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Abstract: Due to the unique steering mechanism and driving characteristics of the 
articulated vehicle, a hybrid path planning method based on the articulated vehicle model 
is proposed to meet the demand of obstacle avoidance and searching the path back and 
forth of the articulated vehicle. First, Support Vector Machine (SVM) theory is used to 
obtain the two-dimensional optimal zero potential curve and the maximum margin, and 
then, several key points are selected from the optimal zero potential curves by using 
Longest Accessible Path (LAP) method. Next, the Cubic Bezier (CB) curve is adopted to 
connect the curve that satisfies the curvature constraint of the articulated vehicle between 
every two key points. Finally, Back and Forth Rapidly-exploring Random Tree with 
Course Correction (BFRRT-CC) is designed to connect paths that do not meet articulated 
vehicle curvature requirements. Simulation results show that the proposed hybrid path 
planning method can search a feasible path with a 90-degree turn, which meets the 
demand for obstacle avoidance and articulated vehicle back-and-forth movement. 
 
Keywords: Path planning, articulated vehicle, back and forth rapidly-exploring random 
tree, support vector machine, cubic Bezier curve. 

1 Introduction 
In the past 50 years, path planning technology has developed rapidly, and many planning 
algorithms have emerged, which include the Genetic Algorithm (GA), Simulated 
Annealing Algorithm (SAA), Ant Colony Optimization (ACO), and so on. These 
algorithms have their superiority in solving the problem of the general path planning 
problems. However, they need to build each obstacle into a specific model, which leads 
to executable algorithms with high time complexity and does not apply to many obstacles 
or uneven distribution of a sophisticated environment. Besides, graph search algorithms 
like A* algorithm, D* algorithm, and Artificial Potential Field (APF) algorithm, although 
they meet the requirements of optimality and real-time performance in path planning, it 
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does not meet the vehicle kinematic constraints, which makes it impossible for the 
vehicle to track the planned path. 
Scholars at home and abroad put forward many traditional algorithms for vehicle path 
planning. Some researchers present vehicle motion planning with RRT-based theory 
[Karaman and Frazzoli (2011); Karaman, Walter, Perez et al. (2011); Kuwata, Teo, Fiore 
et al. (2009)], while others come up with algorithms based on one or several curves, such 
as Bezier curve [Jolly, Kumar, Vijayakumar et al. (2009)], B-spline [Fauser, Chadda, 
Goergen et al. (2019); Wan, Xu, Ye et al. (2018)] and Dubins curve [Héerissé and Pepy 
(2013)], which all have good effects on their vehicle models. 
In recent years, a novel path planning algorithm using SVM is proposed. As a classic theory 
in the field of machine learning, this algorithm has great progress in reducing the search space, 
and sometimes can directly plan an excellent path [Chen, Jiang, Zhao et al. (2017)]. 
In this paper, we propose a hybrid path planning method using SVM, CB curve and 
BFRRT-CC. First, SVM theory is used to obtain the two-dimensional optimal zero 
potential curve and the maximum margin, and then, several key points are selected from 
the optimal zero potential curve by using LAP. Next, we use CB curve to connect the 
curve that satisfies the curvature constraint of the articulated vehicle between every two 
key points. Finally, BFRRT-CC is designed to connect paths that does not meet 
articulated vehicle curvature requirements [Xia, Hu, Luo et al. (2017)]. 

2 Nonholonomic constraint articulated vehicle model 
The concept of “incomplete” comes from modern analytical mechanics, which first 
appeared in the scholarly work ‘Die Prinzipen der Mechanik’ by a German scholar. The 
non-holonomic constraint refers to the constraint that contains the generalized coordinate 
derivative of the system and is non-integrable, and expression of the constrained system 
subject to Eqs. (1) and (2):  
d /d ( , , )s t F s u t=                                                                        (1) 
C( ,d /d , ) 0s s t t =                                                                         (2) 
where, ns∈ is system’s state variables, nu∈  is system control variables, t  is time variable, 
C( ,d /d , )s s t t  is the vehicle constraint. The holonomic system can be expressed as 
dG( , )/d C( ,d /d , )s t t s s t t= , if G( , )s t  exists, the corresponding constraint is holonomic 
constraint. On the contrary, we call it nonholonomic constraint. Nonholonomic constraint 
system includes all kinds of vehicles and mobile robots with limited movement. 
Therefore, researches on path planning under nonholonomic constraint has a broad 
application and important application value. 
In this paper, the articulated vehicle model is simplified as two wheels and an articulated 
frame, as shown in Fig. 1. Take the forward motion as an example, we view the middle 
point of the front bridge fP as the reference point of the roller, and view the velocity 
direction of this point fv  as the forward direction of the roller , and the coordinate change 
of the middle point of the front bridge can be expressed as Eqs. (3) and (4):  
d /d cosf f fx t v θ=                                                                           (3) 
d /d sinf f fy t v θ=                                                                           (4) 
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where fv  is the speed of the middle point of the front bridge, fx  and fy  are the horizontal 
and vertical coordinates of the midpoint of the front bridge in the coordinate system 
separately, fθ  is the course angle of the front bridge, and the gradient of the course angle 
can be expressed as Eq. (5):  
d /d =( sin )/( cos )f f r f rt v l l lθ γ γ γ+ +                                                        (5) 
where fl  is the distance from the front bridge to the hinge point,  rl  is the distance from 
the rear bridge to the hinge point and γ  is the articulated steering angle, define the right 
as γ +  and the left as -γ  when the roller moves forward, and define the right as -γ  and the 
left as γ +  when the roller moves backward.  

