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Abstract: With serious cybersecurity situations and frequent network attacks, the demands 
for automated pentests continue to increase, and the key issue lies in attack planning. 
Considering the limited viewpoint of the attacker, attack planning under uncertainty is 
more suitable and practical for pentesting than is the traditional planning approach, but it 
also poses some challenges. To address the efficiency problem in uncertainty planning, we 
propose the APU-D* Lite algorithm in this paper. First, the pentest framework is mapped 
to the planning problem with the Planning Domain Definition Language (PDDL). Next, 
we develop the pentest information graph to organize network information and assess 
relevant exploitation actions, which helps to simplify the problem scale. Then, the APU-
D* Lite algorithm is introduced based on the idea of incremental heuristic searching. This 
method plans for both hosts and actions, which meets the requirements of pentesting. With 
the pentest information graph as the input, the output is an alternating host and action 
sequence. In experiments, we use the attack success rate to represent the uncertainty level 
of the environment. The result shows that APU-D* Lite displays better reliability and 
efficiency than classical planning algorithms at different attack success rates. 
 
Keywords: Attack planning under uncertainty, automated pentest, APU-D* Lite algorithm, 
incremental heuristic search. 

1 Introduction 
In addition to benefiting from the convenience provided by the development of state-of-
the-art network services, we must address the corresponding serious security challenges. 
Conventional network security defense methods include firewalls, IDS, and antivirus 
software. These methods work in a passive way from the perspective of the defender. As a 
result, they are not sufficient for meeting the high demands of cybersecurity [Bertoglio and 
Zorzo (2017); Felderer, Büchler, Johns et al. (2016)]. 
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Pentesting is an active defense method that involves analyzing network vulnerabilities and 
detecting potential attacks from the perspective of the attacker, and it provides a reference 
for developing defense strategies. However, pentesting is mainly performed manually, so 
the effect largely depends on the experience and skill level of the cybersecurity experts 
involved. With the increasing complexity of network structures and the rapid evolution of 
attack vectors, the requirements for pentest experts are increasing, and tasks are becoming 
more difficult. Automation may provide a solution to these issues. Automated pentesting 
not only comprehensively considers network security and rationally but also helps to 
reduce costs and resources, which is significant for the development and popularization of 
pentesting [Chen, Chen and Zhang (2014); Xiong, Yang, Zhao et al. (2017); Xu, Tao, Yang 
et al. (2019)]. 
During pentesting, the attacker probes information from the target network, analyzes the 
known information, decides which hosts to attack and which strategies to use, and finally 
attacks the target. The sequence of compromised hosts and exploit actions can be seen as an 
attack path from the attacker to the target. Therefore, the critical issue in automated pentesting 
is finding a feasible attack path, which is also called attack planning. Usually, attack planning 
involves mapping pentest tasks into planning problems and then using planning algorithms 
to solve the problems and find suitable attack paths. Most existing studies of attack planning 
have been based on the assumptions of a static environment and complete information. 
However, these factors can influence the availability of planning results because changes 
may occur in the network at any given time; additionally, an attacker can rarely know every 
detail about the target network. Additionally, most previous studies only analyzed the 
theoretical feasibility of attack planning and ignored the verification of planning results and 
availability in realistic tasks [Ramos, Lazar, Filho et al. (2017)]. 
In the context of the problems mentioned above, this paper proposes an uncertainty attack 
planning algorithm APU-D* Lite. First, we transform the pentest framework into a 
planning problem with Planning Domain Definition Language (PDDL). Next, we propose 
the pentest information graph to arrange useful information and reduce the problem scale, 
which functions as the input of the subsequent algorithm. Then, the APU-D* Lite algorithm 
is proposed based on the concept of incremental heuristic searching, and attack action 
planning is implemented. Finally, the sequence of node-action alternations is output to 
achieve attack planning in an uncertain environment. 
The structure of this paper is as follows. Section 2 mainly introduces the related research 
in attack planning. Section 3 is the main part of this paper and presents the PDDL 
description of the pentest framework; additionally, the pentest information graph is 
proposed, and the details of the APU-D* Lite algorithm are introduced. In Section 4, a 
comparative experiment is performed in a typical internal network. The results and 
performance of APU-D* Lite and three classical planning algorithms are compared at 
different attack success rates, and the results verify the feasibility and effectiveness of the 
APU-D* Lite algorithm. 

