

Computers, Materials & Continua CMC, vol.65, no.2, pp.1707-1721, 2020

CMC.doi:10.32604/cmc.2020.011227 www.techscience.com/journal/cmc

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption
Scheme with Order-Preserving

Xiehua Li1,*, Fang Li1, Jie Jiang1 and Xiaoyu Mei2

Abstract: Efficient multi-keyword fuzzy search over encrypted data is a desirable
technology for data outsourcing in cloud storage. However, the current searchable
encryption solutions still have deficiencies in search efficiency, accuracy and multiple
data owner support. In this paper, we propose an encrypted data searching scheme that
can support multiple keywords fuzzy search with order preserving (PMS). First, a new
spelling correction algorithm-(Possibility-Levenshtein based Spelling Correction) is
proposed to correct user input errors, so that fuzzy keywords input can be supported.
Second, Paillier encryption is introduced to calculate encrypted relevance score of
multiple keywords for order preserving. Then, a queue-based query method is also
applied in this scheme to break the linkability between the query keywords and search
results and protect the access pattern. Our proposed scheme achieves fuzzy matching
without expanding the index table or sacrificing computational efficiency. The theoretical
analysis and experiment results show that our scheme is secure, accurate, error-tolerant
and very efficient.

Keywords: Fuzzy multi-keywords, searchable encryption, Paillier encryption, relevance
score.

1 Introduction
Data outsourcing is one of the most important applications in cloud storage and big data
analysis. In many applications such as private data storage, electronic health records (EHR)
systems, etc., data are very sensitive and usually involve privacy and confidential information.
One naive way to protect information security is to encrypt data before outsourcing. However,
data encryption reduces the flexibility and accuracy of data retrieval. The easiest solution for
users to retrieve encrypted data is to download all data from the cloud storage provider (CSP)
then decrypt and search locally, which is not feasible because neither the user nor the CSP
could bear the massive computing and huge bandwidth usage. Aiming to this practical
problem, the concept of searchable encryption is proposed. This technology is used to achieve
ciphertext retrieval without revealing too much useful information.

1 School of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
2 New Lynn School, Auckland, 0600, New Zealand.
* Corresponding Author: Xiehua Li. Email: beverly@hnu.edu.cn.
Received: 27 April 2020; Accepted: 29 June 2020.

1708 CMC, vol.65, no.2, pp.1707-1721, 2020

The concept of searchable encryption was first proposed by Song et al. [Song, Wagner and
Perrig (2000)], in which some basic search approaches over encrypted data were discussed.
In the past few years, a lot of efforts have been put in designing and improving searchable
encryption [Rangara, Palani and Yasminbhanu (2017); Eltayieb, Elhabob, Hassan et al.
(2019); Chen, Lee, Chang et al. (2019)]. Cao et al. [Cao, Wang and Li (2013)] first
defined and solved the privacy protection problem of multi-keyword ranking search on
cloud data. Sun et al. [Sun, Wang and Cao (2014)] proposed a multi-keyword search
scheme using a vector space model and a cosine measure with TF (word frequency)×IDF
(inverse text frequency index) to provide order preserved file retrieval. Kabir et al. [Kabir
and Adnan (2017)] improved Sun’s scheme by writing the plaintext TF values in the index
tree orderly. However, the TF values may leak the keywords and documents information.
Wang et al. [Wang, Liu and Zhang (2016)] proposed a verifiable dictionary-based
searchable encryption scheme, which enables users to not only search for encrypted
documents, but also enable users to verify the completeness of search results. Liu et al. [Liu,
Peng and Wang (2018)] proposed a verifiable diversity ranking search scheme over
encrypted data that can support result verification. There are some other studies that add
semantic search to searchable schemes [Xia, Chen, Sun et al. (2016)]. Also, there are many
researches on searchable encryption schemes that can support multiple keywords [Yang, Li
and Liu (2014); Xia, Wang and Sun et al. (2016); Peng, Lin and Yao et al. (2018); Ye,
Zhou and Xu et al. (2018)].
Another issue in searchable encryption is how to solve spelling mistakes since user queries
are based on their input keywords and spelling errors may cause retrieval failure. The
scheme proposed by Sun et al. [Sun, Wang and Cao (2014)] can partly solve this by
involving vector space model, but the search accuracy is not desirable. Other traditional
spelling correction approaches like Levenshtein distance can achieve a higher accuracy
only if the spelling error is less than 2 letters and is not misalignment. Some studies have
also proposed fuzzy keyword search schemes. Zhou et al. [Zhou, Liu and Jing et al. (2013)]
used k-gram to construct fuzzy keyword sets and used Jaccard coefficients to calculate
keyword similarity. Gnanasekaran et al. [Gnanasekaran and Mareswari (2017)] converted
keyword into a vector, and used LSH (local sensitive hash) to calculate the vector to
support fuzzy keyword search. Yang et al. [Yang, Yang and Min (2017)] proposed a
keyword fuzzy search scheme based on Simhash that combines Hamming distance and
similarity score. Wang et al. [Wang, Li and Zhou (2017)] used sensitive hash function to
index keywords, and used Bloom filter to realize fuzzy search of multiple keywords. All
those schemes did not consider the misalignment of letters in the keywords, which may
lead to less accurate search results.
In this paper, we proposed a Paillier-based Multi-keyword Search (PMS) scheme that
supports multiple keywords fuzzy search and uses homomorphic encryption to guarantee
secure keywords relevance ranking. We first proposed a Probability-Levenshtein based
Spelling Correction (PLSC) algorithm, which combines word frequency and edit distance
to improve the correction accuracy. Then, we used Paillier to encrypt the keywords
relevance scores for each document, so that sums of keywords relevance can be calculated
by the cloud server without leaking information. In addition, proxy is introduced in our
scheme to support multiple DOs and multi-keyword relevance score ranking. Third, we
queued the search results by the proxy to hide the connection between keywords and