Y

X
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Figure 1: The articulated vehicle model 

The articulated vehicle kinematics constraint equation can be obtained by Eqs. (3) to (5): 
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where the control variable 0u  is acceleration and the control variable 1u  is the rate of the 
change of hinged steering angle. These constrain conditions should be satisfied: 0 0max| |u u≤ , 

1 1max| |u u≤  and max| |γ γ≤ . The maximum curvature is expressed as Eq. (7): 
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sin =1 1( )= = 0.0661
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3 The hybrid path planning method 
The improved algorithms are presented in detail in this part, and it mainly divides into 
four sections. Section 3.1 briefly introduces the principle of SVM and the way to obtain 
SVM model parameters. Section 3.2 introduces how to search key points with LAP 
theory. In Section 3.3, a suitable CB curve is selected to connect the curve segment that 
satisfies the curvature constraint of the articulated vehicle between every two key points. 
In Section 3.4, BFRRT-CC is designed to connect paths that does not meet articulated 
vehicle curvature requirements. 

3.1 Optimal zero-potential decision boundary and free space extraction based on SVM 
theory 
SVM is a binary model and the idea of the model is to map vectors to a higher 
dimensional space and establish an optimal classification hyper-plane in this space, which 
maximizes margin between two classes [Chen, Xiong, Xu et al. (2019)]. 
Since the state of start and end points including articulated vehicle position and course is 
given initially, in order to meet the actual needs, we add three positive virtual obstacles 
and three negative ones on both sides, and extract optimal zero-potential decision 
boundary and obstacle-free space based on SVM theory [Yuan, Yao, Tan et al. (2018); 
Tang, Xie, Yang et al. (2019)]. 
Define ( , )i ip y  as SVM training samples, where =( , )i i ip X Y  extracts the coordinates of the 
data points from the known obstacles, and the equation ( ) ( ) =0Tf p w p bφ= +  can be 
converted to the convex optimization problem: 

2

1

1 || ||
2

s.t.    ( ( )+ ) 1-   ,   0, 1, 2,...,

n

i
i

T
i i i i

min w c

y w p b i n

ξ

φ ξ ξ
=

+

≥ ≥ =

∑
                                               (8) 

where 1 2( ; ;...; )dw w w w=  is the normal vector, which determines the direction of the 
hyper-plane, b is displacement, which indicates the distance between the hyper-plane and 
the origin, n  is the number of support vector, iξ are the slack variables, c  is the error 
penalty factor, 2( ) : Hpφ ℜ →ℜ maps data points from two-dimensional spatial to high-
dimensional reproducing kernel Hilbert space, to separate the data set linearly. Through 
the Lagrange multiplier method, we can get the dual problem in Eq. (9) of the Eq. (8). 
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where iα  is the Lagrange multiplier, and the kernel function ( , )= ( ) ( )T
i j i jk p p p pφ φ  is 

satisfied with Mercer’s theorem. In this paper, RBF kernel is selected as kernel function 
and the expression is Eq. (10): 

2( , )= ( || || )i ik p p exp p pγ− −                                                                   (10) 
where γ  is the kernel parameter of RBF function. Set the decision function to zero, the 



 
 
 
A Hybrid Path Planning Method Based on Articulated Vehicle Model                   1785 

calculation formulas of the hyper-plane ( )f p  and interval distance ( )iD p  can be obtained 
as follows Eqs. (11) and (12): 

1
( ) ( , )

n

i i i
i

f p y k p p bα
=

= +∑                                                            (11) 

T( ) | | / || ||i iD p w p b w= ⋅ +                                                           (12) 

where 
1

( )
n

i i i
i

w y pα φ
=

=∑ . 

According to the basic theory of SVM, the error penalty factor and the kernel parameter play 
a crucial role. This paper adopts 10-fold cross-validation to find the optimal parameters.  