2 Related work 
AI planning is one of the most important components of artificial intelligence. It involves 
analyzing the relevant environmental information, making an inferential judgment 
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according to feasible actions and resource limitations, and finally selecting the action 
sequence to achieve the objective. The related research originated in the late 1960s [Bozic 
and Wotawa (2017); Grant (2018)]. 
The concept of attack planning was first proposed in 2003 [Futoransky, Notarfrancesco, 
Richarte et al. (2003)]. A conceptual model was established from the perspective of attackers, 
and it defined the concepts of attacks, assets, actions, and targets in network security. In 2005, 
Boddy et al. [Boddy, Gohde, Haigh et al. (2005)] used AI planning in network security for the 
first time; in their approach, network vulnerability analysis was regarded as a planning problem 
to establish a Behavior Adversary Modeling System (BAMS), which was used for Course of 
Action (COA) generation, and the feasibility of attack planning was verified in a simple web-
based file management system network. In 2009, Sarraute [Sarraute (2009)] formally proposed 
the idea of applying attack planning in pentesting. In 2013, Obes et al. [Obes, Sarraute and 
Richarte (2013)] implemented attack planning using the Metric-FF and SGP algorithms and 
verified the efficiency of attack planning for medium-sized networks. However, the research 
above regarded the studied network as a static environment and ignored its dynamic 
characteristics, such as software updates and host crashes. To consider uncertainty, in 2011, 
Sarraute et al. [Sarraute, Richarte and Obes (2011)] proposed an algorithm for attack planning 
based on probability planning. In this method, the uncertainty of pentesting was considered in 
the attack action success rate, and two primitive functions, choose and combine, were proposed 
for the selection of actions and strategies. Furthermore, in 2012, Sarraute et al. [Sarraute, Buffet 
and Hoffmann (2012); Sarraute, Buffet and Hoffmann (2013)] modeled pentesting as a partially 
observable Markov decision process (POMDP), which was a more accurate method than 
probability planning. The model accurately described the uncertainty in attack planning and 
considered information collection as a part of the attack action. However, this method has 
limitations related to the solution efficiency, which has led to restricted application. While 
academic research on automatic attack planning continues to expand, commercial applications 
involving attack planning have also been continuously explored. Core Impact [Sarraute (2013)] 
have been actively involved in research related to attack planning and applied the results to 
improve business pentesting tools. 
The existing research on attack planning can mainly be divided into two classes: 
deterministic planning and planning under uncertainty. Deterministic planning, also known 
as classical planning, mainly solves planning problems in static, deterministic and 
completely observable environments with relatively simple domains. The algorithm 
systems are relatively well developed in this class, and they include A*, HSP, FF, and other. 
Most early studies of attack planning fall within this class. However, from the attacker’s 
perspective, pentesting provides incomplete information acquisition, and it is difficult to 
determine the action effects. However, these factors are ignored in classical planning, 
which may fail when implementing the planning results in actual tasks. Planning under 
uncertainty is more suitable for dynamic, partially known environments, such as those 
associated with pentesting. This approach provides a way to address and analyze uncertain 
action effects and incomplete information. Therefore, the planning result is relatively 
adaptable. One method of attack planning under uncertainty involves the use of POMDP 
to model attack planning problems, in which uncertainty is described based on the 
probability distribution of the states and the best action is given based on different 
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observations. However, the efficiency of POMDP becomes a constraint to its application 
to some extent. 
In 2002, Koenig and Likhachev proposed the D* Lite algorithm. D* Lite is a reverse 
incremental heuristic algorithm. With reverse searching, this approach records the distance 
from the goal node to the current node, thus making it possible to rapidly deal with 
unknown information and dynamic changes. In an incremental search, the agent moves 
forward according to the calculated shortest path, and the starting point is constantly 
updated based on the current node, which greatly reduces the scope and time of replanning 
[Koenig and Likhachev (2005)]. If the environment changes or new information is detected, 
the estimates of the heuristic function are updated, and the shortest path is recalculated. 
However, the D* Lite algorithm has problems when directly applied for attack planning. 
Notably, the D* Lite algorithm often uses grid maps as inputs, but the environmental 
information in pentests is complicated and unlike that in traditional maps. Additionally, in 
D* Lite algorithm, there is only one action: move to the next position. However, in a pentest, 
there are many vulnerabilities to consider, and the large action space can reduce algorithm 
efficiency. Finally, the original D* Lite method just needs to choose the position to move 
to; thus, the result is a sequence of nodes. However, in attack planning, it is important to 
choose the most suitable exploit action and host to compromise. Therefore, the result of 
attack planning for pentesting should be a node-action alternating sequence. 
The main contribution of this paper is the development of the APU-D* Lite algorithm, 
which can quickly and efficiently perform attack planning under uncertain conditions. 
Considering the uncertain factors in pentests, the APU-D* Lite algorithm is more practical 
than deterministic attack planning algorithms. Additionally, based on the idea of 
incremental heuristic searching in the D* Lite algorithm, the APU-D* Lite algorithm 
performs better than existing POMDP-based algorithms in dealing with unexpected 
problems in the execution of planning results in a timely manner. 

