

Computers, Materials & Continua CMC, vol.65, no.2, pp.1467-1486, 2020

CMC. doi:10.32604/cmc.2020.011415 www.techscience.com/journal/cmc

Software Defect Prediction Based on Non-Linear Manifold
Learning and Hybrid Deep Learning Techniques

Kun Zhu1, Nana Zhang1, Qing Zhang2, Shi Ying1, * and Xu Wang3

Abstract: Software defect prediction plays a very important role in software quality
assurance, which aims to inspect as many potentially defect-prone software modules as
possible. However, the performance of the prediction model is susceptible to high
dimensionality of the dataset that contains irrelevant and redundant features. In addition,
software metrics for software defect prediction are almost entirely traditional features
compared to the deep semantic feature representation from deep learning techniques. To
address these two issues, we propose the following two solutions in this paper: (1) We
leverage a novel non-linear manifold learning method - SOINN Landmark Isomap (SL-
Isomap) to extract the representative features by selecting automatically the reasonable
number and position of landmarks, which can reveal the complex intrinsic structure
hidden behind the defect data. (2) We propose a novel defect prediction model named
DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder
to learn true input features that are not contaminated by noise, and utilizes deep neural
network to learn the abstract deep semantic features. We combine the squared error loss
function of denoising autoencoder with the cross entropy loss function of deep neural
network to achieve the best prediction performance by adjusting a hyperparameter. We
compare the SL-Isomap with seven state-of-the-art feature extraction methods and
compare the DLDD model with six baseline models across 20 open source software
projects. The experimental results verify that the superiority of SL-Isomap and DLDD on
four evaluation indicators.

Keywords: Software defect prediction, non-linear manifold learning, denoising
autoencoder, deep neural network, loss function, deep learning.

1 Introduction
Software defect prediction plays an important role in software quality assurance, and it
can help to allocate limited testing resources reasonably, rank the testing priority of
different software modules, and improve software quality by inspecting as many

1 School of Computer Science, Wuhan University, Wuhan, 430072, China.
2 School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China.
3 Department of Computer Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands.
* Corresponding Author: Shi Ying. Email: yingshl@whu.edu.cn.
Received: 07 May 2020; Accepted: 08 June 2020.

1468 CMC, vol.65, no.2, pp.1467-1486, 2020

potentially defective software modules (such as components, files, classes) as possible
before releasing the new software product [Hall, Beecham, Bowes et al. (2012)].
Nevertheless, a serious challenge that threatens the modeling process of defect prediction
is the high dimensionality of defect datasets, i.e., datasets that contain excessive
irrelevant and redundant features. To solve this issue, a few feature extraction methods
have been proposed to alleviate irrelevant and redundant features by constructing new,
combined features form the original features, which have not been thoroughly
investigated in software defect prediction [Kondo, Bezemer, Kamei et al. (2019)]. In this
paper, we leverage a non-linear manifold learning method - SOINN Landmark Isomap
(SL-Isomap) [Gan, Shen, Zhao et al. (2014)] to extract the representative features form
the original defect features by selecting automatically the reasonable number and position
of landmarks, which can reveal the complex intrinsic structure hidden behind the defect
data. SL-Isomap adopts the SOINN (Self-Organizing Incremental Neural Network)
algorithm [Shen, Tomotaka and Osamu (2007)] to automatically select the reasonable
number of landmarks, thus characterizing topological structure of defect data in the high
dimensional input space. In addition, SL-Isomap also utilizes the L-Isomap (Landmark
Isomap) algorithm to search low dimensional manifolds from high dimensional defect
data based on selected landmarks.
At present, deep learning techniques are research hotspot in the field of artificial
intelligence, and have been successfully used in many domains, such as image
classification [Zhang, Wang, Lu et al. (2019)]. In this paper, in order to bridge the
research gap, while taking into account the superior prediction performance of deep
learning techniques, we leverage hybrid deep learning techniques-denoising autoencoder
(DAE) [Vincent, Larochelle Bengio et al. (2008)] and deep neural network (DNN) to
construct a novel defect prediction model named DLDD by further processing the defect
features extracted by SL-Isomap. Denoising autoencoder can remove noise through
training to learn true input features that are not contaminated by noise, and reconstruct a
clean “repaired” input form the “corrupted” input, thus learning the reconstructed
distribution by changing the reconstruction error term. The learned features not only have
more robust feature representation, but also stronger generalization capability. Then we
integrate these defect features processed by denoising autoencoder into the abstract deep
semantic features by deep neural network. The deep neural network trained by these deep
semantic features has stronger discriminative capacity for different classes [Wang, Jiang,
Luo et al. (2019); Zhou, Tan, Yu et al. (2019)]. For the loss function of the entire DLDD
model, we combine the squared error loss function of denoising autoencoder with the
cross entropy loss function of deep neural network to reinforce the learned defect feature
representation by controlling a hyperparameter θ, thereby achieving the best defect
prediction effect.
The main contributions of this paper can be summarized as follows:
(1) We utilize a novel non-linear manifold learning method - SOINN Landmark Isomap
(SL-Isomap) to extract the representative features from the original defect features by
selecting automatically the reasonable number and position of landmarks, which can
reveal the complex intrinsic structure hidden behind the defect data.
(2) Encouraged by the superior performance of deep learning techniques, we propose a

