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Abstract: This paper proposes a probabilistic life calculation method of NdFeB
based on brittle fatigue damage model. Firstly, Zhu-Wang-Tang (ZWT) constitu-
tive model considering strain rate is established, and based on this, a numerical
co-simulation model for NdFeB life calculation is constructed. The life distribu-
tion diagram of NdFeB under different stress levels is obtained after simulation.
Secondly, a new model of brittle fatigue damage based on brittle damage mechan-
ism is proposed. Then the parameters in the model are identified according to the
life distribution diagram of NdFeB and the parameter distribution of the damage
evolution model when applied to NdFeB is obtained. Finally, the probability den-
sity evolution equation of NdFeB life calculation is established and solved using
the probability density evolution method. Probability density function (PDF) of
NdFeB life under different stress levels is obtained and provides theoretical basis
for the reliability of NdFeB in engineering applications.
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1 Introduction

Neodymium-iron-boron (NdFeB) is a third-generation rare earth permanent magnet material that was
developed in the 1980s and successfully used in production [1]. Sintered neodymium-iron-boron is made
by using powder metallurgy and goes through the process of making the calcined material into fine
powder, pressing it into a blank, and then sintering. Because of its excellent magnetic properties, it is
widely used in computer, communication, medical, machinery, aerospace, national defense and other
fields. At present, most of the research on sintered NdFeB focuses on improving its magnetic property, so
that it can obtain higher coercive force and magnetic energy product [2,3], but few studies focus on
mechanical and fatigue damage properties. However, as NdFeB is increasingly used in motors, eddy
current dampers and other fields, it is often subjected to cyclic loads, and research on its fatigue
performance cannot be ignored.

Damage caused by repeated action of a fixed or variable amplitude load is called fatigue damage. Fatigue
damage is one of the most common failure forms of engineering structures. The evolution of fatigue damage
is an irreversible change in the microstructure of materials due to the action of external forces. The accurate
prediction of fatigue life depends on a reasonable criterion of fatigue cumulative damage [4]. With the
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gradual deepening of fatigue research, many scholars at home and abroad have proposed a variety of life
prediction theories and analysis approaches based on a large number of experiments and theoretical
studies for different research fields, industries and objects [5–8]. Typical approaches include stress-based
approach, strain-based approach, energy-based approach, and continuum damage mechanics approaches.
The above life prediction theories and approaches can be basically divided into two categories. One is
that fatigue damage evolution function is constructed directly by fitting the fatigue damage curve based
on the test data, which cannot reflect the microscopic damage accumulation process of materials. The
other is to construct a fatigue damage model based on the continuous damage theory and the dissipation
potential based on the irreversible thermodynamics framework, and then to fit and verify the fatigue
damage model based on the experimental data. The damage in this model is related to the plastic strain.
However, due to the difficulty in producing slippage and dislocation inside the sinter, NdFeB is a typical
elastic-brittle material [9] and hardly has plastic deformation during loading. Therefore, neither of the
above two types of models can well describe the fatigue damage process of NdFeB. In this paper, a new
brittle fatigue damage model is established to describe the fatigue characteristics of NdFeB based on the
mechanism of irreversible thermodynamics and damage micromechanics [10].

The fatigue studies mentioned above belong to the category of deterministic analysis and the dispersion
of fatigue life is seldom considered. In real life, some mechanical parameters of the same batch of materials
are also different due to manufacturing technology and other reasons. At the same time, it is difficult to ensure
the absolute consistency of the loading conditions during the fatigue life test, and it is also difficult to ensure
the complete uniformity of the use occasions in specific use cases. A variety of reasons ultimately lead to the
dispersion of fatigue life in fatigue test or specific use. Although deterministic analysis can describe the basic
law of fatigue damage failure, it cannot reflect the probabilistic characteristics of fatigue life. Therefore, the
introduction of probability analysis methods in fatigue life analysis and calculation has become inevitable
[11–13]. Li et al. [14] established a probability density evolution equation for the nonlinear dynamic
response of random structures based on the principle of preservation of probability. The difference
method is then used to solve the equation and the probability density function (PDF) of the response is
obtained. The proposed probability density evolution method for nonlinear dynamic response analysis of
random structures is considered to be an effective method for reliability analysis, error identification,
random vibration and seismic safety assessment [15–17]. Zhang et al. [18] applied the probability density
evolution method to the fatigue life analysis of concrete and obtained the probability density function of
fatigue life with different loading levels, which provided a new method for the uncertainty analysis of
fatigue life.

