like increasing and decreasing the total number of convolutional
layers and applying max and average pooling.

3 Materials and Proposed Model

This section describes in detail about the selected dataset, preprocessing steps involved, data
augmentation, CNN, Network Architecture and Training settings.

3.1 Dataset and Pre-processing
The primary objective of the selected dataset is to classify the 12 superheroes i.e., Antman, Aquaman,

Avengers, Batman, Black Panther, Captain America, Catwoman, Ghostrider, Hulk, Ironman, Spiderman and
Superman from product images. The dataset is already split into training and testing portions having 5433
and 3375 images respectively. Two-step preprocessing method including the data augmentation and
image resizing to a size of 100 × 100 × 3 is adopted in this research work. Fig. 1 illustrates one image
from each of the 12 classes.

3.2 Data Augmentation
For training, less images may cause the over-fitting as the training dataset contains five classes with less

than 250 images while remaining classes contains 400 or above images, even a class have highest images
1144. The aim of data augmentation is to increase all the minority classes to the size of majority class for
a fair and enough training of proposed network. To achieve this, initially all the images of minority
classes are flipped horizontally at 90, which balanced the classes like Batman, Captain America, Iron
Man and Superman. In the second step, all the remaining classes are augmented using gamma correction
by using a fixed gamma-value g at 0.8. This step further balances the classes like Black Panther and
Hulk. In the third step, gaussian noise having a variance value of 0.02 is applied on all the minority class
images. This step completes the data augmentation method, as now all the classes contain images more
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than the majority class. A total of 1144 images are then selected from each class to train the network. The
detailed overview of each class is given in Tab. 1 along with the augmentation results. It can be seen that
the original dataset contains 6,527 images while the augmented dataset contains 20,000 images. The
method of data augmentation is further explained and illustrated in Fig. 2.

Figure 1: Dataset samples from each class. Left to Right Row 1: (Ant-Man, Aquaman, Avengers, Batman) Row
2: (Black Panther, Captain America, Catwoman, Ghost Rider) Row 3: (Hulk, Iron Man, Spiderman, Superman)

Table 1: Details of dataset before and after augmentation

Class Original
Images

Flip Operation Gamma Correction Gaussian Noise Selected
Images

Created Total Created Total Created Total

Ant-Man 242 242 484 484 968 968 1,936 1,100

Aquaman 202 202 404 404 808 808 1,616 1,100

Avengers 216 216 432 432 864 864 1,728 1,100

Batman 779 779 1,558 – 1,558 – 1,558 1,100

Black Panther 459 459 918 918 1,836 – 1,836 1,100

Captain America 716 716 1,432 – 1,432 – 1,432 1,100

Catwoman 200 200 400 400 800 800 1,600 1,100

Ghost Rider 200 200 400 400 800 800 1,600 1,100

Hulk 413 413 826 826 1,652 – 1,652 1,100

Iron Man 979 979 1,958 – 1,958 – 1,958 1,100

Spiderman 1,144 – 1,144 – 1,144 – 1,144 1,100

Superman 977 977 1,954 – 1,954 – 1,954 1,100

Total 6,527 20,000 13,200
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Initially, all the classes are extracted from the dataset and class with maximum images is selected as a
threshold value H. Difference between remaining classes and threshold value H is calculated, which is later
used to store all the non-Balanced Classes (nBC). These nBC are then forwarded for further processing to
obtain three different images from original image under certain conditions. The arrangement of these
images after augmentation in relevant folders is presented in Fig. 3.

The purpose of this arrangement is to keep the original images always at the start while the augmented
images to follow them, so that the discarded images from the end have overall low impact on training, as the
original images are always selected. After the process of augmentation, first 1100 images are sequentially
selected to train the proposed network.

Figure 2: The detailed process of data augmentation

Figure 3: The arrangement of augmented images in related folders
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3.3 Convolutional Neural Network (CNN)
Textual and non-textual classifications are majorly performed using CNNs as these networks have

gained tremendous results due to their deep structures [70]. Parameter sharing, sparse interaction and
equivariance have turned these networks advantageous over the traditional shallow networks. A typical
CNN is composed of different layers like convolutional, rectified linear units and pooling layers. The
number and arrangements of these layers varies from network to network.