3 APU-D* Lite attack planning algorithm 
3.1 The PDDL description 
PDDL language was proposed as a standard language in the International Planning 
Competition (IPC) in 1998 [Pellier and Fiorino (2018)]. This language is widely used for 
planning problem descriptions. PDDL consists of two files: domain.pddl and problem.pddl. 
The domain.pddl file mainly describes background knowledge, and the problem.pddl file 
mainly describes the specific task information, including objects, initial states, and goals. 
Existing studies have shown that there is a mapping relationship between the PDDL and 
the pentest framework (Fig. 1) [Obes, Sarraute and Richarte (2013)]. 
The core of the pentest framework consists of exploit and attack modules and an attack 
workspace, which correspond to the PDDL description of the actions and initial conditions and 
goals, respectively. The exploit and attack modules are mainly composed of various 
vulnerability exploits and attack scripts, which can be transformed into actions in the 
domain.pddl file. The attack workspace is mainly the description of the network initial 
conditions and goals, which can be transformed to fit the task description in problem.pddl file. 
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Figure 1: Pentest framework mapping to the PDDL description 

 

Figure 2: Example of a PDDL description 

Furthermore, the domain description can be obtained with vulnerability libraries and pentest 
tools, such as Common Vulnerabilities and Exposures (CVE) and Metasploit. An attack 
action consists of the corresponding name, preconditions, effects, and cost. For example, the 
attack action of Eternal Blue vulnerability can be represented as shown in Fig. 2(a). 
The task description includes initial conditions and pentest targets, which are expressed by 
first-order predicate logic. The initial conditions include the node states, network 
interconnections, and configurations of hosts, and the target can usually represent the 
intrusion into a host. The initial information for a network can be represented as shown in 
Fig. 2(b). 

3.2 Pentest information graph 
The pentest information graph is a directed acyclic graph that can be represented as a tuple 

, ,G V E O=< > , where: 

 1 2{ , , , , }start goalV v v v v= …  is a finite set of nodes in the graph that represents all the hosts 
in the network, startv  is the node that represents the attacker when pentest starts, and 

goalv  is the goal to achieve; 

 { | , , }ij i jE e v v V i j= ∈ ≠   is a finite set of edges in the graph that represents the 
connected relations between hosts. The edge start point is the one that is closest to the 
attacker, and the distance can be referred to as a hop. The other point is the end point; 

 1 2 3{ , , , }O o o o= …  is a finite set of all attack actions in the graph. 
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A node can be represented as { , , }iv id rhs g= , where id  is the identifier, rhs indicates the 
minimal accumulated cost from the goal to the current node via the corresponding 
successor, and g  indicates the accumulated cost from the goal to the current node. 
Additional details of rhs and g  are given in Section 3. 

An action can be represented as { , , , }o name pre eff cost= , where name  is used to identify 
different actions; pre represents the preconditions that must be satisfied before execution;
eff  is the effect of the action; and cost is the price associated with performing the action. 