As a further exploration of this approach, this paper endeavors to obtain a probabilistic life calculation
method based on brittle fatigue damage model. The main research work of this paper is summarized as
follows: firstly, on the acquisition of NdFeB life data, this paper adopts the co-simulation method of
ABAQUS and nCode. The dynamic constitutive model of the NdFeB is determined and embed in
ABAQUS in the form of a VUMAT subroutine. Then in nCode, the calculation process is built according
to the fatigue five block diagram. After calculation, NdFeB fatigue life distribution map can be obtained
which takes the uncertainty of strain rate, the stress amplitude of load and the compressive strength limit
of the material into account. Subsequently, based on the irreversible thermodynamic theoretical
framework and damage micromechanics, a new brittle fatigue damage model based on the mechanism of
brittle damage is established to describe the fatigue characteristics of NdFeB. This is followed by
identifying the distribution of parameters in the model based on the obtained fatigue life distribution map.
Finally, the probability density evolution method is applied to fulfill the probabilistic assessment of
NdFeB fatigue life, through which a universe probability density evolution equation for NdFeB fatigue
life is developed. By solving this equation with TVD finite difference method, the PDF of NdFeB fatigue
life due to different fatigue loading levels can be obtained.
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This paper mainly does threefold contributions. Initially NdFeB is a strain rate-related material, and
accurate establishment of its dynamic constitutive model is the key to obtain life data. The ZWT
constitutive model adopted in this paper can well describe the dynamic characteristics of NdFeB. After
that, the present fatigue damage model cannot take into account the microscopic damage process of
brittle sinter. The fatigue damage model based on the brittle damage mechanism used in this paper is
expressing the evolution of damage by the growth of microcracks. It is a model derived from Meso-scale
Representative Volume Element (RVE) and established to represent the macro-scale brittle fatigue damage
model. Finally, the probability density evolution method is applied to the calculation of the life of
NdFeB. The probability density evolution equation for calculating the life of NdFeB is established and
the probability density distribution of NdFeB with the stress level is obtained.

2 Strain Rate Dependent Brittle Constitutive Model of NdFeB

There are a certain number of pores and fine cracks inside the sintered body. These defects undergo the
connection of pores and the growth of micro-cracks under pressure. This will cause a reduction in material
carrying capacity. Modified constitutive model is to introduce bearing capacity reduction factor B into the
existing constitutive model. B is a strain-related coefficient and can explain the nonlinear relationship of
stress and strain of elastic materials. The Seeger and Jhonson-Cook models, as constitutive models that
often describe metal materials, are not accurate enough in describing the mechanical properties of NdFeB.
In this paper, a one-dimensional elastic-brittle modified constitutive model and a modified ZWT
constitutive model are introduced to fit dynamic mechanical properties of NdFeB and compare.

2.1 Two Constitutive Models of NdFeB
(1) One-dimensional elastic-brittle modified constitutive model

r ¼ 1� Bð ÞEe (1)

where r is the stress and e is the strain of the material; E is the elastic modulus of the material; B is the bearing
capacity reduction factor.

B ¼ men (2)

where m is the parameter related to the strain rate; n is the strain index.

(2) Modified ZWT constitutive model

The dynamic and static mechanical properties of the sinter are quite different. The modified ZWT
constitutive model can describe the mechanical behavior under different strain rates well. It has been
widely applied in materials such as concrete, ceramics and plexiglass [19–21].