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1709

downloaded files, further improving the security of the search. Our contributions can be
summarized as follows.
1) To the best of our knowledge, we first proposed a spelling correction algorithm that uses
both probability and Levenshtein algorithm to improve the correction accuracy. We also
experimented on the PLSC accuracy in a chosen document library.
2) To support encrypted multi-keywords order-preserving search we used Paillier to
encrypt the keywords relevance scores and outsource relevance score calculation to the
cloud server.
3) We built up a system that used proxy to support multiple DOs and used queuing to break
the connection between user queries and associated documents. We implemented our
scheme and the results demonstrated the accuracy and efficiency of our scheme.
The rest of the paper is organized as follows. Section 2 presents the constructions and
definitions of our scheme. Section 3 describes the definition of basic functions used for
supporting multi-keywords fuzzy search. Theoretical system performance is analyzed in
Section 4. We give the scheme implementation results and comparison in Section 5.
Section 6 is the conclusion of the whole paper.

2 Constructions and definitions
2.1 System model
Fig. 1 shows the system structure of this scheme. Before outsourcing data to cloud server,
the data owner (DO) builds indexes and uses AES to encrypt files. Then DO uploads
encrypted files and their associated indexes to the Proxy. Proxy builds and uploads the
secured indexes with the encrypted files to the Cloud Server. Meanwhile, DO distributes
file decryption keys to authorized users via secure channel.

Figure 1: System structure of encrypted files fuzzy searching

2.2 Security assumptions
We adopt the “honest-but-curious” model for the cloud server as most of the schemes did.
It assumes that the cloud server can honestly implement the program but is willing to get

1710 CMC, vol.65, no.2, pp.1707-1721, 2020

illegal profits if given the opportunity. Also, the cloud server may analyze the stored data
to learn more information. In addition, we assume that the DO is honest and has no
interest in collusion attack with cloud service providers. This assumption is reasonable
because DO has the original plaintext and index information. There is no need for the DO
to collude with others to get information. Users here are not trusted entities; they may
collude with cloud server or other users to get more information about the encrypted data.
In this scheme, Proxy is a trusted entity who receives plaintext search queries from users,
then encrypts and forwards those queries to Cloud Server; it receives the results from
Cloud Server, decrypts relevance scores and ranks the results before sending users the
search results.

2.3 Scheme goals
In order to achieve multi-keyword fuzzy search on encrypted data, 3 important goals need
to be fulfilled:
1) Security: keep the indexes secure and break the linkability of indexes and files, so that
the cloud server and other malicious entities will not get valuable information about the
encrypted data;
2) Fuzzy searchable: automatic and accurate spelling correction should be supported
since misspelling happens all the time;
3) Multi-keyword ranked search: the new scheme should support multi-keyword
ranked search and be both time and space efficient.

