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Abstract: In this paper, general interpolating isogeometric boundary node method
(IIBNM) and isogeometric boundary element method (IBEM) based on parameter
space are proposed for 2D elasticity problems. In both methods, the integral cells
and elements are defined in parameter space, which can reproduce the geometry
exactly at all the stages. In IIBNM, the improved interpolating moving least-
square method (IIMLS) is applied for field approximation and the shape functions
have the delta function property. The Lagrangian basis functions are used for field
approximation in IBEM. Thus, the boundary conditions can be imposed directly
in both methods. The shape functions are defined in 1D parameter space and no
curve length needs to be computed. Besides, most methods for the treatment of
the singular integrals in the boundary element method can be applied in IIBNM
and IBEM directly. Numerical examples have demonstrated the accuracy of the
proposed methods.
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1 Introduction

Isogeometric analysis (IGA) [1,2] has been applied in many areas and it has at least two advantages
compared with the traditional methods: (i) the geometry of the model keeps unchanged in the whole
procedure; (ii) the refinement can be performed easily in parameter space. Actually, IGA tries to do the
analysis directly on the CAD model, in which the solid can be characterized by the boundary with
parametric functions [3]. Thus, combining the IGA with the boundary element method (BEM) [4–9] is a
natural idea and relative investigations for IGA BEM can be found in [10–13]. In most types of IGA
BEM, B-spline and NURBS basis functions are applied. However, some regular geometry can be
construed by simple analytical parametric functions, such as circle and sphere. Besides, the parametric
function for a curve or surface is not uniform and different CAD packages may use different functions. Is
there any possibility to construct an isogeometric method that is independent of parametric functions?
One of the most possible method is the boundary face method (BFM) [14]. In BFM [15,16], only the
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forms of parametric functions are needed to be known. Actually, the translations between parameter
coordinates and physical coordinates can be done easily by functions in some CAD packages [17–20].

In this paper, the idea is applied in an interpolating boundary node method (IBNM), or can also be called
an interpolating boundary element-free method (IBEFM) [21–23]. In the original boundary node method
(BNM) [24] or Galerkin BNM [25,26] the moving least-square (MLS) approximation [27–30] is used for
field approximation, which leads to difficulty for applying boundary conditions. The interpolating moving
least-square (IMLS) method [27] with singular weight functions can be implemented to obtain shape
function with delta function property. However, it may lead to difficulties while implementation because
of the singular weight functions. An improved interpolating moving least-square (IIMLS) approximation
was further presented [21,31] with no singular weight functions and has been applied in BEFM [32].
Wang et al. [33] proposed regularized improved interpolating moving least-square method and adaptive
orthogonal improved interpolating moving least-square method [34] to avoid the singular moment matrix
while computing the shape function.

In this paper, an interpolating isogeometric boundary node method (IIBNM) is proposed. The method
can be considered as a general isogeometric method based on parameter space. The parametric functions are
only used to characterize the boundary and the IIMLS method is implemented to interpolate the fields,
including the displacement and traction fields. An isogeometric boundary element method (IBEM) can
also be obtained if the Lagrangian basis functions are implemented to interpolate the fields. In both
methods, there is no discretization error and the integrals are performed on isogeometric cells or
elements. Besides, the boundary conditions can be applied easily in both methods, since the shape
functions obtained by the IIMLS method and Lagrangian basis functions have the interpolating property.
Compared with the conventional BEM and BNM, the proposed methods can avoid the discretization
error of geometry and can be integrated with Computer-Aided Design (CAD) easily. Compared with
BNM and the isogeometric BEMs [10,35,36], the shape functions for field approximation have
interpolating property, and it leads to a simpler way to impose the boundary conditions.

