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Abstract: The importance analysis method represents a powerful tool for quanti-
fying the impact of input uncertainty on the output uncertainty. When an input
variable is described by a specific interval rather than a certain probability distri-
bution, the interval importance measure of input interval variable can be calcu-
lated by the traditional non-probabilistic importance analysis methods.
Generally, the non-probabilistic importance analysis methods involve the Monte
Carlo simulation (MCS) and the optimization-based methods, which both have
high computational cost. In order to overcome this problem, this study proposes
an interval important analytical method avoids the time-consuming optimization
process. First, the original performance function is decomposed into a combina-
tion of a series of one-dimensional subsystems. Next, the interval of each variable
is divided into several subintervals, and the response value of each one-dimensional
subsystem at a specific input point is calculated. Then, the obtained responses are
taken as specific values of the new input variable, and the interval importance is
calculated by the approximated performance function. Compared with the tradi-
tional non-probabilistic importance analysis method, the proposed method signifi-
cantly reduces the computational cost caused by the MCS and optimization
process. In the proposed method, the number of function evaluations is equal to
one plus the sum of the subintervals of all of the variables. The efficiency and accu-
racy of the proposed method are verified by five examples. The results show that
the proposed method is not only efficient but also accurate.

Keywords: Importance analysis method; interval variable; subinterval
decomposition; performance function; MCS

1 Introduction

The input uncertainty in engineering structures leads to the uncertainty of its output response [1,2].
Quantifying the influence degree of input uncertainty on the output uncertainty is of great significance in
the engineering model design [3]. Sensitivity analysis (SA) represents a powerful tool for quantifying the
influence degree of input uncertainty [4–6]. At present, the sensitivity analysis methods can be broadly
divided into two categories: local sensitivity analysis (LSA) methods [7–9] and global sensitivity analysis
(GSA) methods [10–13]. The LSA essentially denotes a partial derivative of the performance function at
the nominal point of the input variable, so it can quantify the sensitivity of the input variable only at a
certain nominal point. In contrast, the GSA measures the degree over which the uncertainty of the input
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variable affects the uncertainty of the output response. The GSA is also known as the importance measure
analysis, and the GSA methods include the variance-based methods [14–17], moment-independent methods
[18,19], reliability sensitivity methods [20,21] and so on. However, the application of the GSA methods is
based on the premise that input variable uncertainty can be modeled by particular distribution type and
precise distribution parameters. Recently, it has shown that using incorrect distribution types or
parameters can lead to incorrect results [22]. In fact, due to high experimental costs and/or inadequate
design experience, it is difficult to obtain enough the amount of data needed to determine the distribution
types and parameters of all of the variables in practical engineering problems correctly. In order to
address the mentioned problems, a non-probabilistic importance analysis method has emerged.

Since the interval importance analysis needs to determine only the variation ranges of variables without
high requirements for data amount, it has become one of the most commonly used non-probabilistic
importance analysis methods. Guo et al. [23] proposed a non-probabilistic model of structural reliability on
the basis of interval uncertainty for the first time. Based on this model, Li et al. [24] proposed a non-
probabilistic reliability importance measure. This interval importance measure can be used to quantify the
influence of the interval variable uncertainty on the non-probabilistic reliability index, and thus, is well
suited to actual engineering problems with incomplete data amount. Wang et al. [3] used the non-
probabilistic importance analysis method to analyze the importance of the clamp support in the aviation
hydraulic pipeline system, and then combined this method with the traditional optimization method and
proposed a dimension reduction optimization strategy based on sensitivity analysis. Han et al. [25] used the
interval model to describe the uncertainty of cantilever parameters and used the interval sensitivity analysis
method to analyze the influence of the design parameter fluctuations on the structural response. Although
the non-probabilistic importance analysis has low requirements for the data of variables and good
adaptability, its shortcomings severely limit its application in practice. Since the calculation process of non-
probabilistic importance analysis represents a nested calculation process that combining the Monte Carlo
simulation (MCS) and optimization method, the number of function evaluations required to estimate the
interval importance measures is very large, which significantly limits the application of this analysis.