Software Defect Prediction Based on Non-Linear Manifold 1469

novel defect prediction model called DLDD based on hybrid deep learning techniques,
which leverages denoising autoencoder to learn the reconstructed distribution and more
robust feature representation by changing the reconstruction error term, and utilizes deep
neural network to learn the abstract deep semantic features.
(3) For the loss function of the entire DLDD model, we combine the squared error loss
function of denoising autoencoder with the cross entropy loss function of deep neural
network to achieve the best performance of defect prediction by adjusting a
hyperparameter.
(4) To verify the performance of SL-Isomap and DLDD, we conduct extensive experiments
for feature extraction and defect prediction across 20 software defect projects from large
open source datasets. We compare the SL-Isomap with seven state-of-the-art feature
extraction methods, and compare the DLDD model with six baseline models contain five
classic defect predictors and deep neural network. The experimental results demonstrate
that the effectiveness of SL-Isomap and DLDD on four evaluation indicators.

2 Related work
Software defect prediction is a research hotspot in software engineering domain. The
majority of previous studies use different machine learning methods to construct defect
prediction models. Li et al. [Li, Jing, Zhu et al. (2018)] leverage a new Two-Stage
Ensemble Learning (TSEL) method to conduct software defect prediction model, and the
method includes two stages: ensemble multi-kernel domain adaptation stage and
ensemble data sampling stage. Wang et al. [Wang, Zhang, Jing et al. (2016)]. propose a
semiboost defect prediction model called NSSB based on non-negative sparse graphs,
which can utilize the adaboost algorithm to boost the model performance. The
experimental results demonstrate that the NSSB model can effectively address the issues
of label instances inadequacy and class imbalance. Chen et al. [Chen and Ma (2015)] use
six regression models to conduct extensive empirical studies, and the experimental
results show that decision tree regression can achieve the best prediction performance.
Lov et al. [Lov, Saikrishna, Ashish et al. (2018)] construct the defect prediction model
based on Least Squares Support Vector Machine (LSSVM) associated with linear,
polynomial and radial basis function kernel functions.
Different from previous studies, we leverage hybrid deep learning techniques - denoising
autoencoder and deep neural network to construct a novel software defect prediction
model in this paper.

3 Feature extraction based on SL-Isomap
We utilize a non-linear manifold learning technique-SOINN Landmark Isomap (SL-Isomap)
[Gan, Shen, Zhao et al. (2014)] to extract the representative features form the original
defect features, which can reveal the complex intrinsic structure hidden behind the defect
data. SL-Isomap is a variant of Isomap [Li, Zhang, Zhang et al. (2017)], which leverages
the SOINN (Self-Organizing Incremental Neural Network) algorithm to automatically
select the reasonable number and position of landmarks, so as to depict topological
structure of defect data in the high dimensional input space and lessen short-circuit errors.