2 The Boundary Integral Equation with Isogeometric Cells

In this section, the boundary integral equation (BIE) for 2D elasticity problems is reviewed and
discretized by isogeometric cells. The basic equations can be written as

rij;j ¼ 0 (1)

eij ¼ 1

2
ðui;j þ uj;iÞ (2)

rij ¼ Cijklekl (3)

with

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ (4)

where rij are the stresses, eij are the strains and ui are the displacements. Cijkl are the components of the elastic
tensor and dij are the Kronecker-delta functions. l is the shear modulus, k ¼ 2vl=ð1� 2vÞ is the Lamé
constant, and v is the Poisson ratio.

One can have the boundary integral equation (BIE) as [37]

0 ¼
Z
�

Uðx; yÞtðyÞd�ðyÞ�
Z
�

Tðx; yÞ½uðyÞ � uðxÞ�d�ðyÞ (5)
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where � is the boundary of a bounded domain � in R2. t represents the traction vector on �. For plane strain
state, the components of Uðx; yÞ and Tðx; yÞ are

Ukiðx; yÞ ¼
�1

8pð1� vÞl fð3� 4vÞ lnðrÞdki � r;kr;ig (6)

Tkiðx; yÞ ¼
�1

4pð1� vÞr f½ð1� 2vÞdki þ 2r;kr;i� @r
@n

� ð1� 2vÞðr;kni � r;inkÞg (7)

where r ¼ x � yk k, and nðyÞ is the unit outward normal. Points x and y are the source point and field point in
R2, respectively.

In conventional BEM or BNM, the boundary � in Eq. (5) is approximated by the discrete cells. In BNM,
the cells are used for the convenience of computing the integrals on the boundary. In BEM, the cells are also
used for approximating the fields and they are called elements. In general, the straight line or the parabola can
be used as each cell to approximate the boundary. However, for complex curves, these kinds of cells cannot
reproduce the geometries exactly and the discretization error occurs.

In most of the CAD/CAE packages, the curves are represented by parametric functions and only the
local coordinates in one-dimensional parameter space are needed to obtain the global coordinates in two-
dimensional space. In general, a curve can be represented by parametric functions by

x1 ¼ f1ðnÞ; x2 ¼ f2ðnÞ (8)

where xfx1; x2g are the global coordinates and n is the parameter coordinate. Usually one can use xðnÞ to
clarify that point x is represented by the parameter n in parametric form.

The normal n of a point x on the curve can be obtained by

nfn1; n2g ¼ f@x2
@n

;� @x1
@n

g (9)

Now suppose the boundary � can be represented in parametric form and one can partition it as

� ¼
XN
j¼1

�j½nj; njþ1� (10)

where �j½nj; njþ1� is the jth cell with range ½nj; njþ1�, nj is the jth parameter and N is the number of cells. �j is
also represented in parametric form by Eq. (8), thus, the boundary � can be reconstituted exactly no matter
how many cells are used. This is why the cells are called as isogeometric cells.

Then Eq. (5) can be written as

XN
j¼1

Z
�j

Uðxð&Þ; yðnÞÞtðyðnÞÞJdn

¼
XN
j¼1

Z
�j

Tðxð&Þ; yðnÞÞ½uðyðnÞÞ � uðxð&ÞÞ�Jdn
(11)

where & and n are parameter coordinates for points x and y, respectively. J can be evaluated by

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@y1
@n

Þ
2

þ ð@y2
@n

Þ
2

s
(12)
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Eq. (11) has partitioned the boundary with isogeometric cells for the purpose of integration. The rest of
the problem is how to approximate the field and two methods will be introduced in the next two sections.

3 The Interpolating Isogeometric Boundary Node Method

In this section, the IIMLS method is implemented to obtain the shape function for field approximation
and the interpolating isogeometric boundary node method (IIBNM) is derived.