3.3.1 Convolutional Layer
Three dimensional inputs and filters are convolved using the convolutional layer. Suppose an input

image of size Iw � Ih � Ic is convolved along the width and height using a filter of size Fw � Fh � Fc

where w; h and c denotes the width, height and channels of the both input image and filters. The channel
size for both the input and filter must be same to perform the convolution. If the stride for the filter is x
and padding is φ, then width Ow and height Oh of convolved output image can be calculated as:

Ow ¼ Iw � Fw þ 2φ
x

þ 1 (1)

Oh ¼ Ih � Fh þ 2φ
x

þ 1 (2)

The convolved output is also a three-dimensional with width, height and number of filters in the form of
Ow � Oh � Of . Every convolutional layer has a ReLU layer as a nonlinear activation function to rectify the
output of a convolutional layer. The ReLU function for an output r is defined as:

ReLU rð Þ ¼ r; r � 0
0; r < 0

�
(3)

3.3.2 Pooling Layer
Pooling operation updates the final output of ReLU activation function by calculating the statistical

measures using the nearby output parameters. Performing the pooling operation not only reduces
computational burden by reducing the size of parameters but also guarantees that the representation of
small translations in input becomes invariant. Suppose an activation set Z has a pooling region Pr in it,
then the specific activation set is defined as:

Z ¼ ziji 2 Prf g (4)

Max-pooling for this activation set is defined as Poolingmax ¼ max Zð Þ while the average-pooling is

defined as Poolingavg ¼
P

Pr

Prj j where Prj j represents elements in activation set.

3.3.3 Fully Connected Layer
The main propose of fully-connected layers is to combine the learned features of different convolutional

kernels in such a way that they form a global representation of the overall image. The neurons of fully-
connected layers get fired only when the convolutional features are presented in the features of previous
layers. Linear and non-linear transformations are performed on the input data. The linear transformation
is represented as:

out ¼ wT : iþ b (5)

Here, w denotes the weights, i denotes the input from the previous layer and b denotes the biasness. For a
non-linear transformation, a sigmoid function is used with the values between 0 and 1. The non-linear
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transformations are performed, when the data is binary. As we are dealing with more than two classes, we
will be using linear transformations for the fully-connected layers.

3.4 Network Architecture
In the past decade, many pre-trained CNN models are proposed to tackle multiple issues. These

networks have performed significantly in many research areas, however, in case of comic classification,
none of these CNN models worked effectively because of the complex structure and extensive layers.
These extensive layers decrease the efficiency and increase the training time of the algorithm. To cope
with this problem, a DCNN with 17 deep layers is proposed in this work. The input layer forwards it to
the connected convolutional layers having attached ReLU and max-pooling layers. The size of filters,
stride and total number of filters are set by performing multiple experiments. The aim of fully connected
layer is to add a bias vector with the multiplication of weight matrix and input. The final, fully connected
layer relates to a softmax layer which mainly generalizes the logistic regression. The configuration of
proposed CNN is presented in Fig. 4.

If Prob mð Þ denotes the probability of prior class and Prob njmð Þ denotes the conditional probability for
the nth sample within class m, and I denotes the total number of classes in the dataset then probability for a
sample can be calculated as:

prob njmð Þ ¼ probðnjmÞprobðmÞ
PI
z¼1

probðnjzÞprobðzÞ
(6)

To simplify the above equation, if we define final probability (Fp) as Fp ¼ ln Prob n;mð ÞProb mð Þð Þ then:

prob njmð Þ ¼ expðFpðmÞÞPI
z¼1

expðFzðmÞÞ
(7)

The output provides the predicted class labels for every input based on the training. The class labels are
already defined as the class names while training the model. The proposed CNN contained 17 layers, where
the input layer accepts an RGB image of 100� 100� 3. There are total of 6 convolutional layers, and each
layer is followed by a ReLU layer. Different number of filters are applied on these layers. All these 6

Figure 4: Structure of proposed CNN model
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combinations of convolutional and ReLU layers are followed by max pooling layer, which reduced the size
of these layers into half. There are two fully connected layers, ‘FC1’ and ‘FC2’ which provide total of 4000
and 2000 features respectively. At the end, a softmax and output layers complete the proposed CNN
network’s architecture. Detailed summary of proposed CNN model is given in Tab. 2.

3.5 Training Settings
The CNN model is trained on NVIDIA GeForce GTX 1080 having an overall 6.1 capability of

computation, 1607–1733 MHz clock rate and 7 multiprocessors using MATLAB 2018a. The Stochastic
Gradient Descent with momentum (SGDM) algorithm represents the training technique in minibatch size
of 64. Learning rate is initially fixed at 0.01 and decreased after every 5 eras by the factor of 5. The
momentum is set at 0.7 and maximum epochs are set at 150. A suitable loss function, Cross-Entropy [71]
is used as it has performed reasonable for many multiclass issues. To extract the features, FC1 layer is
utilized, which extracts 4000 features against a single image.