2.4 Notations
The notations used in this paper are defined as followed：
 D: plaintext documents set, D={D1, D2, ..., Dn};

 D': encrypted documents set, D'= ;
 ID: document identifier in plaintext ID={id1, id2, ..., idn};
 ID': document identifier in ciphertext, ID′={id'1, id'2, …, id'n};
 W: keywords set in plaintext, W={W1, W, …, Wm};

 W': keywords set in ciphertext, W'={ ''
2

'
1 ,...,, nWWW };

 Si, j: plaintext relevance score of keyword Wi in document Dj; Sj: sum of relevance
score in document j in plaintext;

'
, jiS : encrypted relevance score of keyword Wi in document Dj; S′

j: sum of relevance
score in document j in ciphertext;

 Keygen1 (): AES key generation algorithm;
 Keygen2 (): Paillier key generation algorithm, (PK, SK) are the public and secret

key pairs generated by Keygen2 ().
 Enc1 (m, k): message m is encrypted by symmetric key k with AES encryption

}{ ',...,'
2,'

1 nDDD

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1711

algorithm；Dec1 (c, k) means ciphtertext c is decrypted by key k with AES
algorithm.

 Enc2 (m, pk): message m is encrypted by public key pk with Paillier encryption
algorithm; Dec2 (m, sk) means ciphtertext c is decrypted by key k with AES algorithm.

3 Spelling correction algorithm
Misspelling happens in many ways: wrong letters, missing letters, redundant letters,
jumbled letters. We proposed the Probability-Levenshtein based spelling correction
(PLSC) to correct misspelling in a more precise way.

3.1 Probability-Levenshtein based spelling correction (PLSC)
The PLSC algorithm is executed during the keywords input phase. According to user’s
input, several correction suggestions of keywords will be given to user. In the initiation
process, a statistical vocabulary rule set is built based on a chosen article library. Usually,
if the word is misspelled, at least some of the letters should be spelled correctly.
Therefore, our scheme is constructed based on the correct input letters. Considering the
input habits, we suppose that for each input word of length N, at least N-2 characters are
correct input, and the first letter is correct. We calculate the frequency of each word in the
chosen article library. Moreover, we add up the frequencies of each combination with the
length [2, N]. For example, for the word beat, its frequency in the chosen library is f
(beat), all possible combinations of beat are (be, ba, bt, bea, bet, bat, beat). For the
combination bea, it also appears in other words like bear, bean, etc., thus the frequency
of bea is defined as f (bea)=f (beat)+f (bean)+…. In order to give more precise candidate
keywords, we define a Derivative Possibility (DP) to describe the probability of deriving
a word from a certain letter combination in the article library.
Definition: Let P (W/wi) be the Derivative Possibility of W from wi, wi∈W is a possible
letter combination derived from W.

)(
)(

i

t
i wfreq

WfreqP = (1)

where freq (Wt) is the frequency of a word Wt in the chosen article library, freq (wi) is the
summation frequency of a combination wi. Rule set is established in the system
initialization stage, the frequency of various letter combinations in the article library and
their Pi are saved in the rule set. In order to improve query efficiency, we organize the
rule set with hash table. When user inputs a keyword, PLSC compares the input with the
items in the rule set and gives the user the top-k candidates with the highest Pi.
However, based on our observation the spelling correction algorithm cannot solve the
misspelling problem only with DP. Consider the following situation. When the word
stand is misspelled as stanf, and if freq (staff)/freq (stanf) is higher than freq (stand)/freq
(stanf), then the recommended priority of stand will be lower than staff. Obviously, this
result is not accurate enough. In addition, when the same letter combination introduces
different words with similar or even equal probabilities, it will be difficult to determine
the result of the error correction. Based on our observation, we add input similarity

1712 CMC, vol.65, no.2, pp.1707-1721, 2020

comparison on the statistical word error correction algorithm to provide more accurate
recommendation words. We adopt the edit distance algorithm to calculate the similarity
of two stings A and B with length N1 and N2 respectively.

),max(
),(1),(
21 NN

BAEDBASim −= (2)

When a user inputs a word, the input combination set Cp is extracted, and each item in Cp
is compared with the rules in the rule set to obtain a possible word set W={W1, W2, ...,
Wn}, and the corresponding probability set {P1, P2, ..., Pn}. Then, the similarity of input
word and words in W will be compared to get the final recommendation results. We user
Score (Wi) to identify the accuracy of each recommended word.

1 ,),()(core =++= βαβα inputWSimPWS iii (3)
where α, β are constants, and α+β=1. According to Score (Wi), top-k recommended
results will be returned.