In view of the above problems, an efficient method for reducing the computational cost of non-
probabilistic importance analysis is proposed. In the proposed method, the subinterval decomposition
theory [26] is used to eliminate the optimization process of solving the upper and lower of response
bounds, and the performance function is reconstructed by a series of decomposed univariate functions,
where a new input variable represents the values of the univariate functions at the corresponding
characteristic point. Accordingly, the computational cost required to estimate the importance is equivalent
to one plus the sum of subintervals. Compared to the traditional non-probabilistic importance measure
algorithms, the proposed method avoids the repeated optimization process and estimates the importance
measure without a need for a large number of samples.

The rest of this study is organized as follows. The non-probabilistic importance measure based on
interval uncertainty is presented in Section 2. A brief review of subinterval decomposition is given is
Section 3. In Section 4, an efficient non-probabilistic interval importance analysis method based on
subinterval decomposition is proposed. In Section 5, the efficiency and accuracy of the proposed method
are verified by five examples. The results of the proposed method is compared to the results of the MCS,
Sequential quadratic programming (SQP) and Genetic algorithm (GA). Finally, the conclusions are drawn
in Section 5.

2 Interval Uncertainty Level-Based Importance Measure

2.1 Interval Uncertainty-Based Importance Measure Definition
Suppose Y I ¼ g X I

� �
denotes the performance function of a structure with n-dimensional input vector

expressed as X I¼ X I
1 ;X

I
2 ; � � � ;X I

n

� �
and output denoted as Y I . Since the uncertainty of the input variable is
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quantified by the interval model, the output Y I is also an interval, that is, Y I ¼ Y l;Yu
� �

. The midpoint Yc and
radius Yr of output Y I are, respectively, expressed as follows:

Yc ¼ Yu þ Y l

2

Y r ¼ Yu � Y l

2
(1)

where Yu and Y l denote the upper and lower bounds of Y I , respectively. Thus, the uncertainty level of Y I can
be expressed as follows:

d ¼ Yr=Yc (2)

The interval uncertainty-based importance measure can be used to quantify the impact of interval
uncertainty of input variable on the interval uncertainty of the output variable. When the interval variable
X I
i is fixed to any of its realization values x�i , the uncertainty level d given by Eq. (2) can be expressed as

dX I
i ¼x�i

. When x�i changes over the entire interval of X I
i , the upper and lower bounds of dX I

i
can be,

respectively, expressed as follows:

duX I
i
¼ max dX I

i ¼x�i
; x�i 2 xli; x

u
i

� �� �

dlX I
i
¼ min dX I

i ¼x�i
; x�i 2 xli; x

u
i

� �� �
(3)

Then, the average of dX I
i
can be expressed as follows:

daverage
X I
i

¼
duX I

i
þ dlX I

i

2
(4)

It is worth noting that the two parameters describing the interval variables represent the midpoint and the
radius that correspond to the mean and variance of the random variable obeying a certain distribution,
respectively. Therefore, the midpoint can be used to represent the average value of dX I

i
that is given by

Eq. (4). Then, the influence degree of the uncertainty of the entire interval variable X I
i on the uncertainty

level of output Y I can be expressed as follows:

Mi¼
d� daverage

X I
i

��� ���
d

(5)

where Mi denotes the proposed interval uncertainty-based importance measure index, and �j j represent the
absolute operator.

In addition, it is worth noting that the conventional interval importance measure proposed by Li
et al. [24] is based on the non-probabilistic reliability index proposed by Guo [23]. However, the interval
importance measure proposed in this study is based on the uncertainty level of the output rather than the
non-probabilistic reliability index, so the proposed measure differs from the one proposed in [24].

2.2 Interval Uncertainty Importance Measure Estimation
According to the above analysis, proper estimation of indicator Mi is curcial for obtaining the

unconditional response uncertainty level d and conditional response uncertainty level dX I
i ¼x�i

, x�i 2 xli; x
u
i

� �
.

Besides, the MCS or optimization algorithms required to calculate the upper and lower bounds of
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Eq. (3), or Yu and Y l given by Eq. (1). In the following, the traditional MCS procedure for estimating
Mi is presented:

1. Generate an N � n sample matrix of interval variables using the Latin hypercube sampling (LHS) and
denote it as Ω and each its element as xji, where j and i represent the row and column’ indexes,
respectively; and N is the number of simulated samples.