These parameter settings are selected by performing intensive experiments. Considering the minibatch
size of 64, total iterations are set at 150 and 13,200 training images from augmented dataset, which makes

Table 2: Detail about layers in proposed CNN model

Combinations Filters Total
Filters

Stride
Size

Weight Size Bias Vector Activations

Input Layer – – – – – 100� 100� 3

Convolutional +
ReLU

11� 11 60 3� 3½ � 11� 11� 3� 60 1� 1� 60 128� 128� 60

Max Pooling 3� 3 – 3� 3½ � – – 64� 64� 60

Convolutional +
ReLU

9� 9 120 3� 3½ � 9� 9� 60� 120 1� 1� 120 128� 128� 120

Max Pooling 3� 3 – 3� 3½ � – – 64� 64� 120

Convolutional +
ReLU

7� 7 180 3� 3½ � 7� 7� 120� 180 1� 1� 180 128� 128� 180

Max Pooling 3� 3 – 3� 3½ � – – 64� 64� 180

Convolutional +
ReLU

5� 5 180 3� 3½ � 5� 5� 180� 180 1� 1� 180 64� 64� 180

Max Pooling 3� 3 – 3� 3½ � – – 32� 32� 180

Convolutional +
ReLU

3� 3 120 1� 1½ � 3� 3� 180� 120 1� 1� 120 32� 32� 120

Max Pooling 3� 3 – 1� 1½ � – – 32� 32� 120

Convolutional +
ReLU

3� 3 60 1� 1½ � 3� 3� 120� 60 1� 1� 60 16� 16� 60

Max Pooling 3� 3 – 1� 1½ � – – 8� 8� 60

Fully Connected – – – 4000� 6000 4000� 1 1� 1� 4000

Fully Connected – – – 2000� 4000 2000� 1 1� 1� 2000

Softmax – – – – – 1� 1� 1000

Output – – – – – 1� 1� 1000
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150 � 13200

64
¼ 30; 937 iterations. The overall training accuracy and loss is illustrated in Figs. 5a and 5b

respectively.

The training accuracy of 93.5% is achieved on proposed network while the training loss is reduced to
less than 1%. The training loss shows that the CNN model is well-trained on training and validation sets. The
training accuracy of proposed model is determined, once all the parameters of model are learned and no
further learning is in due. This trained network is then used to extract the features of test data, which are
later classified to obtain the classification accuracy.

4 Experiments and Results

4.1 Illustration of Data Augmentation
The proposed data augmentation technique initially finds the majority class and calculates the difference

of each class with respect to the majority class. Based on this difference, different operations i.e., by image
flipping, gamma correction and gaussian noise injection, are performed to generate new images. These
operations generate up to 3 new images to enlarge the dataset for training. It also benefits the deep
learning algorithms to acquire more consistent features than the original dataset. Fig. 6 demonstrates the
results of data augmentation process on 2 different images from 5 minority classes having images under
250. In Fig. 6, (a) represents the original image, (b) represents the flipped image, (c) represents the image
after gamma correction and (d) represents the image after gaussian noise injection.

Figure 5: Training accuracy and loss of proposed CNN model. (a) Training Accuracy and (b) Training Loss
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4.2 Classification Results
The proposed 17-layer network is used to classify the test data using the trained model. The arrangement

of CNN layers like convolutional layer and max-pooling layers plays a vital part in training the model to
achieve maximum results. For this purpose, multiple experiments are performed to search for the ideal
combination by increasing the depth of network. The network is tested by using 5,6,7,8 and 9
convolutional layers along with ReLU and pooling layers. The highest results are obtained by using the
network with 6 convolutional layers. Comparison of these different combinations is shown in Fig. 7 in
the form of graph.

To evaluate the authenticity of proposed network, evaluation parameters like sensitivity, precision,
specificity and accuracy are obtained on respective classes for the test data as displayed in Tab. 3. The
purpose of extracting the class-wise classification results is to monitor the performance of model on this
dataset. There is a lot of inter and intra class similarity in this dataset and decreases the overall efficiency
of model. It can clearly be seen that the second class (Aquaman), seventh class (Catwoman) and tenth
class (Iron Man) can be perfectly identified having the sensitivity of 100.0%. The class with worst

Figure 6: Results of data augmentation operations

94

97.9

95.3 94.8
93.1

90
91
92
93
94
95
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97
98
99

5 6 7 8 9

Accuracy

Figure 7: Comparing the impact of decreasing and increasing the convolutional layers
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classification result includes sixth class (Captain America) with sensitivity of 88.6% as this class is mostly
misclassified as Spiderman.

The performance of proposed network is compared with 7 classifiers, where ESD performs best by
achieving an overall accuracy of 97.9%. These results are obtained on both, augmented and original
dataset to verify the impact of data augmentation. The minimum training time is recorded for weighted-
KNN with 69.0 seconds while the maximum training time is recorded for LDA with 448.7 seconds. The
lowest FNR is 2.1 for ESD classifier and highest FNR is 9.7 for weighted KNN. In terms of sensitivity,
95.3% is highest, recorded for ESD and 90.1% is recorded for LDA. The highest precision is recorded
for ESD at 94.3%, while lowest is recorded for cubic SVM at 90.5%. The average prediction time is 0.09
seconds while the minimum prediction time is recorded at 0.04 seconds. Detailed classification results are
shown in Tab. 4.