3.2 Error correction schemes comparison
We choose 1600 articles published on USENIX in the last 5 years as the article library,
and calculate the frequency of each word in the library. Rule set is built based on each
word, its combination, word frequency and Pi. The value of α, β can be defined by users.
We implemented experiment to test the correction accuracy with different α and β
values. In the experiment, we select 1000 words with the highest frequency and put 1 to 2
random error in each word, the error includes error letter, missing or extra letters. The
selected words are composed of more than 5 letters. For each word the system will give
top-5 correction candidates with the highest Score (Wi). If the ith candidate is the correct
word, the value of this correction is 5-i. We test the correction accuracy of Eq. (3) with
different values of α and β, the test results show that words error correction algorithm is
more accurate when α=0.3, β=0.7. Tab. 1 shows the correction values comparison among
our PLSC algorithm, edit distance and Norvig’s spelling corrector with difference
number of random errors.

Table 1: Score comparison with random spelling errors

Errors PLSC Norvig’s Edit distance

1～2 4739 4473 4257
2 4660 4057 3672

1～3 3578 3240 3005

From Tab. 1 we can see that our PLSC algorithm has more accuracy than Norvig’s algorithm
and edit distance especially when there are more than 2 random errors in the word.

4 Multi-keyword order preserving searchable encryption
Our multi-keyword order-preserving searchable encryption scheme includes three major
processes: index building, ciphertext searching and queue-based ciphertext retrieval.

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1713

4.1 Index building
Index building process is run on both DO and Proxy. DO is responsible for building
index for each file and encrypting files. Proxy is responsible for collecting indexes and
associated encrypted files from all DOs. Proxy needs to combine indexes and files, and
then build up secured indexes for all files.
DO Process. DO extracts keywords from the documents and calculates the relevance
scores of all keywords in each file with TF-IDF algorithm. We use keyword indexing to
arrange documents. DO builds up the plaintext index I for all documents, where I={I1, I2,
I3, ..., Im} and Ii =(Wi,<idj(1≤j≤n), Si,j(1≤j≤n)>). Ii is the index of keyword Wi, and idj(1≤j≤n) is
the document which contains Wi. Si,j(1≤j≤n) denotes the relevance score of keyword Wi in
document j.
DO runs Keygen1 () to get the document encryption key K1, and then runs Enc1 () to
encrypt documents and their identifiers with K1.
C = {(id ′1, D′1), (id ′2, D′2), …, (id ′n,D′n)} (4)
where D′

i=Enc1 (Di, K1), id ′
i=Enc1 (idi, K1), },...,2,1{ ni ∈ ; DO then uploads (I, C) pair

to proxy for further processing.
DO finally distributes decryption keys to authorized users.
Proxy Process. To support multi-DO application scenario, this scheme uses Proxy to
complete index encryption. After accepting the (I, C) pairs from DOs, Proxy generates
the encrypted index I' and sends (I', C) pair to the CSP.
Proxy runs Keygen1 () and Keygen2 () to get the AES key and Paillier key pair respectively.

),,(},,...,,{

),,(

),(

),(

'
,

''''''
2

'
1

'

,
'
,

3)1(
''

)1(

3
'

322

kijiii

kiki

njjnjj

ii

SidWIIIII

PKSS

Kidid

KWW

←; KPK,SK=, K←K

==

=

=

=

≤≤≤≤

Enc2

Enc1

Enc1

) Keygen1()() Keygen2(

 (5)

4.2 Ciphertext searching
User starts searching process by putting in a set of search keywords. The client executes
PLSC algorithm to correct input errors and sends the keywords set SW={W1, W2, ..., Wt}
to the Proxy. The Proxy then uses K3 to generate the trapdoor and submits SW'={W'1,
W'2, ..., W't} to CSP for searching. In this section we use an example to describe the
complete process of our order preserving ciphertext searching algorithm.
CSP Searching Algorithm
CSP performs a ciphertext searching algorithm based on SW’ and I’. After finding
documents that contain all keywords in SW’, CSP adds up the total relevance score of all
keywords in each document. The detailed searching algorithm is described in Fig. 2.

1714 CMC, vol.65, no.2, pp.1707-1721, 2020

For example, user puts in a keyword set SW={Wa, Wb} and sends SW to the Proxy. Proxy
generates the trapdoor SW′={W′

a, W′
b} and sends it to CSP. CSP then searches the

entire I’. Suppose CSP gets the result:

}{

)},,(),,,(),,,{(

},,(),,,(),,,{(

'''

'
4,

''
4

''
3,

''
3

''
2,

''
2

''

'
3,

''
3

''
2,

''
2

''
1,

''
1

''

bam

bbbbbbb

aaaaaaa

III

SidWSidWSidWI

SidWSidWSidWI

∩=

=

= ）

CSP then chooses the documents that contain both W′
a and W′

b and puts them in set I’r =
{ '

2,
''

2
' ,, aa SidW , '

3,
''

3
' ,, aa SidW , '

2,
''