2. Calculate the corresponding output Y I , and obtain its upper bound Yu and lower bound Y l.

3. Calculate the midpoint Yc and radius Y r by Eq. (1), and then calculate the uncertainty level d by Eq. (2).

4. Fix the interval variable X I
i at its realization xji, and obtain the changed sample matrix Ωji, where except

the ith column whose elements are replaced with the element xji, the other columns are the same as the
corresponding columns of Ω. Then, repeat Steps (2) and (3) using the change sample matrix Ωji, and
obtain the conditional uncertainty level dX I

i ¼xji :

5. Change xji from x1i to xNi and repeat Step (4) to obtain a total of N conditional uncertainty levels dX I
i ¼xji .

Furthermore, obtain the upper bound duX I
i
and lower bound dlX I

i
of dX I

i
by Eq. (3).

6. Calculate the average value of dX I
i
by Eq. (4), and finally, calculate the interval importance measure of X I

i
by Eq. (5).

Obviously, the MCS for solving the upper and lower bounds of the response can be replaced by some
of the commonly used optimization algorithms, such as the SQP or the GA. Compared with the MCS,
using the optimization algorithm to solve the upper and lower bounds can greatly reduce the
computational cost. For instance, for a simple performance function with N = 10000 and n = 3 shown
in Example 1, where N and n represent the number of simulated samples and the number of variables,
the MCS requires 3 × 108 + 10000 function evaluations. However, the SQP and the GA need only
about 15400 and 614040 function evaluations, respectively. In terms of computational cost, the SQP
and the GA are obviously superior to the MCS. However, the computational cost of the SQP or the GA
is still too large to be implemented in parctice. Therefore, highly efficient interval importance analysis
method is urgently needed.

3 Review of Subinterval Decomposition

As explained in Section 2.1, the interval importance analysis requires many repeated calculations for
estimating the upper and lower bounds of the output variable, which is the main reason for a large
amount of calculation of the traditional calculation methods. Therefore, in order to reduce the
computational cost, the subinterval decomposition method [26] is used for determing the upper and lower
bounds of the output result.

First, a multiplicative dimensional reduction method (M-DRM) studied in [27] is adopted to
approximate the original performance function as a combination of a series of univariate functions,which
is given by the following equation:

Y ¼ g Xð Þ �
Xn
i¼1

g Xi; c�ið Þ � n� 1ð Þg cð Þ (6)

where g Xi; c�ið Þ ¼ g c1; � � � ci�1;Xi; ciþ1; � � � ; cnð Þ denotes a univariate function in terms of Xi,
c ¼ c1; c2; � � � ; cn½ �T is a specific reference point corresponding to X ¼ X1;X2; � � �X3½ �, and c�i is c where
ci is removed.

Generally, c represents the reference point used to bring the approximated function closer to the original
performance function. For instance, for normally distributed variables, c is usually taken as their mean, so for
interval variables, it represents the midpoint, that is, c ¼ X c

1 ;X
c
2 ; � � � ;X c

n

� � ¼ X c. Then, the original
performance function can be approximated as follows:
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Y I �
Xn
i¼1

g X I
i ;X

c
�i

� �� n� 1ð Þg X c
i

� �
(7)

Next, the upper and lower bounds of the two and three-dimensional problems are solved by subinterval
decomposition.

For a two-dimensional problem, two interval variables are respectively divided into four subintervals,
shown in Fig. 1a. According to Eq. (7), the response corresponding to the black triangle in Fig. 1a can be
approximately expressed as follows [26]:

Y I
i1i2

X l
1 þ i1DX1;X

l
2 þ i2DX2

� � � g X l
1 þ i1DX1;X

c
2

� �þ g X c
1 ;X

c
2 þ i2DX2

� �� g X c
1 ;X

c
2

� �
; i1; i2

¼ 0; 1; 2; 3; 4
(8)

where DXi, X l
i and X c

i denote the length of the subinterval, lower bound and midpoint of Xi, respectively.
Then, the structure response can be converted into the following form:

Y I ¼ [
i1;i2¼0;1;2;3;4

Y I
i1i2

X l
1 þ i1DX1;X

l
2 þ i2DX2

� �
(9)

Finally, the upper and lower bounds of the two-dimensional function can be approximated as follows:

Yu ¼ max
i1;i2¼0;1;2;3;4

Yi1;i2 X l
1 þ i1DX1;X

l
2 þ i2DX2

� �	 

(10)