During the testing of proposed method on selected dataset, few images are incorrectly classified, which
ultimately degraded the accuracy. All these images have incorrectly predicted labels on the image with
yellow background and correct labels under the image in black background. Correctly and wrongly
predicted images are shown in Figs. 8 and 9 respectively.

The results of max-pooling layer in proposed network are compared with average-pooling. The max
pooling provides accuracy of 97.9% while the proposed network provides 96.3% accuracy with average
pooling, which clearly degrades the overall classification accuracy by 1.6%. This downfall is because the
average-pooling considers all the elements inside the filter to decide while max-pooling only selects the
highest feature. In future, other pooling techniques can also be tested to further enhance the results.

4.3 Discussion
In the relevant literature, the researchers focused on extracting hand-crafted features on comic panels or

pages. Although, previously proposed techniques have achieved remarkable results, but most of the methods
are tested on very few images collected from google or other sources. This research work utilized a standard
publicly available dataset which can be used for comparison to validate the methods in this domain. The

Table 3: Class-wise classification results

Class Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)

Ant-Man 92.4 93.4 98.5 98.6

Aquaman 100 97.0 98.3 97.8

Avengers 97.2 95.7 98.9 98.2

Batman 94.8 96.4 97.0 98.3

Black Panther 89.1 92.8 98.6 97.1

Captain America 88.6 96.5 96.2 98.4

Catwoman 100 98.2 97.8 97.0

Ghost Rider 98.4 97.6 98.4 97.8

Hulk 99.0 98.3 99.3 98.9

Iron Man 100 95.9 97.4 97.3

Spiderman 97.5 94.3 97.9 97.4

Superman 99.3 99.8 98.5 97.9

Average 96.3 96.3 98.0 97.9
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selected dataset was presented as a challenge to identify the superheroes on fashion product images. Five
winners were selected as a result of solving this challenge, who achieved the highest classification
accuracies. The leaderboard on the challenge page contains accuracy scores of around 108 contestants
who participated in the trial, with 94.31%, 93.96%, and 93.86% as the first second and third positions.

Table 4: Comparison of classification results on different classifiers

Classifier Datasets Performance Measure

Original Augmented Accuracy
(%)

FNR
(%)

Sensitivity
(%)

Precision
(%)

Training
Time (s)

ESD ✓ 94.5 5.5 93.6 92.8 53.3

✓ 97.9 2.1 95.3 94.3 96.5

Cubic SVM ✓ 90.4 9.6 91.8 90.5 199.3

✓ 92.3 7.7 93.3 92.3 307.1

Fine KNN ✓ 91.7 8.3 91.1 91.9 98.4

✓ 93.5 6.5 92.5 92.7 169.2

Weighted KNN ✓ 90.3 9.7 91.0 90.6 69.0

✓ 93.3 6.7 93.6 93.9 184.7

Ensemble Subspace
KNN

✓ 93.1 6.9 92.8 92.2 104.9

✓ 95.9 4.1 95.3 94.0 239.4

Quadratic SVM ✓ 91.9 8.1 92.2 90.6 151.8

✓ 92.0 8.0 92.5 91.2 231.5

LDA ✓ 91.7 8.3 90.1 92.8 185.2

✓ 93.4 6.6 94.7 93.4 448.7

Figure 8: Correctly labeled images using proposed method
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The computed results of the proposed model with 97.7% accuracy outperformed the previous results. This
improvement in the classification score proves the authenticity of the proposed model.

5 Conclusion

This article proposed a 17-layer deep CNN to classify the superheroes among different fashion product
images. A publicly available dataset consists of 12 classes and 8808 images is used to authenticate the
performance of the proposed model. The dataset is normalized through augmentation using a proposed
augmentation technique, which performs operations like image flipping, adding gamma correction, and
Gaussian noise. A 17-layer deep CNN model is proposed containing six convolutional layers with
connected ReLU and max-pooling layers and two fully connected layers. Different combinations of
convolutional layers and their overall efficiency are also compared along with the effect of maximum and
average pooling. The experiments show that six convolutional layers with integrated max-pooling provide
better results of 97.9% classification accuracy with an average prediction time of 0.09 seconds. In the
future, this network, along with few hand-crafted features, can be utilized to enhance classification results
further. This model can also be implemented on other domains to check the validity of integrated layers
and depth of the proposed CNN model.
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