2
' ,, bb SidW , '

3,
''

3
' ,, bb SidW }. CSP sums up the relevance scores

for W′
a and W′

b in id′′
2 and id′′

3 with Paillier algorithm. The final relevance score S′
2

= S′
a,2*S′

b,2 and S′
3 = S′

a,3*S′
b,3. Finally, CSP returns the searching results {(id′′

2, S′
2),

(id′′
3, S′

3)} to Proxy.
Order Preserving Algorithm
By receiving {(id ′′

2, S′
2), (id′′

3, S′
3)} from CSP, Proxy runs Dec1 () to decrypt the

document identifier and Dec2 () to decrypt the relevance score.
id2←Dec1 (id′′2, K3), id3←Dec1 (id′′3, K3)
S2←Dec2 (S′2, SK), S3←Dec2 (S′3, SK)
Proxy ranks the documents by the relevance score Si and returns the top-k document
identifiers to user. Before downloading documents from the CSP, user needs to encrypt
documents identifiers with K1 under Enc1 () and gets id ′

2=Enc1 (id2, K1), id ′
3=Enc1 (id3,

K1). User sends (id ′
2, id ′

3) to the CSP and downloads documents (D′
2, D′

3). Finally, users
decrypt documents with K1 under Dec1 () and get D2=Dec1 (D′

2, K1), D3=Dec1 (D′
3, K1).

Algorithm Ciphertext search and rank
For the input keywords SW ’ = {W ’ 1, W ’ 2, ..., W ’ t}
For (x ≦ t)
{Search I ‘;
 If (W’x ∈I’)
 {I’m = I’m∪I’x;
 While (I’m ≠∅)
 {Puts the documents in I’m that contains all keywords in SW’ to
I’r;
 Calculate the total relevance score of all keywords in SW’ for

each document;
 Send I’r and summarized relevance score to Proxy;
 }
 }
}

Figure 2: CSP searching algorithm

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1715

4.3 Queuing-based ciphertext retrieval
Current state-of-art searchable encryption schemes have two main drawbacks: lack of
protection on file-access pattern (in which files are returned in response to each query)
and leakage of query pattern (when a query is repeated [Zhang, Kazt and Papamanthou
(2016)]. In our scheme, we avoid the first drawback by breaking the linkability between
keywords and files. For the second drawback, we use the queuing-based ciphtertext
retrieval to mess up the query pattern.
As an honest but curious principal, CSP tries to obtain information about the linkability
of keywords, indexes and documents by analyzing each query. To break down the
linkability, we encrypt the file identifiers in the index and ciphertext documents with
different keys. However, CSP can still obtain the connection of keywords and associated
files by observing which files are downloaded after a certain query. For example, the
proxy forwards a query for the keyword W ’i, and then a user downloads some files from
CSP. With few rounds of such query and downloading, CSP could get the connection
between W ’i and ciphtertext files that contain W ’i. To hide the relationships between user
queries and downloaded files, we propose a queuing-based ciphertext retrieval scheme
that uses Proxy to queue queries. In this scheme, after receiving research results from
CSP, Proxy will wait till a random number of results have arrived and then forwards all
results to users simultaneously. In this case, multiple users will request for documents
downloading at the same time, and the connection between keywords and file identifiers
can be hidden. In order to keep the balance between system efficiency and search
security, the queuing strategy will be divided into two parts: ① By setting the timestamp
Tmax, the maximum waiting time of the Proxy after receiving a retrieval result is
determined. ② Set the minimum number of queued queries Kmin, Proxy waits for at least
Kmin search results return. If the Proxy queuing time t<Tmax and the queued requests K >
Kmin, the Proxy will forward all queries. Whereas, if t>Tmax and K<Kmin the Proxy will
forge some fake requests and forward them along with the normal requests.

5 Security analysis
5.1 Data confidentiality
In our scheme, the plaintext documents are encrypted before outsourcing to the cloud and
the decryption keys are distributed to users by DO via a secure channel. Hence, documents
security can be achieved. Index is built by DO and encrypted by the Proxy. In addition, we
encrypt the index and file identifier with different keys (K3 and K1) so that the CSP cannot
obtain the connection between the encrypted documents and the encrypted index.
Keywords relevance scores for each document are encrypted with Paillier encryption. Even
though the encrypted relevance scores are accumulated by the CSP, the CSP cannot get any
information about keywords or their relevance scores. Therefore, as long as the Proxy and
users keep their respective keys properly, the confidentiality of data, index, keyword
information and relevance scores can be guaranteed.