Y l ¼ min
i1;i2¼0;1;2;3;4

Yi1;i2 X l
1 þ i1DX1;X

l
2 þ i2DX2

� �	 

(11)

Consequently, if responses at the characteristic points X l
1 þ i1DX1;X c

2

� �
; X c

1 ;X
l
2 þ i2DX2

� �
;

	
X c
1 ;X

c
2

� �gi1;i2¼0;1;2;3;4 are calculated, the upper and lower bounds that are given by Eqs. (10) and (11),
respectively, can be directly obtained. In Fig. 1a, the characteristic points correspond to the red dots, thus
indicating that the number of function evaluations required to calculate the upper and lower bounds in the
two-dimensional problem with four subintervals represents the number of red dots, that is, 2 × 4 + 1 = 9.

X1

X2

1
CX

2
CX

X1

X2

X3

(a) (b) 

Figure 1: Illustrations of the interval decomposition at (a) n = 2 and (b) n = 3
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For a three-dimensional problem, each interval variable is decomposed into two subintervals, as shown
in Fig. 1b. According to Eq. (7), the upper and lower bounds of the three-dimensional problem can be,
respectively, approximated as follows:

Yu ¼ max
i1;i2¼0;1;2

Y I
i1;i2;i3

X l
1 þ i1DX1;X

l
2 þ i2DX2;X

l
3 þ i3DX3

� �n o
(12)

Y l ¼ min
i1;i2¼0;1;2

Y I
i1;i2;i3

X l
1 þ i1DX1;X

l
2 þ i2DX2;X

l
3 þ i3DX3

� �n o
(13)

Similar to Eq. (8), according to Eq. (7), Yi1;i2;i3 X l
1 þ i1DX1;X l

2 þ i2DX2;X l
3 þ i3DX3

� �
can be

approximated as a combination of three univariate functions, which is given by the following equation:

Y I
i1;i2;i3

X l
1 þ i1DX1;X

l
2 þ i2DX2;X

l
3 þ i3DX3

� �
� g X l

1 þ i1DX1;X
c
2 ;X

c
3

� �þ g X c
1 ;X

l
2 þ i2DX2;X

c
3

� �
þg X c

1 ;X
c
2 ;X

l
3 þ i3DX3

� �� 3� 1ð Þg X c
1 ;X

c
2 ;X

c
3

� �
; i1; i2; i3 ¼ 0; 1; 2

(14)

According to Eq. (14), for the three-dimensional problem with two subintervals per interval variable, the
number of function evaluations required to calculate the upper and lower bounds by Eqs. (12) and (13) is
equal to 3 × 2 + 1 = 7, which represents the number of the red dots in Fig. 1b.

Following the above analysis, the upper and lower bounds of n-dimensional problem can be,
respectively, expressed as follows:

Yu ¼ max
i1¼0;���;m1;i2¼0;���;m2;���;in¼0;���;mn

Y I
i1i2���in X l

1 þ i1DX1;X
l
2 þ i2DX2; � � � ;X l

n þ inDXn

� �n o
(15)

Y l ¼ min
i1¼0;���;m1;i2¼0;���;m2;���;in¼0;���;mn

Y I
i1i2���in X l

1 þ i1DX1;X
l
2 þ i2DX2; � � � ;X l

n þ inDXn

� �n o
(16)

where Y I
i1i2���in X l

1 þ i1DX1;X l
2 þ i2DX2; � � � ;X l

n þ inDXn

� �
is given by the following equation:

Y I
i1i2���in X l

1 þ i1DX1;X
l
2 þ i2DX2; � � � ;X l

n þ inDXn

� �
� g X l

1 þ i1DX1;X
c
2 ; � � � ;X c

n

� �þ g X c
1 ;X

l
2 þ i2DX2; � � � ;X c

n

� �
þ � � � þg X c

1 ;X
c
2 ; � � � ;X l

n þ inDXn

� �� n� 1ð Þg X c
1 ;X

c
2 ; � � � ;X c

n

� �
;

i1 ¼ 0; 1; � � � ;m1; i2 ¼ 0; 1; � � � ;m2; � � � ; in ¼ 0; 1; � � � ;mn

(17)

According to Eqs. (15)–(17), and assuming that the number of subintervals of the ith interval variable is
mi, the total number of function evaluations required to calculate the upper and lower bounds is equal toPn

i¼1mi þ 1. On this basis, an efficient interval importance measure analysis method based on the
subinterval decomposition is proposed.