3.1 The Improved Interpolating Moving Least-Square Method [21,31]
Suppose point xfx1;…; xdg is a point in a domain � in space Rdðd ¼ 1; 2; 3Þ and the local support

domain RðxÞ is centered at x. For function uðxÞ, one can define another formula as

~uðx; yÞ ¼ uðyÞ �
Xn
k¼1

qðx; ykÞuðykÞ (13)

where qðx; yiÞ is defined as

qðx; yiÞ ¼
fðx; yiÞPn
k¼1 fðx; ykÞ

(14)

with

fðx; ykÞ ¼
Qn

i¼1;i 6¼k x � yi
�� ��2Qn

i¼1;i 6¼k yk � yi
�� ��2 (15)

The function qðx; yiÞ has the following properties:

qðyi; yjÞ ¼ dij ¼ 1; i ¼ j
0; i 6¼ j

�
(16)

and

Xn
i¼1

qðx; yiÞ ¼ 1; x 2 � (17)

The local function of ~uðx; yÞ can be evaluated by

~uhðx; yÞ ¼
Xm
j¼1

gjðx; yÞajðxÞ (18)

where ajðxÞ are coefficients needed to be determined. gjðx; yÞ is defined as

gjðx; yÞ ¼ pjðyÞ �
Xn
i¼1

qðx; yiÞpjðyiÞ (19)

In Eq. (19), pjðxÞ are basis functions.
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To obtain the unknown ajðxÞ, one can define the weighted discrete L2 norm as

J ¼
Xn
i¼1

wðx � yiÞ½~uhðx; yiÞ � ~uðx; yiÞ�2

¼
Xn
i¼1

wðx � yiÞ½
Xm
j¼1

gjðx; yiÞajðxÞ � uðyiÞ þ
Xn
k¼1

qðx; ykÞuðykÞ�2
(20)

where wðx � yiÞ are weight functions.
From Eq. (20), we can have

AðxÞaðxÞ ¼ BðxÞu (21)

where

AljðxÞ ¼
Xn
i¼1

wðx � yiÞgjðx; yiÞglðx; yiÞ (22)

BlkðxÞ ¼
Xn
i¼1

wðx � yiÞglðx; yiÞ½dik � qðx; ykÞ� (23)

u ¼ ½ uðy1Þ; uðy2Þ; …; uðynÞ �T (24)

aðxÞ ¼ ½ a2ðxÞ; a3ðxÞ; …; amðxÞ �T (25)

And

aðxÞ ¼ A�1ðxÞBðxÞu (26)

Then ~uðx; yÞ will be expressed as

~uhðx; yÞ ¼ ĝðx; yÞA�1ðxÞBðxÞu (27)

With

ĝðx; yÞ ¼ ½g2ðx; yÞ; g3ðx; yÞ;…; gmðx; yÞ� (28)

Finally, if letting y ¼ x, we can evaluate uðxÞ by
uðxÞ ¼ ĝðx; xÞA�1ðxÞBðxÞuþ qðxÞu ¼ ΦðxÞu (29)

where

ΦðxÞ ¼ ĝðx; xÞA�1ðxÞBðxÞ þ qðxÞ (30)

qðxÞ ¼ qðx; y1Þ; qðx; y2Þ; …; qðx; ynÞ½ � (31)

And shape functions ΦðxÞ have [32]:
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Property 1. Interpolating property:

�iðxjÞ ¼ dij ¼ 1; i ¼ j
0; i 6¼ j

�
(32)

Property 2. Reproducing property:

Xn
i¼1

�iðxÞpjðyiÞ ¼ pjðxÞ (33)

3.2 The Interpolating Isogeometric Boundary Node Method
With the IIMLS approximation, a meshless interpolating isogeometric boundary node method (IIMLS)

can be obtained. The displacements uðyÞ and tractions tðyÞ on the boundary point y can be interpolated by

ulðyÞ ¼ ulðyðnÞÞ ¼
Xn
i¼1

�iðnÞuil ¼ ΦðnÞul (34)

tlðyÞ ¼ tlðyðnÞÞ ¼
Xn
i¼1

�iðnÞtil ¼ ΦðnÞtl (35)

where n is the parameter coordinate for point y, uil and t
i
l are the nodal displacement and traction, and�iðnÞ is

the shape function obtained by IIMLS method as

ΦðnÞ ¼ ĝðn; nÞA�1ðnÞBðnÞ þ qðnÞ (36)