1716 CMC, vol.65, no.2, pp.1707-1721, 2020

5.2 Search security
When users send out search queries, they send the keywords to the Proxy, then the Proxy
encrypts and forwards the queries to the CSP. Since the queries are encrypted and
forwarded by the Proxy, the CSP can get neither the keywords nor user information, hence
user privacy can be protected. Meanwhile, in order to hide the connection between
keywords and documents, all query results are queued by the Proxy before being forwarded
to users. Suppose in time slot T a number of query results are received by the Proxy from
CSP is N. These queries belong to M users. Finally, CSP will receive M groups of
documents downloading requests from users. Therefore, N groups of encrypted keywords
searching can be matched with M groups of documents. i) If N=M, every user only sends
one search request. After queuing on the Proxy, the possibility of CSP successfully
guessing the correspondence between keywords and documents will be as followed.

!
11

MAM
M

= (6)

ii) If N>M, which means at least one user sends multiple search queries or contains
forged search requests: ① If N requests are from users, according to the second type of
Stirling number, the number of schemes for dividing the N sets of search requests into M
groups will be:

NM

k
k kM

k
M

M
MNS))(()1(

!
1),(

0
−−= ∑ =

 (7)

Then the probability of CSP successful guessing will be:

),(!*
1

*),(
1

MNSMAMNS
P M

M

==

 (8)

② If k (0<k≤N-M) search requests are forged by the Proxy, the CSP successful guessing
rate will be:

),(!*
*

*),(
1

MNSM
MM

AMNS
P

k
k

M
M

== (9)

From Eqs. (7) to (9), we can deduce that by queuing and forging user search queries. The
possibility of CSP successfully guessing the connection between search keywords and
their associated documents would be very low, especially when M and N are large.
It is safe to conclude that with the increase of N, the probability P decreases significantly
and continuously. If a user sends multiple search requests in a short period of time, the
queuing query through the Proxy can greatly improve the guessing difficulty of the CSP.
If the Proxy sends a forged search request, and since the search request contains a forged
search request, the CSP cannot guess the correspondence between the completely correct
keyword and the file. Therefore, setting the proxy queuing query and forging the search
request can effectively prevent the CSP statistical guessing attack and improve security.

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1717

6 Performance evaluation
Our performance experiment is implemented on Windows 7 with Intel (R) Core (TM) i5
6500 3.2 GHz and 2GB RAM. Our implementation is in C++ language. We select 1600
papers published in USENIX in the last 5 years and extract 3000 keywords. We evaluate
the scheme performance in the following ways: (1) index generation efficiency; (2)
trapdoor generation efficiency; (3) retrieval efficiency. We compare our scheme with the
most relevant researches on searchable encryption-FMS [Li, Yang and Luan (2016)] and
TBMSM [Peng, Lin, Yao et al. (2018)] schemes.

6.1 Index building efficiency
In this section, we compare the index building time and storage cost among our scheme,
the FMS scheme and the TBMSM scheme. Fig. 3(a) shows the time overhead required to
build an index with the number of documents ranging from 100 to 1600. It can be seen
that as the number of files grows, the index generation time of our PMS scheme increases
slowly. When the number of files is smaller than 500, the efficiencies of PMS, FMS and
TBMSM are almost the same, with FMS being better than PMS and TBMSM. But the
difference is not significant. However, if the number of files is bigger than 500, the index
building time of FMS grows dramatically. Compared with TBMSM, PMS has a slightly
less index building time. Fig. 3(b) shows the time required for generating document index
with the number of keywords ranging from 1000 to 3000. We can see that FMS has a
greater growth rate with the increase number of keywords. While the time cost on
building index with PMS scheme is stable and slowly increases, the growth rate stays
basically unchanged. The index generation efficiency of the PMS exceeds FMS at
approximately 1500 keywords. With the growth of document numbers and keywords, the
index building efficiency of PMS becomes better than that of TBMSM.

a) Number of documents b) Number of keywords

Figure 3: Index building time

Fig. 4(a) shows the space required for storing indexes with the number of files ranging
from 100 to 1600. Fig. 4(b) shows the space required for storing indexes with the number
of keywords ranging from 1000 to 3000. When the number of files is greater than 300 or
the number of keywords in the index is greater than 1000, the index storage overhead of

1718 CMC, vol.65, no.2, pp.1707-1721, 2020

the PMS scheme is better than that of the FMS scheme, and the growth rate of PMS is
slower than that of FMS. The index storage overhead of TBMSM is much larger than that
of PMS. When the number of keywords in the index reaches 2000, the index storage
space of TBMSM exceeds 100 MB.
In real applications, especially in cloud storage systems, there would be a massive
number of stored documents and keywords. Our PMS scheme is more efficient both in
index generation and storage than the other two schemes.