3.2 Key points searching with longest accessible path theory 
After drawing the zero-potential decision boundary on the two dimensional map, we need 
to find several key points and three key points are selected, as shown in Fig. 2. We define 
the connection between two points as the path, and when the path does not go through any 
obstacles, we call it an accessible path, otherwise it is termed as an illegal path. Then try to 
connect the latest point with the starting point and so on, and find the longest accessible 
path, and that point is set to a key point and so on until the end point is connected.  

Zero-potential decision boundary

Obstacle

Critical turning points

Illegal path

The longest 
accessible path

The starting point

The end point

Pkey1

Pkey2
Pkey3

obstacle-free 
space

An accessible path

 
Figure 2: Key points set on the zero-potential decision boundary 

3.3 Cubic bezier curves 
CB curve is determined by four vertices, where the first vertex and the last vertex 
determine the start and the end point of the curve, and the remaining two vertices control 
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the course of the curve at the start and end points, as well as the shape of the curve [Chen, 
Qin, Xu et al. (2019); Yoon, Lee, Jung et al. (2018)]. Define four vertices in two-
dimensional space, CB curve can be expressed as Eq. (13): 

3 2 2 3
0 1 2 3( ) (1 ) 3(1 ) 3(1 )    ,   [0,1]B t t b t tb t t b t b t                                           (13) 

The course and position of the start and the end points are shown in the Eq. (14), and the 
position of the other two vertices are determined by the Eq. (15): 

0 3

1 0 1 0

3 2 3 2
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start y y x x

end y y x x

B b B b
atan2 b b b b
atan2 b b b b



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

  

                                                                (14) 

 
 
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2x 3x 2 end

2y 3y 2 end

b = b + step * cos θ
b = b + step * sin θ
b = b - step * cos θ
b = b - step * sin θ







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                                                                    (15) 

where 1step  and 2step  are the given constant value, and we use the linear interpolation 
to test whether the generated curve can avoid obstacles. Curvature at any point on the 
curve is calculated as Eq. (16): 

' '' '' '

3
' 2 ' 2 2
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( ( ) ( ) )
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p t p t p t p t
t

p t p t






                                                               (16) 

3.4 Back and forth RRT with course correction 
Path planning problem can be regarded as the search problem of bounded space nC∈ . 
Define bounded space 3C ⊆  , obstacle space obsC C⊂ , free space = \free obsC C C , and target 
area goal freeX C∈ . Path planning problem in C space can be described as: calculate a feasible 
continuous path τ:[0,1] freeC→ , and meet requirements of τ(0)= initq  and τ(1)= goalq . 

3.4.1 Back and forth RRT 
Vehicle motion planning with RRT-based theory mentioned in the latest documents does 
not consider the demand of articulated vehicle back-and-forth movement, this paper puts 
forward BFRRT algorithm and its cost function can be expressed as Eq. (17): 

                                                         (17) 

where E  is normalized euclidean distance, C  is normalized course metric, and the 
expressions are Eqs. (18) and (19): 

1( , ) ( )|| ||i rand i randE q q d q qς= −                                                          (18) 

2( , ) ( )| ( ) |i rand i rand rand goalC q q Angle q q q qς θ= •
 

                                                 (19) 
The Min-Max Normalization is used to realize the normalization, which is expressed as 
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Eqs. (20) and (21): 

1( )=(  - )/(  - )min max mind d d d dς                                                               (20) 
2 ( )=(| | - )/(  - )min max minς θ θ θ θ θ                                                               (21) 

The algorithm proposed is shown in Algorithm 1 in detail. 

Algorithm 1: Back and Forth RRT Path Planner (BERRT) 
Input:  K ∈Ν , init freeq C∈ , goal goal freeq Q C∈ ∈  

Output: G  

{ }initV q← , { }E ← ∅ , { },G V E←  

for 1k ←  to K  do 
     if () 1rand p<  then 

          rand goalq q←  

     else 

randq ←RANDOMSTATE 

          ( ),near neardirq q ←  BFFindQNear ( ),randq V  

( ), ,best newu q success ←  BFFindQNew ( ), ,near neardir goalq q q  

if success  then 

{ }newV V q←  , { },near newE E q q←   

if new goalq q==  or goalq  is on the edge then 

if new goalq q≅  then 

{ }\ newV V q← , { }goalV V q←   

path←TURE; 