The modified ZWT constitutive model consists of a nonlinear spring and a linear Maxwell element
connected in parallel (Fig. 1), and the equation of the constitutive model is expressed as below.

r ¼ E0eþ ae2 þ be3 þ E1

Z t

0
_e exp � t � s

h1

� �
ds (3)

where E0, a and β are elastic constants of the nonlinear spring. E1 and θ1 are elastic coefficient and stress relax
time of the Maxwell element respectively, and _e is the strain rate. NdFeB is almost coincident and linear in the
initial stage under different strain rates. Therefore, the nonlinear spring only considers the primary term E0ε,
ignoring αε2 and βε3. Then the modified ZWT constitutive model can be written as

r ¼ ð1� BÞ � ðE0eþ E1

Z t

0
_e exp � t � s

h1

� �
dsÞ (4)
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2.2 Comparison of Two Constitutive Models
According to the NdFeB dynamic compression experimental curve obtained by Lei et al. [22], the two

constitutive models are fitted with the stress-strain curve in the literature by the least squares principle. The
fitting comparison are shown in Fig. 2.

When the strain rate is 1456, 1774, 2764 s−1, the correlation index R2 of the curve fitting with the one-
dimensional elastic-brittle modified constitutive model is 0.832, 0.845 and 0.744, respectively. The
correlation index R2 of the curve fitting with the modified ZWT constitutive model is 0.984, 0.986 and
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Figure 1: Physical model of ZWT constitutive
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Figure 2: The fitting and comparison of two constitutive models at different strain rates. (a) at the strain rate
of 1456 s−1. (b) at the strain rate of 1774 s−1. (c) at the strain rate of 2764 s−1
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0.983, respectively. On the whole, the modified ZWT constitutive model has a higher degree of fitting with
literature values and it can better reflect the stress-strain relationship of NdFeB under different strain rates.

r ¼ ð1� me1:00001Þ � ð40129eþ 801806

Z t

0
_e exp � t � s

5:7e�7

� �
dsÞ (5)

where

m ¼ 0:0064 _eþ 10:49 (6)

The equation should first be rewritten into an incremental form before embedded into the finite element
program. The process of establishing the incremental form will be described in detail below.

2.3 Writing and Verification of ABAQUS VUMAT Subroutine
Considering the finite deformation, the second Kirchhoff stress and Green strain are adopted to expand

the ZWT model to the three-dimensional form [23].

Sij Eij

� � ¼ E0AEkl þ
Z t

0
E1A

@Ekl

@s
exp � t � s

h

� �
ds (7)

where Sij is the second Kirchhoff stress tensor; Eij is the Green strain tensor.

In the case of small deformations, the Green strain is approximately equal to the Cauchy strain.

Eij ¼ eij (8)

Therefore the above formula (7) can be rewritten as

Sij eij
� � ¼ E0eij þ

Z t

0
E1

@eij
@s

exp � t � s
h

� �
ds ¼ E0Aekl þ

Z t

0
E1A

@ekl
@s

exp � t � s
h

� �
ds (9)

where

A ¼ 1

ð1þ lÞð1þ 2lÞ �

1� l l l 0 0 0
l 1� l l 0 0 0
l l 1� l 0 0 0

0 0 0
ð1� 2lÞ

2
0 0

0 0 0 0
ð1� 2lÞ

2
0

0 0 0 0 0
ð1� 2lÞ

2

2
666666666664

3
777777777775

(10)

where μ is Poisson’s ratio.

The process of establishing the incremental form of the second term in Eq. (9) is as follows.

Svij;ðtÞ ¼ E1

Z t

0
A
@ekl
@s

exp � t � s
h

� �
ds (11)

DSvij;ðtþDtÞ ¼ Svij;ðtþDtÞ � Svij;ðtÞ (12)

DSvij;ðtþDtÞ ¼ 1� exp �Dt
h

� �� 	� E1h
Dt � ADeðtþDtÞ

kl

� 1� exp �Dt
h

� �� 	� E1

R t
0 A

@eðtþDtÞ
kl
@s exp � t�s

h

� �
ds


 �
(13)

Converting the integral term in the Eq. (13), we obtain Eq. (14).
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E1

Z t

0
A
@eðtþDtÞ

kl

@s
exp � t � s

h

� �
ds ¼ E1h 1� exp

�t

h

� �h i
� A

DeðtþDtÞ
kl

Dt
(14)

In this way, the incremental form of the ZWT constitutive model is obtained.