An edge can be represented as , ,ije Ops cost minop=< > , which starts from iv  and ends at 

jv . 1 2 3{ , , , }Ops o o o= … is a finite set of available attack actions for host jv , which can be 
obtained by reasoning according to the host configurations and action preconditions; cost  
is the minimal action cost among those for all Ops ; and the corresponding action is minop . 

.. ( ( ))
ijij o e Opse minop argmin cost o∈=    (1) 

. ( . )ij ije cost cost e minop=    (2) 

The steps required to build the pentest information map are as follows. 
 Obtaining all attack actions: All the actions can be obtained according to domain.pddl. 
 Determining nodes: All the hosts and configurations are listed in problem.pddl, which 

includes the IP address, operating system type, port situations, software configurations, 
etc. 

 Determining edges: Edges are primarily formed based on the connectivity 
relationships between hosts. Then, the Ops , minop  and cost  attributes of edges are 
determined based on host configuration and available exploitation actions. 

By constructing the pentest information graph, the initial information is well organized and 
can be used for establishing potential attack actions. In this way, irrelevant actions do not have 
to be considered, so the planning space is greatly reduced. The pentest information graph 
compactly shows known information and establishes a “map” to provide a suitable data 
structure for subsequent planning algorithms, thus making it ideal for practical applications. 

3.3 APU-D* lite algorithm 
Considering the insufficiency of the D* Lite algorithm, this paper proposes the APU-D* 
Lite attack planning algorithm. This algorithm includes the following improvements based 
on the original method. 
 Add planning steps for attack actions. The corresponding result is a node-action 

alternating sequence. 
 Add function ( , )UpdateEdge e o  to update the edges in the pentest information graph 

when an attack fails. 
 Design a heuristic function suitable for attack planning. Maintain fcost , the global 

minimum cost of actions and hop , the distance from the start point to the current node, 
which are used to calculate the heuristic value: 
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0
( )

( . 1) .
start

f start

v v
h v

v hop cost e cost v v
=

=  − ⋅ + ≠
   (3) 

In the pentest information graph, V  is the finite set of all the nodes, for which startv  is the 
start point and goalv  is the target. For any v V∈ , ( )pre v  and ( )succ v  represent the 
predecessors and successors of v , respectively, and satisfies ( )pre v V⊂ and ( )succ v V⊂ . 

( , ) [0, )c v v′ ∈ ∞  represents the path cost between v  and v′ . Specifically, ( , )c v v′ = ∞  
indicates that there is no path between v  and v′ . 
APU-D* Lite involves reverse searching. Therefore, ( )g v  is the accumulative cost from 

goalv  to v . ( )rhs v  indicates the minimal accumulative cost from goalv  to v  for ( )v succ v′∈ , 
which can be calculated as follows. 

( )

0
( )

( ( ) ( , ))
goal

v succ v goal

v v
rhs v

min g v c v v v v′∈

=
=  ′ ′+ ≠

  (4) 

The nodes in the graph can be divided into two classes according to the relation between 
( )g v  and ( )rhs v . If ( ) ( )g v rhs v= , v  is locally consistent; otherwise, it is locally 

inconsistent. Furthermore, inconsistency falls into two classes: underconsistency and 
overconsistency. Underconsistency occurs when ( ) ( )g v rhs v< , and overconsistency 
occurs when ( ) ( )g v rhs v> . Underconsistency indicates that the cost of reaching the node 
increases, thereby suggesting that there is an obstacle in the path and replanning is needed. 
The priority queue U  is used to deal with the inconsistent nodes to be extended. The 
relation 1 2( ) [ ( ), ( )]key v key v key v=  is used as the priority, and all the nodes in U  are sorted 
in ascending order. For any two nodes v  and v′ , only when 1 1( ) ( )key v key v′<  or 

1 1 2 2( ) ( ) and ( ) ( )key v key v key v key v′ ′= < , ( )key v is less than or equal to ( )key v′ . ( )key v  
can be calculated as follows. 

1

2

( ) ( ( ), ( )) ( )
( ) ( ( ), ( ))

key v min g v rhs v h v
key v min g v rhs v

= +
=





   (5) 

where ( )h v  is a heuristic function, which is shown in Eq. (3), representing the estimated 
cost from the start node to the current node. The heuristic function must satisfy the two 
conditions below. 