a) Number of documents b) Number of keywords

Figure 4: Index storage space

6.2 Trapdoor generation efficiency
This section compares the trapdoor generation efficiency of the three schemes
discussed before.
Fig. 5(a) shows the trapdoor generation efficiency over 1000 files with queried keywords
ranging from 10 to 50. Fig. 5(b) shows the trapdoor generation efficiency on 20 keywords
with the number of files ranging from 100 to 1600.
In Fig. 5(a) we can see that the trapdoor generation time in FMS is not affected by the
number of search keywords. The trapdoor generation time in our PMS and the TBMSM
scheme is only related to the number of queried keywords. With the growth of keywords,
the trapdoor generation time in TBMSM grows linearly while PMS grows slowly
regarding to the number of search keywords. In Fig. 5(b), the number of query keywords
is set to be 20. The trapdoor generation time of FMS grows linearly with the increase of
files number, while the TBMSM and our PMS schemes remain stable. The reason why
FMS has a linear growth is that the trapdoor is generated with matrix operation (M1

-1qa,
M2

-1qb). Therefore, as the number of files and keywords in the index increases, the
dimension of the encryption matrix increases accordingly, which causes the linear growth
of trapdoor generation time. The reason why TBMSM uses more time on trapdoor
generation is that they use the bilinear mapping for different users. From the two figures,
it can be clearly seen that the PMS scheme has better trapdoor generation efficiency than
the FMS and TBMSM schemes, and the PMS efficiency is more significant than the FMS
efficiency as the number of files increases.

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1719

 a) Number of keywords in queries b) Number of files with 20 keywords

Figure 5: Trapdoor generation efficiency

6.3 Search efficiency
This section compares the search time overhead of PMS, FMS and TBMSM schemes. All
schemes are tested with the number of files ranging from 100 to 1600, and the number of
queried keywords is set to be 5 per query.
As shown in Fig. 6, our PMS scheme has less search time than the FMS and TBMSM
schemes. The search time of PMS is less than 1s even though there are 1600 encrypted
papers in the database. The search time in the FMS and TBMSM schemes increases as
the number of files increases.

Figure 6: Search efficiency

7 Conclusion
Our scheme presents a searchable encryption scheme that can support fuzzy multiple
keywords order-preserved searches. In this paper, a Probability-Levenshtein spelling
correction algorithm is proposed to correct user input errors and fuzzy keywords searches.
This algorithm combines both the keyword appearance frequency and Levenshtein

1720 CMC, vol.65, no.2, pp.1707-1721, 2020

distance to improve the error correction accuracy, and further to improve the success rate
and accuracy of document retrieval. Then we adopt the Paillier homomorphic encryption
to encrypt keywords relevance score, which can support order preserving searches and
outsource the expensive computational cost to CSP. Furthermore, we introduce the Proxy
in our scheme to handle the encryption of indexes for multiple DOs and securely forward
user search queries. Also, the Proxy uses a queue-based algorithm to break the
connection between user queries and documents downloading. Based on our theoretical
security proof, our scheme can guarantee both data security and search security. Finally,
we implement and compare our scheme with another two close relevant schemes, where
the implementation results show that our PMS scheme is more efficient in many ways.

Acknowledgement: This work is supported by the National Natural Science Foundation
of China under Grant 61402160 and 61872134. Hunan Provincial Natural Science
Foundation under Grant 2016JJ3043. Open Funding for Universities in Hunan Province
under grant 14K023.

Funding Statement: 1. National Natural Science Foundation of China under grant
61402160 with Xiehua Li as PI, and 61872134 with Xiehua Li as Co-PI. URL to the
sponsor’s website is: http://www.nsfc.gov.cn/; 2. Hunan Provincial Natural Science
Foundation under grant 2016JJ3043 with Xiehua Li as PI. URL to the sponsor’s website
is: http://kjt.hunan.gov.cn/; 3. Open Funding for Universities in Hunan Province under
grant 14K023 with Xiehua Li as PI. URL to this website is: www.hnedu.cn.

Conflicts of Interest: There is no conflicts of interest to report regarding the present study.