By substituting Eqs. (34) and (35) into Eq. (11), one can obtain

XN
j¼1

Z
�j

Uklðxð&Þ; yðnÞÞ
Xn
i¼1

�iðnÞtilJdn

¼
XN
j¼1

Z
�j

Tklðxð&Þ; yðnÞÞ½
Xn
i¼1

�iðnÞuil �
Xn
i¼1

�ið&Þuil�Jdn
(37)

For boundary node xðnpÞ, Eq. (37) can be rewritten as:

XN
j¼1

Z
�j

UklðxðnpÞ; yðnÞÞ
Xn
i¼1

�iðnÞtilJdn

¼
XN
j¼1

Z
�j

TklðxðnpÞ; yðnÞÞ½
Xn
i¼1

�iðnÞuil�Jdn

�
XN
j¼1

Z
�j

TklðxðnpÞ; yðnÞÞupl Jdn

(38)

Finally, Eq. (38) can be rewritten as

Hu ¼ Gt (39)
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where

Hpi

� � ¼ X
�j2Ki

Z
�j

T11ðxðnpÞ; yðnÞÞ T12ðxðnpÞ; yðnÞÞ
T21ðxðnpÞ; yðnÞÞ T22ðxðnpÞ; yðnÞÞ

� �
�iðnÞJdn

� dpi
X
�j2Kp

Z
�j

T11ðxðnpÞ; yðnÞÞ T12ðxðnpÞ; yðnÞÞ
T21ðxðnpÞ; yðnÞÞ T22ðxðnpÞ; yðnÞÞ

� �
Jdn

(40)

Gpi

� � ¼ X
�j2Ki

Z
�j

U11ðxðnpÞ; yðnÞÞ U12ðxðnpÞ; yðnÞÞ
U21ðxðnpÞ; yðnÞÞ U22ðxðnpÞ; yðnÞÞ

� �
�iðnÞJdn (41)

u ¼ u11 u12 � � � un1 un2
� �T

(42)

t ¼ t11 t12 � � � tn1 tn2
� �T

(43)

In Eqs. (40) and (41), Ki is the set of cells that have contributions to �iðnÞ and Kp is the set of cells
contain node xðnpÞ (see Fig. 1).

4 The Isogeometric Boundary Element Method

In IIBNM, the integral cells and field approximations are independent. In this section, the isogeometric
cells are also used to interpolate the fields and the shape functions used in traditional BEM are applied. The
method can also be called an isogeometric boundary element method (IBEM). The interpolation is also
performed in parameter space and a coordinate transformation is defined in a cell �j½nj; njþ1� as

nðsÞ ¼ njþ1 � nj
2

sþ njþ1 þ nj
2

(44)

where s 2 ½�1; 1� is the local coordinate (see Fig. 2). If the values at nodes nj and njþ1 are used to interpolate
the field in the cell �j½nj; njþ1�, then uðyÞ and tðyÞ at point y 2 �j can be interpolated by

ulðyÞ ¼ ulðyðnðsÞÞÞ ¼
X1
i¼0

wi
jðsÞuiþj

l (45)

tlðyÞ ¼ tlðyðnðsÞÞÞ ¼
X1
i¼0

wi
jðsÞtiþj

l (46)

(   )ix (ξp)x

iK pK

Cell

Node

Support domain

ξ

Figure 1: Cells and nodes in IIBNM
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where uj and tj are the displacements and tractions at point xj, and wi
jðsÞ is the shape function on �j defined

as

w0
j ðsÞ ¼ 0:5� 0:5s (47)

w1
j ðsÞ ¼ 0:5þ 0:5s (48)