DSðtþDtÞ
ij ¼ E0ADe

ðtþDtÞ
kl þ E1h� A

DeðtþDtÞ
kl

Dt
� 1� exp

�Dt

h

� �
 �
� exp

�t

h

� �
(15)

Kirchhoff stress is also called pseudo-stress and Cauchy stress is real stress. The relationship between
Kirchhoff stress and Cauchy stress is

rðtþDtÞ
ij ¼ q=q0ð ÞFðtþDtÞ

ik SðtþDtÞ
kl FðtþDtÞT

lj (16)

where σij is the Cauchy stress tensor; F is the deformation gradient tensor; the density ratio ρ/ρ0 is equal to 1
when the material is incompressible.

The expression of the bearing capacity reduction factor is

B ¼ men (17)

Since the factor is unrecoverable, it is necessary to determine whether the strain is increasing.

DBðtþDtÞ ¼ m eðtþDtÞ� �n��
eðtÞ
� �n	

DeðtþDtÞ � 0
0 DeðtþDtÞ<0

�
(18)

The incremental expression for the bearing capacity reduction factor is

BðtþDtÞ ¼ BðtÞ þ DBðtþDtÞ (19)

The expression of the stress tensor containing the bearing capacity reduction factor is

SðtÞij;d ¼ 1� BðtÞ
� �

SðtÞij (20)

The incremental form of the stress tensor containing the bearing capacity reduction factor is

DSðtþDtÞ
ij;b ¼ SðtþDtÞ

ij;b � SðtÞij;b

¼ 1� BðtþDtÞ� �
SðtþDtÞ
ij � 1� BðtÞ� �

SðtÞij

¼ 1� BðtþDtÞ� �
SðtÞij þ DSðtþDtÞ

ij

� �
� 1� BðtÞ� �

SðtÞij

¼ 1� BðtþDtÞ� �
DSðtþDtÞ

ij � ðBðtþDtÞ � BðtÞÞSðtÞij

¼ 1� BðtþDtÞ� �
DSðtþDtÞ

ij � DBðtþDtÞSðtÞij

(21)

The Kirchhoff stress is converted to Cauchy stress according to Eq. (16):

rðtþDtÞ
ij;b ¼ FðtþDtÞ

ik SðtþDtÞ
kl;b FðtþDtÞT

lj

¼ FðtþDtÞ
ik SðtÞkl;b þ DSðtþDtÞ

kl;b

� �
FðtþDtÞT
lj

¼ FðtþDtÞ
ik SðtÞkl;bF

ðtþDtÞT
lj þ 1� BðtþDtÞ

� �
� ðFðtþDtÞ

ik DSðtÞkl;bF
ðtþDtÞT
lj Þ � DBðtþDtÞ � FðtþDtÞ

ik SðtÞkl F
ðtþDtÞT
lj

(22)

Although ABAQUS has a powerful library of material constitutive models, it cannot cover all situations.
When the user needs to define the constitutive model of the material autonomously, the material subroutine
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interface VUMATof ABAQUS is needed. At the beginning of the incremental step, the main program passes
the initial values to the corresponding variables via the subroutine interface. The subroutine VUMAT
processes and updates these variables and then returns the processed variables to the main program at the
end of the subroutine [24,25]. For the modified ZWT constitutive model mentioned in this paper, the
calculation flow of ABAQUS calling subroutine is shown in Fig. 3, where the specific process of
updating the value of each variable is given by the above formula.

The modified ZWT constitutive equation was implemented in Fortran language to set up its incremental
form. As shown in Fig. 4, the numerical simulation model of a single NdFeB was established and the
subroutine was embedded into the ABAQUS solver for finite element analysis. It can be seen from Fig. 5
that the fitted values are in good agreement with the simulated values at each strain rate. This verifies the
correctness of the written subroutine.