4 Subinterval Decomposition-Based Interval Importance Analysis Method

In this section, the detailed implementation process of the proposed method based on the subinterval
decomposition is presented.

First, a new performance function for interval importance analysis is defined. According to Eq. (17), the
performance function with an n-dimensional interval variable can be approximated as follow:

Y I � g vð Þ ¼ v1 þ v2þ � � � þvn � c (18)
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where g denotes the approximate substitution of the original performance function Y I , v ¼ v1; v2; � � � vn½ �
denotes the new input vector of g, and c is a constant. The elements of the vector and the constant are
respectively expressed as follows:

v1 ¼ g X l
1 þ i1DX1;X

c
2 ; � � � ;X c

n

� �
i1 ¼ 0; 1; � � � ;m1

v2 ¼ g X c
1 ;X

l
2 þ i2DX2; � � � ;X c

n

� �
i2 ¼ 0; 1; � � � ;m2

..

. ..
. ..

.

vn ¼ g X c
1 ;X

c
2 ; � � � ;X l

n þ inDXn

� �
in ¼ 0; 1; � � � ;mn

c ¼ n� 1ð Þg X c
1 ;X

c
2 ; � � � ;X c

n

� �
(19)

The detailed calculation procedure of the proposed interval importance analysis method is as follows:

1. Calculate the values of all univariate functions vk by Eq. (19), where k ¼ 1; 2; � � � n.
v1 ¼ v11; v

2
1; � � � ; vm1

1

� �T
v2 ¼ v12; v

2
2; � � � ; vm1

2

� �T
..
. ..

.

vn ¼ v1n; v
2
n; � � � ; vm1

n

� �T
(20)

2. Calculate the new sample matrix of the approximated performance function given by Eq. (18). Arrange
and combine the elements of all variables in Eq. (20) to generate a new sample matrix
Φ&�n ¼ f1;f2; � � � ;f&

� �T
, where & ¼ m1 � m2 � � � � � mn and fi ¼ v�i1 ; v

�i
2 ; � � � ; v�in

� �
represent the ith

group sample, which can be obtained by the following permutation and combination:

(21)

In Eq. (21), the ith element of fi is one of the elements of vi; thus, the total number of elements of fi is
& ¼ m1 � m2 � � � � � mn:

3. Substitute Φ&�n into Eq. (18), that is, calculate g Φ&�nð Þ and obtained & responses g ¼ g1; g2; � � � ; g&
� �T

.
Using Eqs. (15) and (16), the lower and upper bounds of g are directly obtained as follows:

gu ¼ max gð Þ
gl ¼ min gð Þ (22)

Then, the midpoint gc and radius gr are obtained by Eq. (1). The unconditional uncertainty level of g is
further obtained by Eq. (2) and denoted as dg:

4. Fix vi at its realization vti, and obtain a new sample matrix Φ�
&��n using the permutation and combination

rules given in Step (2). Since vi is fixed, the value of &
� is m1 � m2 � mi�1 � 1� miþ1 � � � � mn:

5. Repeat Step (3) with the new sample matrixΦ�
&��n to obtain the conditional uncertainty level and denote it

as dgjvti :
6. Change t from 1 to mi, and repeat Steps (4) and (5) to obtain mi conditional uncertainty level

dgjvi ¼ dgjv1i ; dgjv2i ; � � � ; dgjvmii
h i

:

11 2

1 1 1 1
, , ,

Tmχ χ χ χ⎡ ⎤= ⎣ ⎦L

21 2

2 2 2 2
, , ,

Tmχ χ χ χ⎡ ⎤= ⎣ ⎦L

1 2
, , , n

Tm
n n n nχ χ χ χ⎡ ⎤= ⎣ ⎦L

1

2

Ti

i

i

i
n

χ

χ
φ

χ

∗

∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
M M

CMES, 2020, vol.124, no.3 991



7. Using Eqs. (3) and (4), get the average value of dgjvi and denote it as daveragegjvi :

8. Finally, calculate the interval importance index of vi by Eq. (5) and denote is as Mvi . Then, use Mvi to
approximate the interval importance index of Xi:

Based on the presented steps, the computational cost of the proposed method depends only on the calculation
burden required to calculate the values of all of the univariate functions. If the subinterval number of each interval
variable denote asmi is known, then the characteristic input points of all interval variables can be determined. The
values of all of the univariate functions at the characteristic input points can be obtained using the original
performance function, and this calculation process mainly difines the calculation burden of the proposed
method because all of the other steps of the proposed method do not require additional computation. As
mentioned previously, the computational cost, that is, the number of function evaluations, is equal to one plus
the sum of subinterval numbers of all interval variables. Hence, the computational cost of the proposed method
increases linearly rather than exponentially with the increase in input dimensionality. However, even though
the computational cost fo the proposed method is affected by input dimensionality, this effect is relatively small.