( ) 0
, ( ), ( ) ( , ) ( )

starth v
v V v pre v h v c v v h v

=
 ′ ′ ′∀ ∈ ∈ ≤ +

   (6) 

Clearly, Eq. (3) satisfies the first condition. Since fcost  is the global minimum action cost, 

. ( , )ve cost c v v′ ′=  and .v fe cost cost′ ≥  hold. Therefore, Eq. (3) satisfies the conditions in 
Eq. (6). 
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Because the attack action may fail during actual execution, the APU-D* Lite algorithm 
includes the ()UpdateEdge  function. If an action fails, the ()UpdateEdge  function is called 
to double the action cost instead of directly setting the cost to infinity, and the minop  and
cost  values of that edge will be recalculated. Therefore, the cost of an action exponentially 
increases as the number of failures increases, and the action with the smallest value may 
change after a failure. With this mechanism, it is possible to avoid repeated action failure, 
and it is not immediately assumed that the action failed for accidental reasons. 
The pseudocode of the APU-D* Lite algorithm can be seen in Algorithm 1. 
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The APU-D* Lite algorithm first calls function ()Initialize , which creates an empty 
priority queue U , sets g  and rhs  for all nodes to infinity, and calculates the minimum 
cost and optimal action for all edges. Next, ()ComputerShortestPath  is called to calculate 
the shortest path. Starting from goalv , this function continuously processes the nodes in the 

priority queue U  in order and updates g for each node. When the function ends, the 
shortest path is stored in the g  sets of nodes. Then, in the ()Main  function, the attacker 
starts from startv ; the next node is then calculated by Eq. (7), and the minop  function of

start nextv ve  is executed. 

( ) ( ( ) ( . )next u succ u uuv argmin g u e cost′ ′∈ ′= +    (7) 

If successful, startv  is updated by nextv ; otherwise, ( )nextUpdateVertex v  and 
( , )

start nextv vUpdateEdge e minop  are called to update the configuration of the related edge 
and nodes. 

4 Experiment 
To verify the availability and efficiency of APU-D* Lite, this paper compared APU-D* 
Lite with the A*, FF, HSP algorithms under different levels of uncertainty. Here, the 
success rate of attack action is used to represent the uncertainty level. For a typical internal 
network, APU-D* Lite, A*, FF, and HSP are compared based on the attack path cost, the 
number of extended nodes, the replanning time, and memory usage. 
The attack path cost is the sum of the action costs for an attack path. The explored nodes 
is the number of the visited nodes during the run time. The replanning time indicates how 
many times the function ()CalculateShortestPath  is called, which is related to action 
failures and increases with decreasing action success rate. The memory usage reflects the 
memory consumption of the algorithm. 

 
Figure 3: Network topology 
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The network topology of this experiment is shown in Fig. 3. The attacker is initially 
connected to the DMZ zone of the internal network, and the goal is to compromise host 2-
2. The internal network includes the DMZ zone, subnet 1 and subnet 2. The DMZ is 
connected to subnet 1, and the subnet 2 network is only accessible via subnet 1. There is a 
possibility for an attacker to invade the internal network. First, the attacker needs to 
compromise one of the hosts in the DMZ and then use the compromised host as a 
springboard to attack hosts in the subnet 1 network. Likewise, attackers could further attack 
subnet 2 and eventually compromise the target host 2-2. 
The configurations of each host are listed in Tab. 1. 

Table 1: Host configurations 
Host Vulnerabilities 

Attacker — 
MailServer CVE20052287 
FTPServer CVE20082161, CVE20093023, CVE20126066 
WebServer CVE20091151, CVE20125613 

Host 1-1 CVE20103964, CVE20090183, CVE20075243 
Host 1-2 CVE20103964, CVE20126066 
Host 2-1 CVE20121182, CVE20177494 
Host 2-2 CVE20102729, CVE20178895, CVE20122288 