3 Calculation of the Fatigue Life of NdFeB

3.1 Calculation Method of the Fatigue Life in nCode
It can be seen from this classic five block diagrams of the fatigue analysis in Fig. 6 that there are three

necessary pieces of information to obtain before a structural fatigue analysis. They are the cyclic load that the

Figure 3: ABAQUS calculation process of embedded material subroutine
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structure bears, the geometry of the structure, that is, the results of finite element analysis, and the fatigue
performance of the structural material. Relevant fatigue life or damage analysis can be performed based
on this and the calculation results can be evaluated and analyzed in post-processing.

Figure 4: Uniaxial compression model of a single permanent magnet
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Fig. 7 shows the co-simulation of ABAQUS and nCode. The first is to input the results of the finite
element calculation into nCode. The results include not only the stress and strain information, but also the
load curve. The load curve enters nCode step by step as the initial condition for fatigue calculation. There
is no need to define an additional load spectrum. According to the five block diagrams of fatigue
analysis, the Co-simulation process built in nCode is shown in the figure. Firstly the result file is
imported from ABAQUS into nCode. Secondly the fatigue properties of the material are defined. Finally,
the results are presented as cloud maps and numerical values after calculations.

3.2 Co-Simulation Calculation and Results
The dispersion of fatigue life is an inevitable problem in the actual fatigue test even if the same batch of

test pieces is used and under the same loading conditions. The reasons for the dispersion of fatigue life are
quite complex. In this paper, the effects of loading rate, stress amplitude and random distribution of
compressive strength limit on life are mainly considered. According to the constitutive model in the first
section, NdFeB is a strain rate-dependent material. The dispersion of the loading rate and the dispersion
of the stress amplitude will cause the dispersion of the finite element results. The compressive strength
limit is an inherent property of the material and an important parameter for the fatigue performance of the
material. It is difficult to unify product attributes due to the difficulty in completely unifying specific
production processes. Comprehensive consideration of the distribution of loading rate, stress amplitude,
and compressive strength limit will reflect the causes of fatigue life dispersion to a certain extent and
make the life calculation result more realistic.

Random sampling was performed using the optimal Latin hypercube sampling method for strain rate,
stress amplitude, and compressive strength limit. The parameter ranges are shown in Tab. 1.

Figure 7: The fatigue analysis process in nCode

Table 1: Parameter distribution at different stress levels

Stress level
(Dr=fc)

Stress amplitude Strain rate Compressive strength limit

0.95 846.45 MPa~863.55 MPa 1000 s�1~3000 s�1 870 MPa~1000 MPa

0.90 801.90 MPa~818.10 MPa

0.85 757.35 MPa~772.65 MPa

0.75 668.25 MPa~681.75 MPa
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The loading stress amplitudes are divided into four stress levels of 0.95, 0.90, 0.85 and 0.75, respectively
(fc ¼ 900MPa). The sampled random parameters are substituted into the model in Section 2.1 for calculation
and the calculated results are shown in Figs. 8 and 9.

4 Brittle Fatigue Damage Model of NdFeB

4.1 Fatigue Damage Evolution Model Based on Brittle Damage Mechanism
Starting from the Meso-scale Representative Volume Element (RVE) in Fig. 10, microcrack growth is

used to represent the evolution of damage in RVE and the classic crack growth law (Paris formula) is
assumed to be suitable for crack growth in mesoscopic RVE, then a brittle fatigue damage model that can
represent the macro scale can be established.