Obviously, the accuracy and efficiency of the proposed method are determined by the number of subintervals
of variables. Generally, the larger the number of the subintervals is, the higher the accuracy and the lower the
efficiency will be, and vice versa. However, the error analysis can be used to balance accuracy and efficiency
[26], but that is a very complex process, which is difficult to achieve. Based on the study of five examples
presented in Section 5, in this study, the number of subintervals is suggested to be in the range of 2–5.

As mentioned above, the proposed method constructs the sample matrix by using the permutation and
combination. If the number of interval variables or the number of subintervals of each interval variables is
large. Even though this does not add any extra computation, too large number of samples will still affect
calculation efficiency. For this reason, in this work, the number of samples is limited to 105. If the
number of sample size exceeds 105, only the first 105 samples will be selected and used to form the
sample matrix; otherwise, all of the smaples will be selected and used to form the sample matrix.

5 Case Studies

The accuracy and efficiency of the proposed interval importance analysis method were verified by five
examples. In order to make the verification process more relevant, the MCS and two optimization-based
algorithms were employed as reference algorithms, and their results were compared with the result
obtained by the proposed algorithm. The key parameters of the GA optimization method, Generations,
PopulationSize, CrossoverFraction and ParetoFraction were set to 50, 20, 0.8, and 0.5, respectively. In the
MCS, the sample size N is 104, and in two optimization-based algorithms, the sample size was set to 102.

5.1 Example 1: Simple Example
A simple numerical example expressed by Eq. (23) was used to verify the correction of the proposedmethod:

Y ¼ X1 þ X2 þ X3 (23)

In Eq. (23), X1, X2, and X3 denote three interval variables with the upper bound of Xu ¼ 4:5; 5; 5:5½ � and
lower bound of X l ¼ 3:5; 3; 2:5½ �. According to the definition of uncertainty level given by Eq. (2), the
uncertainty levels of the three interval variables is 0.25, 0.5 and 0.75, respectively.

In this example, there were two subintervals per interval variable. According to the above-presented
analysis, the numbers of function evaluations required by the four methods to estimate the interval
importance measures were calculated, and they are listed in Tab. 1. According to the results presented in
Tab. 1, the proposed method performed the best among all the methods, achieving the highest efficiency,
and it was followed by the SQP, GA, and MCS method.
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The interval importance measures of Example 1 are shown in Fig. 2. As shown in Fig. 2, the four
methods performed similarly, thus indicating that the proposed method had high accuracy.

According to the results presented in Fig. 2, the importance ranking of the three interval variables was
X1 < X2 < X3. In this example, the performance function was very simple and completely linear, which is
why the influence degree of the uncertainty of the interval variables on the output result of the performance
function depended only on the uncertainty level of each interval variable. The uncertainty levels of the three
interval variables obtained by the proposed method were 0.25, 0.5, and 0.75 respectively, which indicated the
correctness of the importance ranking obtained by the proposed method.

5.2 Example 2: A Probabilistic Risk Assessment Model
A probabilistic risk assessment model [4] was expressed as follows:

Y ¼ X1X3X5 þ X1X3X6 þ X1X4X5 þ X1X4X6 þ X2X3X4

X2X3X5 þ X2X4X5 þ X2X5X6 þ X2X4X7 þ X2X6X7
(24)

where, the midpoint of the seven interval variables was X c ¼ 2; 3; 1� 10�3; 2� 10�3; 4� 10�3; 5� 10�3;
�

3� 10�3�. The lower and upper bounds were calculated by X l ¼ X c � 0:1� X c and Xu ¼ X c þ 0:1� X c,
respectively. The importance indices of all interval variables obtained for two subintervals per interval
variable are shown in Fig. 3.