In this experiment, a total of 6 different exploit success rates were set from 100% to 50%, 
and four algorithms were compared based on different attack action success rates. Each 
group of experiments involved 12,000 repeated tests, and abnormal results were excluded. 
The experimental results are as follows. 
As shown in Fig. 4(a), since the failure of an attack action leads to an increase in the action 
cost, when the action success rate decreases continuously and the number of action failures 
increases, the total cost of the attack path also increases. In the static environment, when 
the action success rate is 100%, the total path cost of each algorithm is the same, indicating 
that the results of the APU-D* Lite algorithm are not worse than those of other classical 
algorithms in deterministic environments. As the success rate declines, the total path cost 
of each algorithm increases. The path cost of FF increases fastest, followed by those of the 
A* and HSP algorithms. The cost of the APU-D* Lite algorithm increases the slowest. 
As shown in Fig. 4(b), the number of extended nodes increases as the success rate decreases. 
The number of extended nodes of FF is initially significantly larger than the numbers for 
the other three algorithms, and this number also grows faster than those for the other 
algorithms. In the deterministic environment, the A* and HSP algorithms have the fewest 
extended nodes, and the APU-D* Lite algorithm is centered. However, as the success rate 
of attack actions decreases, the number of extended nodes in the A* and HSP algorithms 
increases slightly, but the nodes in the APU-D* Lite algorithm remain almost unchanged. 
When the attack success rate is less than 70%, the number of extended nodes in the A* and 
HSP algorithms begins to exceed the number in APU-D* Lite. 
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Figure 4: Comparisons of four planning algorithms 

As shown in Fig. 4(c), in the deterministic environment, the replanning time for each 
algorithm is 1. As the success rate of attack actions decreases, the number of action failures 
increases, as does the replanning time for each algorithm. The A* and HSP algorithms have 
the fastest growth rates, and the FF algorithm and APU-D* Lite have similar growth rates. 
The growth rate of the FF algorithm is slightly larger than that of the APU-D* Lite 
algorithm. When the attack success rate drops to 50%, the performance of APU-D* Lite is 
similar to that of FF. The replanning times of the A* and HSP algorithms are approximately 
twice that of the APU-D*Lite algorithm. 
As shown in Fig. 4(d), the memory usage of each algorithm is not affected by the change 
in the attack success rate. When the attack success rate is between 100% and 80%, the 
memory usage of the A*, HSP, and FF algorithms largely stays the same; when the success 
rate is less than 80%, the memory usage of these three algorithms starts to increase slightly. 
However, the memory usage of the APU-D* Lite does not notably increase as the success 
rate decreases. Moreover, the memory usage of the APU-D* Lite algorithm is always 
approximately half that of the other algorithms. 
Since the APU-D* Lite algorithm adopts the idea of incremental planning, the start point is 
continuously updated to the current position. When an action fails, the algorithm does not 
need to consider the previous paths and only needs to adjust the subsequent path starting from 
the current location. Therefore, the APU-D* Lite algorithm does not have to start from the 
initial position, so the problem size tends to decrease, as does the length of the planning result. 
These factors allow the APU-D* Lite algorithm to experience fewer failures than the other 
algorithms at the same attack action failure rate, which is further reflected in the metrics of 
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the total path cost, the number of extended nodes and replanning time. These results illustrate 
that the APU-D* Lite algorithm is more efficient in uncertain environments. 
The above experimental results show that in the deterministic environment, the results and 
efficiency of APU-D* Lite reach or exceed the levels of the other classical planning 
algorithms, except for the number of extended nodes, for which the proposed method is 
slightly inferior to the A* and HSP algorithms. Moreover, as environmental uncertainty 
increases, the APU-D* Lite algorithm becomes more efficient and adaptable. 

5 Conclusion 
Based on the characteristics of pentesting and the relevant efficiency requirements, this 
paper proposes the APU-D* Lite algorithm for attack planning in an uncertain environment. 
To express the network information, we used the PDDL for the domain description and 
develop a pentest information graph to organize and extract relevant information. This 
information functions as the input of the APU-D* Lite algorithm. The APU-D* Lite 
algorithm is based on an incremental heuristic search. By adding attack action planning to 
the traditional method, it is more practical for application. In a comparison with off-the-
shelf algorithms, the availability and effectiveness of APU-D* Lite under uncertain 
conditions are verified. 
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