The microscopic RVE damage D is defined as the average value of all microelement damages. At the
same time, it is considered that the specimen breaks when the area of all microcracks is equal to the RVE
surface area, that is
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Xn
i¼1

si ¼ L2 ! D ¼ 1 (23)

The damage of RVE is simplified as

D �
Xn
i¼1

si

 !
=L2 (24)

Assuming that the crack surfaces of all microelements are equal, then

�s ¼
Xn
i¼1

si

 !
=n;D � n�s

L2
(25)

Using the macro Paris formula:

da

dN
¼ cðDKÞg

K ¼ Fr
ffiffiffiffiffiffi
pa

p

DK ¼ Kmax � Kmin ¼ FDr
ffiffiffiffiffiffi
pa

p
(26)

where da=dN means the crack growth rate, a is the crack length, N is the cycles, c and g are material
parameters, F is the geometric shape factor, r and Dr are nominal stress amplitude and stress amplitude
at crack, Kmax and Kmin are the maximum and minimum values of the intensity factor at the crack,
respectively. According to the strain equivalence principle, the nominal stress in the formula is replaced
with the effective stress which is �r ¼ r=ð1� DÞ. At the same time, the Paris formula can be regarded as
the integral of the rate equation of a cycle, that is

da

dt
¼ _a ¼ cg�Kg�1 _�K ¼ cg�Kg�1ðF _�r

ffiffiffiffiffiffi
pa

p Þ (27)

The crack width of the micro-element is defined as e and the derivative is obtained

L

L

Micro element

Microcrack

d

Figure 10: The Meso-scale representative volume element
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D � nea

L2
;
dD

dt
� ne _a

L2
(28)

Combine formulation (26)–(28):

dD

dN
¼
Z
cycle

_Ddt ¼
Z Dr

0

necgðpaÞg=2Fg

L2ð1� DÞg rg�1 _rdt ¼ necðpaÞg=2Fg

L2ð1� DÞg ðDrÞg (29)

According to formula (28), a ¼ L2D

ne
can be obtained. Substituting A ¼ cpg=2Fg

ðneÞg=2�1
Lg�2 into Eq. (29) and

it can be rewritten as

dD

dN
¼ A

Dg=2

ð1� DÞg ðDrÞ
g (30)

When integrating the above formula, substitute Dg=2 approximately as ðN=Nf Þg=2 into it and Nf can be
formulated as follows:

ð1� DÞgdD ¼ AðN=Nf Þg=2ðDrÞgdN
�! Nf ¼ gþ 2

2AðDrÞgðgþ 1Þ

4.2 Parameter Distribution Identification of Brittle Fatigue Damage Model
It can be seen from the comparison between the model fitting value and the simulation mean that fatigue

damage evolution model based on brittle damage mechanism has good fitting accuracy for the fatigue life of
permanent magnets (Fig. 11). At the same time, the change in the value of g and A causes the dispersion of the
fatigue life curve. The parameter distribution of g and A will be used to describe the dispersion of external
conditions and the resulting dispersion of fatigue life.

According to the fatigue damage evolution model of brittle materials described in Section 3.1, it can be
seen in Fig. 12 that under the same stress level, the fatigue life will change according to the two parameters g
and A. In order to identify these two parameters, the identification criteria are defined as follows
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DN ¼ Nmodelj � NFEM j ! 0 (32)

whereNmodel is the predicted value of the fatigue damage evolution model andNFEM is the calculated value of the
finite element model. By adjusting the values of and two parameters, make Nmodel and NFEM as close as possible.
Obviously, the parameter identification problem can be transformed into an optimization problem as follows:

f ðg;AÞ ¼ ðNmodel � NFEM Þ2 (33)

The genetic algorithm toolbox provided by Matlab is used to optimize the above equations. The
optimized results are the values of the parameters. Each finite element life result corresponds to a set of g
and A values. All identified values are statistically processed and the results of parameter identification
are shown in Fig. 13 and Tab. 2.
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Figure 13: Distribution of g and A

Table 2: Identification results of g and A

Parameter Distribution type Mean value The standard deviation

g Normal distribution 20.494 1.4875

A Normal distribution 0.015 0.0021
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5 Probabilistic Life Analysis of NdFeB