References
Cao, N.; Wang, C.; Li, M. (2013): Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Transactions on Parallel & Distributed Systems, vol. 25,
no. 1, pp. 222-233.
Chen, L.; Lee, W. K.; Chang, C.; Choo, K. R.; Zhang, N. (2019): Blockchain based
searchable encryption for electronic health record Sharing. Future Generation Computer
Systems, vol. 95, no. 1, pp. 420-429.
Eltayieb, N.; Elhabob, R.; Hassan, A.; Li, F. (2019): An efficient attribute-based
online/offline searchable encryption and its application in cloud-based reliable smart grid.
Journal of Systems Architecture, vol. 98, no. 1, pp. 165-172.
Gnanasekaran, P.; Mareswari, C. (2017): A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. International Research Journal of Advanced
Engineering and Science, vol. 2, no. 3, pp. 70-75.
Kabir, T.; Adnan, M. A. (2017): A dynamic searchable encryption scheme for secure cloud
CSP operation reserving multi-keyword ranked search. Proceedings of the 4th International
Conference on Networking, Systems and Security, Dhaka, Bangladesh, pp. 1-9.
Li, H.; Yang, Y.; Luan, T. H. (2016): Enabling fine-grained multi-keyword search
supporting classified sub-dictionaries over encrypted cloud data. IEEE Transactions on
Dependable and Secure Computing, vol. 13, no. 3, pp. 312-325.

Paillier-Based Fuzzy Multi-Keyword Searchable Encryption 1721

Liu, Y.; Peng, H.; Wang, J. (2018): Verifiable diversity ranking search over encrypted
outsourced data. Computers, Materials & Continua, vol. 55, no. 1, pp. 37-57.
Peng, T.; Lin, Y.; Yao, X.; Zhang, W. (2018): An efficient ranked multi-keyword
search for multiple data owners over encrypted cloud data. IEEE Access, vol. 6, no. 1, pp.
21924-21933.
Rangaraj, A. M.; Palani, S.; Yasminbhanu, P. (2017): A secure and dynamic multi-
watchphrase ranked search scheme over encrypted cloud data. International Journal of
Innovative Technology and Research, vol. 5, no. 2, pp. 5933-5947.
Song, D. X.; Wagner, D.; Perrig, A. (2000): Practical techniques for searches on
encrypted data. Proceeding of IEEE Symposium on Security and Privacy, Berkeley, CA,
USA, pp. 44-45.
Sun, W.; Wang, B.; Cao, N. (2014): Verifiable privacy-preserving multi-keyword text
search in the cloud supporting similarity-based ranking. IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 11, pp. 2025-3035.
Wang, K.; Li, Y.; Zhou, F. (2017): Fuzzy ciphertext search scheme for multi-keywords.
Journal of Computer Research and Development, vol. 54, no. 2, pp. 348-360.
Wang, S.; Liu, L.; Zhang, Y. (2016): Verifiable dictionary based searchable encryption
scheme. Journal of Software, vol. 27, no. 5, pp. 1301-1308.
Xia, Z.; Chen, L.; Sun, X.; Liu, J. (2016): A multi-keyword ranked search over
encrypted cloud data supporting semantic extension. International Journal of Multimedia
and Ubiquitous Engineering, vol. 11, no. 8, pp. 107-120.
Xia, Z.; Wang, X.; Sun, X.; Wang, Q. (2016): A secure and dynamic multi-keyword
ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 2, pp. 340-352.
Yang, Y.; Li, H.; Liu, W.; Yang, H.; Wen, M. (2014): Secure dynamic searchable
symmetric encryption with constant document update cost. Proceedings of IEEE Global
Communications Conference, Austin, TX, USA, pp. 775-780.
Yang, Y.; Yang, S.; Min, K. (2017): Simhash-based fuzzy ranked search scheme over
encrypted cloud data. Chinese Journal of Computers, vol. 40, no. 2, pp. 431-444.
Zhang, Y.; Katz, J.; Papamanthou, C. (2016): All your queries are belong to us: the
power of file-injection attacks on searchable encryption. Proceedings of the 25th USENIX
Security Symposium, Austin, TX, USA. pp. 707-720.
Zhou, W.; Liu, L.; Jing, H.; Zhang, C.; Yao, S. et al. (2013): K-gram based fuzzy
keyword search over encrypted cloud computing. Journal of Software Engineering and
Applications, vol. 6, no. 1, pp. 29-32.

	Paillier-Based Fuzzy Multi-Keyword Searchable Encryption Scheme with Order-Preserving
	Xiehua Li0F ,*, Fang Li1, Jie Jiang1 and Xiaoyu Mei2
	From Tab. 1 we can see that our PLSC algorithm has more accuracy than Norvig’s algorithm and edit distance especially when there are more than 2 random errors in the word.

	4.2 Ciphertext searching

	5 Security analysis
	6 Performance evaluation
	7 Conclusion
	References