{ },G V E←  

Return G  if path==TURE; else FAILURE 

3.4.2 Course correction 
In general, a feasible path cannot be searched only by using BFRRT theory, in which 
case CC with with fixed position of the front wheel is presented to deal with it [Wang, 
Willianms, Angley et al. (2019)].  
CC algorithm is shown in Algorithm 2 in detail. Calculate the absolute value of the 
difference between the target angle argt etθ  and the roller’s course angle realθ  at the position 
to be corrected, and judge the relationship between that angular deviation | |θ∆ and preset 
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threshold thθ , if the angular deviation | |θ∆  is greater than preset threshold thθ , use the 
maximum step times ‘steptimes1’ in the step matrix to adjust the roller’s course. 
After turning back and forth, judge the relationship between that angular deviation | |θ∆  
and preset threshold thθ  again, until | | <= thθ θ∆ . If | | <= maxerrorθ θ∆ , the vertex set V and the 
edge set E are delivered to the directed graph G directly, otherwise we must look up the 
matrix with the relationship between | |θ∆  and the step times, and in this case, 
Fowardbackward function corrects course.  

Algorithm 2：CourseCorrection(CC) 

Input:  realθ , argt etθ , max errorθ , G 

Output: G  
.V GV← , .E G E←  

Set the stepimes1 parameter to a positive integer obtained by experiment and the 
flag parameter to 1 

argreal t etθ θ θ∆ ← −  

sign( )dir θ← ∆  

while thθ θ∆ >  do 

      V ←Forwardbackward ( , , , 1)V dir flag steptimes  

      { },end newE E q q←   

V ←Forwardbackward ( , , , 1)V dir flag steptimes− −  

{ },end newE E q q←   

argreal t etθ θ θ∆ ← −  

if thθ θ∆ ≤  and max errorθ θ∆ >  then 

      stepimes2←DeltatoStepTime ( )θ∆  

V ←Forwardbackward ( , , , 2)V dir flag steptimes  

{ },end newE E q q←   

V ←Forwardbackward ( , , , 2)V dir flag steptimes− −  

{ },end newE E q q←   

{ },G V E←  

Return G   
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4 Experimental results 
4.1 The experimental scene and parameters of the articulated vehicle 
As shown in Fig. 3, the start and end point of the articulated vehicle front wheel is [20, 85] 
with 0° and [85, 20] with -90o respectively, and the shaded part indicates the obstacle. 
Parameters of the articulated vehicle are used in this experiment, shown in Tab. 1 (i.e., 
Dynapac CC6200 vibratory roller). 

 

Figure 3: The experimental scene 

Table 1: Parameters of the articulated vehicle (i.e., Dynamic CC6200) 

Simulation parameters Value 
Compaction width of the steel wheel ( )/B m  2.13 
Distance from hinge point to midpoint of front bridge ( )/fl m  1.845 
Distance from hinge point to midpoint of rear bridge ( )/rl m  1.845 
Maximum speed ( )-2/ (m s )fv ⋅  2 
Sampling time ( )/t s∆  0.1 
Maximum steering Angle ( )/maxγ °  14 
Maximum acceleration ( )-2

0 / (m s )u ⋅  1 
The gradient of articulated steering angle ( )-1

1 / ( s )u ° ⋅  10 

4.2 Experimental results of improved BFRRT-CC 
We first determine the SVM model and draw the free space using the experimental scene 
shown in Fig. 4, and the best kernel parameter and the best error penalty factor c are 
0.0059208 and 36.7583 respectively, thus, the zero-potential decision boundary is drawn 
and three key points are searched by LAP. Then we use CB curve to connect every two 
key points in turn and divide the fitted curve into 1000 segments to calculate the 
curvature at each point. As shown in Fig. 5, the generated CB curve is not suitable for the 
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articulated vehicle to follow from about the point 900 to the point 1100, and in this case, 
BFRRT-CC is used to connect this segment. Fig. 6 shows CB curve segment with 
curvature meeting vehicle constraints and in Fig. 7, the hybrid path planning method 
based on articulated vehicle model is shown and the number from 1 to 8 indicate the best 
BFRRT-CC searching path. 

Zero-potential 
decision boundary

 
Figure 4: Zero-potential decision boundary fitted by CB curve 

  
Figure 5: The curvature of each point on CB curve 
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Figure 6: CB curve segment with curvature meeting vehicle constraints 
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Figure 7: The hybrid path planning method based on articulated vehicle model 

5 Conclusion 
In this paper, a hybrid path planning method based on articulated vehicle model is 
proposed to meet the demand of obstacle avoidance and searching the path back and forth. 
Simulation experiments show that the proposed algorithm can search a feasible path with 
a 90 degree turn.  
In future research, we will use the articulated vehicle to follow the planned path and solve 
the real-time dynamic obstacle avoidance problem on the planned path. When the 
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articulated vehicle detects that a person or a vehicle is moving on the planned path, it can 
also stop in time and wait for the person or the vehicle to leave the path. 
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