As shown in Fig. 3, the proposed method matched well with the other three reference methods,
especially with the SQP and GA method. The importance rankings of seven interval variables obtained
by four different methods were completely consistent, that is, X3 < X1 � X7 < X4 < X5 < X6 < X2.

The numbers of function evaluations required by the MCS, SQP, GA, and the proposed method to
calculate the interval importance measures of the seven interval variables are listed in Tab. 2. Obviously,
the proposed method was superior to the other three methods regarding efficiency.

Table 1: Numbers of function evaluations required by the four methods in Example 1

Method MCS SQP GA Proposed method

Number of Function evaluations 3.0001 × 108 154 614040 2 × 3 + 1 = 7

Figure 2: The interval importance measures of Example 1
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5.3 Example 3: Ishigami Function
A highly-nonlinear and non-monotone function studied in [28] was modified and adopted to verify the

performance of the proposed method, and it was expressed as follows:

Y ¼ sin X1ð Þ þ 0:3sin2 X2ð Þ þ 0:02X 4
3 sin X1ð Þ (25)

In this example, the lower and upper bounds of all three variables were given as 1 and 2, respectively.
Therefore, they all have the same midpoint value of 1.5. The importance results obtained by four methods for
three subintervals per variable are shown in Fig. 4.

As presented in Fig. 4, for this highly nonlinear and non-monotone function, although the indices of
each variable obtained by the three reference methods were slightly different, their importance rankings
were the same, that is, X2 < X1 < X3, and they were the same as the importance ranking obtained by the
proposed method, indicating that the proposed method performed well even for problems with the highly
nonlinear and non-monotone performance function.

The numbers of function evaluations required by the MCS, GA, SQP, and proposed method to calculate
the importance indices of all variables are listed in Tab. 3. According to the results given in Tab. 3 that, the
computational efficiency of the proposed method was very high. Consequently, the proposed method could
provide the correct importance ranking with extremely high efficiency even for highly nonlinear and non-
monotone function.

5.4 Example 4: Composite Cantilever Beam Structure
A composite cantilever beam structure [29] shown in Fig. 5 was studied. The displacement Y of the free

point under the load F0 was calculated by using the mechanical analysis by:

Figure 3: Interval importance measures of Example 2

Table 2: Number of function evaluations required by the four methods in Example 2

Method MCS SQP GA Proposed method

Number of function evaluations 3.0001 × 108 1386 1430040 2 × 7 + 1 = 15
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Y ¼ F0L3

2h3
E2
L � 4GLTETv2LT þ EL ET þ 4GLT þ 2ETvLTð Þ

ELGLT EL þ ET þ 2ETvLTð Þ
� �

(26)

where F0, L, h, EL, ET , GLT and vLT are denoted the applied load per width, length, height, longitudinal
Young’s modulus, transverse Young’s modulus, shear modulus and Poisson’s ratio, respectively, and the
corresponding midpoint values were 3.81 cm, 50.8 cm, 530 KN/m, 9.38 Gpa, 0.036, 173, and 33.1,
respectively. Their upper and lower bounds were respectively calculated as their midpoints plus and
minus 0.1 times their corresponding midpoint. The interval importance results are shown in Fig. 6.

In this example, there were two subintervals per interval variable. The numbers of function evaluations
required by the four methods to estimate a set of interval importance results are listed in Tab. 4, where it can
be seen that the proposed method achieved very high efficiency.

The repeated 10 importance results are represented by the box plots in Fig. 6. The short distribution range
resulted a higher robustness; otherwise, higher variability was achieved. The results show that the GA had higher
variability than the MCS and SQP methods. The results obtained by the proposed method were completely
unchanged compared with other three methods and extremely stable. These results were caused by the

Variable number

M
i

Figure 4: Interval importance measures of the Ishigami function

Table 3: Number of function evaluations required by the four methods in example 3

Method MCS SQP GA Proposed method

Number of function evaluations 3.0001 × 108 301 614040 3 × 3 + 1 = 10

L

0F

b

h

(45°)

(45°)
(-45°)
(-45°)

Figure 5: Composite cantilever beam structure model
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characteristic of the proposed method: namely, as long as the number of the subintervals per interval variable was
determined, the feature points were determined, and the sample matrix generated by permutation and
combination was also determined and invariant, so the calculation results were completely invariant.