5.1 Probability Density Evolution Method (PDEM)
In a random system, the randomness of the initial conditions is included in the random parameters �. In

this case, the solution X ðtÞ must depend on �, can be written as

XðtÞ ¼ GðΘ; tÞorXjðtÞ ¼ Gjð�; tÞj ¼ 1; 2;…; n (34)

where XðtÞ ¼ ðX1ðtÞ;X2ðtÞ;…;XnðtÞÞ represents the state vector, Θ ¼ ð�1;�2;…;�sÞ represents random
vector and t is generalized time. Similarly, its generalized velocity should also be a function of Θ and can
be formulated as follows:

_XðtÞ ¼ HðΘ; tÞ ¼ @GðΘ; tÞ
@t

(35)

In engineering, it is not only the displacement, velocity and acceleration responses of the system that are
often concerned, but also other physical quantities such as stress and strain at key points that may be of great
interest. Generally speaking, these physical quantities can be determined by the displacement and velocity of
the structure. Mark Z ¼ ðZ1;Z2;…;ZmÞ as the quantity of interest and its generalized velocity can be given by
_ZðtÞ ¼ w½XðtÞ; _XðtÞ� (36)

where wðÞ is a transformation operator from state vectors to physical quantities of interest. Combining (34)
and (35), we have

_ZðtÞ ¼ w½Gð�; tÞ;Hð�; tÞ� ¼ hð�; tÞ (37)

For convenience, ðZðtÞ;ΘÞ is considered as a conservative stochastic system and its joint probability
density function (PDF) is defined as pZ�ðz; h; tÞ. ðZðtÞ;ΘÞ 2 �t � �hgf is a random event on the system,
where �h represents an arbitrary subdomain of the distribution domain of Θ, and �t denotes the
distribution domain of Z at time t. After a small time increment dt, the event evolves into
ðZðt þ dtÞ;ΘÞ 2 �tþdt � �hgf . According to the principle of preservation of probability,

Pr ðZðtÞ;ΘÞ 2 �t � �hf g ¼ Pr ðZðt þ dtÞ;ΘÞ 2 �tþdt � �hf g (38)

It is rewrite in mathematical form asZ
�t��h

pZ�ðz; θ; tÞdzdθ ¼
Z
�tþdt��h

pZ�ðz; θ; t þ dtÞdzdh (39)

After further derivation by Li et al., the probability density evolution equation is given as follows

@pZ�ðz; θ; tÞ
@t

þ
Xm
l¼1

hlðθ; tÞ@pZ�ðz; h; tÞ
@zl

¼ 0 (40)

pZ�ðz; h; tÞ can be obtained by solving the above equation and pZðz; tÞ can be obtained by integrating
pZ�ðz; h; tÞ.

pZðz; tÞ ¼
Z
�h

pZ�ðz; h; tÞdh (41)
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5.2 Probability Density Evolution Equation for NdFeB Fatigue Life and Its Solution Procedure
Based on the above generalized probability density evolution, the probability density evolution equation

for fatigue life is established. The stress amplitude Dr is taken as the independent variable and the fatigue life
of NdFeB Nf as the dependent variable. The fatigue life distribution will be given based on the stress
amplitude Dr. According to the introduction above, the stochastic fatigue life Nf can be written as:

Nf ¼ Nf ðΘ;DrÞ (42)

In which Θ ¼ Θðg;AÞ.
Substituting Formula (42) into Eq. (40), the fatigue life evolution equation applicable to this article can

be written as

@pNΘðNf ;Θðg;AÞ;DrÞ
@Dr

þ @Nf ðΘðg;AÞ;DrÞ
@Dr

� @pNΘðNf ;Θðg;AÞ;DrÞ
@Nf

¼ 0 (43)

The procedures to solve the Eq. (43) and the Eq. (40) are similar, it can generally be divided into four
steps. Without loss of generality, the solution of Eq. (40) is given in Fig. 14.

(1) Select points in the probability space and determine their assigned probability.