By substituting Eqs. (45) and (46) into Eq. (11), one can obtain

XN
j¼1

Z
�j

Uklðxð&ðqÞÞ; yðnðsÞÞÞ
X1
i¼0

wi
jðsÞtiþj

l JJ1ds

¼
XN
j¼1

Z
�j

Tklðxð&ðqÞÞ; yðnðsÞÞÞ½
X1
i¼0

wi
jðsÞuiþj

l �
X1
i¼0

wi
jðqÞtiþj

l �JJ1ds
(49)

where q is the new local coordinate of & in the relative cell and J1 ¼ ðnjþ1 � njÞ=2. Then for xðnðspÞÞ, we can
have:

XN
j¼1

Z
�j

UklðxðnðspÞÞ; yðnðsÞÞÞ
X1
i¼0

wi
jðsÞtiþj

l JJ1ds

¼
XN
j¼1

Z
�j

TklðxðnðspÞÞ; yðnðsÞÞÞ½
X1
i¼0

wi
jðsÞuiþj

l �
X1
i¼0

wi
jðspÞtiþj

l �JJ1ds
(50)

The shape function in Eq. (50) also has the interpolating property, thus, one can obtain

XN
j¼1

Z
�j

UklðxðnðspÞÞ; yðnðsÞÞÞ
X1
i¼0

wi
jðsÞtiþj

l JJ1ds

¼
XN
j¼1

Z
�j

TklðxðnðspÞÞ; yðnðsÞÞÞ
X1
i¼0

wi
jðsÞuiþj

l JJ1ds

�
XN
j¼1

Z
�j

TklðxðnðspÞÞ; yðnðsÞÞÞtpþj
l JJ1ds

(51)

jξx(    ) x(      )

jΓ jΓ

jsx(  (  )) 1j+sx(  (     ))

-1 1
jx

j+1x

jΓ

sy
ξj+1ξ

ξ ξ

(a) (b) (c)

Figure 2: Local coordinate. (a) global space. (b) parameter space. (c) local coordinate

814 CMES, 2020, vol.124, no.3



Finally, Eq. (51) will be

Hu ¼ Gt (52)

where

Hpi

� � ¼ X
�j2Ki

Z
�j

T11ðxðnðspÞÞ; yðnðsÞÞÞ T12ðxðnðspÞÞ; yðnðsÞÞÞ
T21ðxðnðspÞÞ; yðnðsÞÞÞ T22ðxðnðspÞÞ; yðnðsÞÞÞ

� �
wi
jðsÞJJ1ds

� dpi
X
�j2Kp

Z
�j

T11ðxðnðspÞÞ; yðnðsÞÞÞ T12ðxðnðspÞÞ; yðnðsÞÞÞ
T21ðxðnðspÞÞ; yðnðsÞÞÞ T22ðxðnðspÞÞ; yðnðsÞÞÞ

� �
JJ1ds

(53)

Gpi

� � ¼ X
�j2Ki

Z
�j

U11ðxðnðspÞÞ; yðnðsÞÞÞ U12ðxðnðspÞÞ; yðnðsÞÞÞ
U21ðxðnðspÞÞ; yðnðsÞÞÞ U22ðxðnðspÞÞ; yðnðsÞÞÞ

� �
wi
jðsÞJJ1ds (54)

In Eqs. (53) and (54), Ki are cells cover node xðnðsiÞÞ (see Fig. 3).

5 Numerical Examples

In all the examples, E ¼ 2:5 and v ¼ 0:3 are applied for the material properties. To treat the singular
integrals appeared in the proposed methods, the rigid body motion method is applied to compute the
strongly singular integrals, and the self-adaptive coordinate transformation method [38] is used to
evaluate the weakly singular integrals [37].