In terms of interval importance ranking, the result of the proposed method was completely consistent with
those of the other three reference methods. The importance of F0 and L was similar and larger than those of the
other variables;GLT , ET , and vLT were of similar importance that was very small; h was slightly important than
EL, their results were large than those of GLT , ET , vLT and small than those of F0 and L.

5.5 Example 5: Roof Truss
A roof truss [4,30,31] shown in Fig. 7 was adopted, and the perpendicular displacement Y of the node C

was calculated by the following equation:

Y ¼ ql2

2

�
3:81

ACEC
þ 1:13

ASES

�
(27)

where q, l, AC, AS, EC, and ES represented the uniformly distributed load, the length of the concrete bars, and
the sectional areas and elastic moduli of the steel bars and concrete bars, respectively. The midpoint values of
the interval variables were set to 2 × 104 N/m, 12 m, 4 × 10−2 m2, 9.83 × 10−4 m2, 3 × 1010 MPa, and 2 × 1011

MPa, respectively. Their upper and lower bounds were, respectively, calculated as their midpoint plus and
minus 0.1 times their corresponding midpoint.

Each interval variable was divided into two subintervals. The obtained interval importance measures of
all interval variables are represented by box plots in Fig. 8. The numbers of function evaluations required by
the MCS, SQP, GA, and the proposed method to calculate a set of interval importance measures is listed in
Tab. 5. The proposed method was obviously very efficient.

As well know, the larger the sample size is, the closer the MCS result is to the true value will be.
Therefore, under the condition of a sufficient number of samples, the result calculated by the MCS is of a
great reference value. In this example, the MCS was used as a reference to evaluate the performance of
the proposed method and the other two optimization-based methods. The result obtained by the GA

M
i

Interval variables
0F L h LE LTG TE LTv

Figure 6: Interval importance measures of the composite cantilever beam structure, for 10 replicates

Table 4: Numbers of function evaluations required by the four methods in Example 4

Method MCS SQP GA Proposed method

Number of function evaluations 3.0001 × 108 330 1132040 2 × 7 + 1 = 15
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changes the most, indicating that its robustness was poor. Although the result obtained by the SQP had a
small change, its importance ranking was slightly different from that obtained by the MCS. For instance,
q was 2 in the MCS; however, it was about 4 in the SQP. At the same time, the result of the SQP on l
was poor, and the error was relatively large, while the error of the proposed method was zero, which was
due to the characteristic of the proposed method, which was mentioned in Example 3. Consequently, the
proposed method obtained similar results as the MCS, and its importance ranking was consistent with
that of the MCS, as shown in Fig. 8.

The above-presented five examples fully verify the efficiency, accuracy and robustness of the proposed
method, demonstrating that the proposed method performs very well in both efficiency and accuracy.
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Figure 7: The schematic diagram of roof truss
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Figure 8: Interval importance measures of roof truss, 10 replicates

Table 5: Number of function evaluations required by the four methods in Example 5

Method MCS SQP GA Proposed method

Number of function evaluations 3.0001 × 108 546 1226040 2 × 6 + 1 = 13
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6 Conclusions

The non-probabilistic importance measure is more applicable to practical engineering than the
probabilistic distribution-based importance measure due to the low requirement for the prior knowledge
on variable data. However, the high computational cost in conventional importance analysis methods
limits their application in practical engineering. In view of this, a subinterval decomposition method is
proposed in this study to approximate the interval importance measure. The main aims are to establish an
approximate performance function by using the interval decomposition and generate the input sample
matrix of the approximated performance function using the permutation and combination of univariate
function values at the feature points. The proposed method has high accuracy, robustness, and efficiency,
which was verified by five examples, where the proposed method was compared with three popular
methods, namely, the MCS, SQP, and GA methods. For the highly nonlinear problem, the results of
the two traditional optimization-based methods, the SQP and the GA, were quite different from those
of the MCS method, which was used as a reference method; the efficiency of the SQP and the GA was
low, the robustness was poor, especially that of the GA. However, the proposed method achieved
excellent performance, especially in terms of computational cost.

Although the proposed method is highly efficient, and such that has important engineering application
value, it is developed based on the assumption that variables are independent of each other. Therefore, there
is room for further improvements, and the development of an efficient interval importance analysis method
for correlation variables will be our next research objective.
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