A series of representative discrete points are selected from the distribution space �� of random vectorΘ
and denoted as

Θq ¼ ðhq;1; hq;2;…; hq;sÞ; q ¼ 1; 2;…; ns (44)

where ns is the total number of the selected points. The assigned probability of each point in the point set is
calculated through the following equation

Pq ¼
Z
Vq

pΘðhÞdh; q ¼ 1; 2;…; ns (45)

where Vq represents the volume of the selected point in the distribution space.

q ns

Start

Y

End

N

q q+1

Select points in the probability space 

and determine their assigned probability

Solve deterministic systems

Solve the generalized probability density 

evolution equation

Integral sum

Figure 14: The solution flow of probability density equation
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(2) Solve deterministic systems.

For a given point Θ ¼ hq, solve deterministic Eq. (31) and we can get the generalized velocity, _Zjðhq; tÞ,
at the same time.

(3) Solve the generalized probability density evolution equation.

With the representative point set and the assigned probability from (1), the Eq. (40) can be rewritten as
the following discrete form

@pZΘðz; hq; tÞ
@t

þ
Xm
l¼1

hlðhq; tÞ @pZΘðz; hq; tÞ
@zl

¼ 0

q ¼ 1; 2;…; ns

(46)

Note the initial conditions as

@pZΘðz; hq; tÞ
��
t¼t0

¼ dðz� z0ÞPq (47)

Introducing the generalized velocity obtained from (2) into Eq. (46) and the TVD finite difference
method is used to solve the equation.

(4) Integral sum.

For each discrete representative point, the corresponding @pZΘðz; hq; tÞ can be achieved by the above
solution step and PZðz; tÞ can be achieved by integrating q from 1 to ns.

pZðz; tÞ ¼
Xns
q¼1

pZΘðz; hq; tÞ (48)

5.3 Calculation of NdFeB Fatigue Life Distribution
The analyzed results are shown in Figs. 15–17. Fig. 15 is a 3d cloud image of stress loading level, life

and corresponding probability density. Fig. 16 is a top view of Fig. 15. Fig. 16 shows the value of probability
density in color. Fig. 17 shows the probability density distribution of different life spans at stress levels of
0.75, 0.78, 0.80 and 0.85.

Figure 15: 3d cloud image of life distribution
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Figure 16: 2d curve of life distribution

Figure 17: PDF contour for different stress levels
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As can be seen from Figs. 15 and 16, the overall life decreases with the continuous increase of the stress
loading level. At the same time, it can be seen that the initial rate of decline is faster, and the decrease range
tends to be flat after the stress level is further increased. It is further found from Fig. 17 that when the stress
level is high, the probability density distribution of life is more compact, while the life is more dispersed
when the stress level is low. The lifetime distribution of NdFeB obtained by solving the probability
density evolution equation can provide a theoretical basis for the reliability analysis of the lifetime of
permanent magnets in engineering.

From the comparison between the simulation value and the results predicted by the probability density
evolution method in Fig. 18, the mean value and standard variance value are all close. The prediction method

Figure 19: Full-text computing flow chart
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in this paper can reflect the simulation data to a certain extent. And from the simulation data, the life under
other stress amplitudes can also be effectively predicted, which provides a theoretical basis for the reliability
of NdFeB in engineering applications.

6 Conclusion

This article aimed to explore the probabilistic life calculation method of NdFeB based on brittle fatigue
damage model. The computing flow chart of the whole paper is shown in Fig. 19. The following conclusions
can be drawn:

1. ZWT constitutive model considering strain rate is established, and based on this, a numerical co-
simulation model for NdFeB life calculation is constructed. The life distribution diagram of
NdFeB under different stress levels is obtained after simulation.

2. Using the irreversible thermodynamics theoretical framework and starting from the micro damage, a
fatigue damage evolution model based on the brittle damage mechanism is established. Then the
parameters in the model are identified according to the life distribution diagram of NdFeB, and
the parameter distribution of the damage evolution model when applied to NdFeB is obtained.

3. The probability density evolution equation of NdFeB life calculation is established and solved. PDF
of NdFeB life under different stress levels is obtained and provides theoretical basis for the reliability
of NdFeB in engineering applications.
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