5.1 Dirichlet Problems on a Ring
A ring shown in Fig. 4 is tested in this example. The radius of the inner circle is 1, and the minimum

radius and maximum radius of the outer ellipse are 2 and 4, respectively. Displacements are known on all
the boundaries and the following solutions are considered:

(i) Linear solution:

u1 ¼ 2x1 þ 3x2 (55)

u2 ¼ 3x1 þ 2x2 (56)

(ii) Quadratic solution:

u1 ¼ x22 � 2x1x2 � x21 (57)

u2 ¼ x22 þ 2x1x2 � x21 (58)

Cell (element)

Node

isx(  (  ))ξ psx(  (  ))ξ

iK pK

Figure 3: Cells and nodes in IBEM
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(iii) Cubic solution:

u1 ¼ x32 � 3x21x2 (59)

u2 ¼ �x31 þ 3x22x1 (60)

The relative errors of the displacements and stresses are shown in Figs. 5–7. One can indicate that both
IIBNM and IBEM have good agreement with the exact results. The errors of IIBNM and IBEM are very
close to each other for the cases with few nodes. It can also be observed that the results obtained by
IIBNM have a little concussion when the boundary nodes are few.

5.2 Lame Problem
The Lame problem shown in Fig. 8 is considered. Plane strain state is considered and geometry shown in

Fig. 8(b) is analyzed.

The exact solutions for this problem are

rr ¼ a2p

b2 � a2
ð1� b2

r2
Þ (61)

Figure 4: A ring
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Figure 5: Relative errors for linear solution
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Figure 6: Relative errors for quadratic solution
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Figure 7: Relative errors for cubic solution

Figure 8: Lame problem
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rh ¼ a2p

b2 � a2
ð1þ b2

r2
Þ (62)

a ¼ 1, b ¼ 2 and p ¼ 1 are implemented. The results of traction t2 on line x2 ¼ 0 are plotted in Fig. 9.
All the results shown in Fig. 9 are solved by 69 boundary nodes. Fig. 10 shows the relative errors of traction
t2 on line x2 ¼ 0 for different methods. It can be observed that the accuracy of IIBNM is the highest.

5.3 Plate with an Elliptical Hole
In this example, a geometry under tensile load shown in Fig. 11 is studied and the parameters are L ¼ 20,

r1 ¼ 2, r2 ¼ 4 and T ¼ 1. Plane stress statement is assumed. 3845 nodes are used in IBEM and IIBNMwhile
344363 CPS4R elements are used in FEM to solve the problem.

The stresses r2 on line x2 ¼ 0 are shown in Fig. 12 and the stresses r1 on line x1 ¼ 0 are shown in
Fig. 13. One can find out that similar results are obtained by the proposed methods, compared with FEM.
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Figure 9: Results of traction
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Figure 10: Relative error of the traction
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Figure 11: A plate with an elliptical hole
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Figure 12: Stresses on line x2 ¼ 0
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Figure 13: Stresses on line x1 ¼ 0
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The contours of stresses r1 and r2 are shown in Figs. 14 and 15. Conventional BEM with 3845 nodes is
also used to simulate the problem. It can be observed that the results obtained by FEM, BEM, IBEM, and
IIBNM have little difference.

Figure 14: Contours of stress r1 for a plate with an elliptical hole. (a) FEM. (b) BEM. (c) IBEM. (d) IIBNM
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6 Conclusions

Two general isogeometric methods based on the parameter space are proposed. The integral cells and
elements are defined in parameter space, and the geometry can be reproduced at all the stages in both
methods. The displacement and traction fields are approximated by the IIMLS method and Lagrangian
basis functions in parameter space in IIBNM and IBEM, respectively.

Coupling the methods with the fast multipole method (FMM) [39–41] and domain integration methods
[42] for non-homogeneous problems are under research. The proposed methods can also be applied in many
other problems, such as fracture problems [43–48].

Funding Statement: The research for this paper was supported by (1) the National Natural Science
Foundation of China (Grants Nos. 51708429, 51708428), and (2) the Open Projects Foundation (Grant
No. 2017-04-GF) of State Key Laboratory for Health and Safety of Bridge Structures, and (3) Wuhan
Institute of Technology Science Found (Grant No. K201734), and (4) the science and technology projects
of Wuhan Urban and Rural Construction Bureau (Grants Nos. 201831, 201919).
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