1470 CMC, vol.65, no.2, pp.1467-1486, 2020

In addition, L-Isomap (Landmark Isomap) algorithm is adopted to search low dimensional
manifolds from high dimensional defect data based on selected landmarks.
The implementation process for SL-Isomap is as follows. The data points on each
software project are defined as 𝑋𝑋 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1,2, … ,𝑁𝑁}.
1) Select the reasonable number and position of SOINN landmarks
We utilize the SOINN algorithm to select the reasonable number and position of landmarks
automatically. We first initialize the following variables: The output nodes: 𝑂𝑂 = {𝑥𝑥1,𝑥𝑥2},
the number of local cumulative signals: 𝑆𝑆𝑥𝑥1 = 𝑆𝑆𝑥𝑥2 = 1 , the thresholds: 𝐵𝐵𝑥𝑥1 = 𝐵𝐵𝑥𝑥2 =
𝐷𝐷𝐸𝐸(1,2) , the connection value: 𝐶𝐶 = ∅, the connection age: 𝑎𝑎(1,2) = 0. We can find the
winner 𝑤𝑤1 and second winner (second-nearest) 𝑤𝑤2 by searching the output nodes 𝑂𝑂 from
the input data points 𝑥𝑥𝑖𝑖(𝑖𝑖 ∈ [3,𝑁𝑁]) one by one, as shown in Eqs. (1) and (2):
𝑤𝑤1 = argmin

𝑛𝑛𝑐𝑐∈𝑂𝑂
||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑐𝑐||. (1)

𝑤𝑤2 = argmin
𝑛𝑛𝑐𝑐∈𝑂𝑂\𝑤𝑤1

||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑐𝑐||. (2)

The 𝑥𝑥𝑖𝑖 is a new data node and 𝑂𝑂 = 𝑂𝑂 ∪ 𝑥𝑥𝑖𝑖 when ||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑤𝑤1|| > 𝐵𝐵𝑤𝑤1 or ||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑤𝑤2|| >
𝐵𝐵𝑤𝑤2, and go back to find winner again. If there is no the connection between 𝑤𝑤1 and 𝑤𝑤2,
we need to recreate the connection and reset the connection age 𝑎𝑎(𝑤𝑤1,𝑤𝑤2) to 0, and assign
1 to the age of all edges in 𝑤𝑤1 and increase the number of local cumulative signals 𝑆𝑆𝑤𝑤1 by
1, and then adjust the winner 𝑤𝑤1 to input data 𝑥𝑥𝑖𝑖 by a certain fraction 𝜀𝜀 and delete invalid
edges and connections.
The SOINN can automatically determine the number of landmarks n. After updating the
threshold and removing noise nodes, we can obtain the node set 𝑂𝑂 = {𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑛𝑛} and
Nearest neighbors of O in D, namely the landmark set 𝐿𝐿 = {𝑥𝑥𝑙𝑙1 ,𝑥𝑥𝑙𝑙2 , … , 𝑥𝑥𝑙𝑙𝑛𝑛}, which can
be expressed as follows:
𝑥𝑥𝑙𝑙𝑖𝑖= argmin

𝑥𝑥𝑐𝑐𝜖𝜖𝜖𝜖
||𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑐𝑐||. (3)

2) Apply MDS on SOINN landmarks
We utilize MDS (MultiDimensional Scaling) to construct matrix Hn based on the selected
n landmarks, as shown in Eq. (4):
𝐻𝐻𝑛𝑛 = −𝑀𝑀𝑛𝑛𝐼𝐼𝑛𝑛𝑀𝑀𝑛𝑛/2, (4)
(𝑀𝑀𝑛𝑛)𝑖𝑖𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖 − 1/𝑛𝑛, (5)
where 𝐼𝐼𝑛𝑛 denotes the matrix of squared G, G represents landmarks-only distance matrix.
Next the l-dimensional coordinates of n landmarks are represented as the columns of
matrix U:

𝑈𝑈 =

⎣
⎢
⎢
⎢
⎡�𝜃𝜃1𝜇𝜇1

𝑇𝑇

�𝜃𝜃2𝜇𝜇2𝑇𝑇
⋮

�𝜃𝜃𝑙𝑙𝜇⃗𝜇𝑙𝑙𝑇𝑇 ⎦
⎥
⎥
⎥
⎤
, (6)

where 𝜃𝜃𝑖𝑖 denotes the ith biggest eigenvalues of 𝐻𝐻𝑛𝑛 , 𝜇𝜇𝑖𝑖 represents the corresponding

Software Defect Prediction Based on Non-Linear Manifold 1471

eigenvector.
3) LMDS based on SOINN landmarks
We calculate embedding coordinates for the remaining data nodes according to the
distances from the SOINN landmarks. First, we need to conduct n times Dijkstra
algorithm to compute single-source shortest path matrix G’(n*N), which denotes the
approximate geodesic distance between landmarks and remaining data nodes. Second, we
leverage LMDS (Landmark MDS) to generate the low dimensional embedding, the
embedding of x can be expressed as follows:

𝑥⃗𝑥 = 1
2
𝑈𝑈′(𝐼𝐼𝑛̅𝑛 − 𝐼𝐼𝑥𝑥), (7)

𝑈𝑈′ =

⎣
⎢
⎢
⎢
⎡𝜇𝜇1

𝑇𝑇/�𝜃𝜃1
𝜇𝜇2𝑇𝑇/�𝜃𝜃2

⋮
𝜇𝜇𝑙𝑙𝑇𝑇/�𝜃𝜃𝑙𝑙 ⎦

⎥
⎥
⎥
⎤
, (8)

where 𝐼𝐼𝑥𝑥 represents the column vector of squared distances between data node x and n
landmarks (one column vector in squared G’), 𝐼𝐼𝑛̅𝑛 denotes the average value of the column
for 𝐼𝐼𝑛𝑛.
Finally, we utilize PCA to reorient the axes to reflect the entire distribution of
{𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, thus extracting the representative features Xf.

4 The proposed DLDD model
4.1 Robustness feature representation based on denoising autoencoder
Denoising autoencoder can remove noise through training to learn true input features that
are not contaminated by noise, thereby reconstructing a clean “repaired” input form the
“corrupted” input. We utilize denoising autoencoder to further process these defect
features Xf extracted by SL-Isomap, aiming to generate more robust feature
representation, which has stronger generalization capability.
Denoising autoencoder regards the corrupted data as the input and the predicted
undamaged data as the output, and can learn useful information by changing the
reconstruction error term. The training process of denoising autoencoder is shown in Fig.
1. Denoising autoencoder is trained to reconstruct clean data points x from damaged
version 𝑥𝑥� , which can be achieved by minimizing the loss 𝐿𝐿 = − log𝑃𝑃𝑑𝑑(𝑥𝑥|ℎ = 𝑓𝑓(𝑥𝑥�)),
where 𝑥𝑥� is the damaged version of the each defect instance x by the damage process
𝐶𝐶(𝑥𝑥�|𝑥𝑥). Denoising autoencoder can learn the reconstructed distribution 𝑃𝑃𝑟𝑟(𝑋𝑋|𝑋𝑋�) from the
data pairs (𝑥𝑥, 𝑥𝑥�) according to the follow training process:

1472 CMC, vol.65, no.2, pp.1467-1486, 2020

Figure 1: The training process schematic diagram of denoising autoencoder

First, given a d-dimensional input vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑, we introduce a damage process 𝐶𝐶(𝑥𝑥�|𝑥𝑥)
by adding Gaussian noise, the conditional distribution denotes the probability that the
given defect instance X generates the corrupted instance 𝑋𝑋�. Gaussian noise is a type of
noise whose probability density function obeys the Gaussian distribution (i.e., normal
distribution). The probability density function can be expressed as shown in Eq. (9):

𝑠𝑠(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎

exp (− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
), (9)

where 𝜎𝜎 represents the standard deviation and 𝜇𝜇 represents the expectation.
Then, we leverage the training instances (𝑥𝑥, 𝑥𝑥�) to estimate the reconstructed distribution
𝑝𝑝𝑟𝑟(𝑥𝑥|𝑥𝑥�) = 𝑝𝑝𝑑𝑑(𝑥𝑥|ℎ), which contains two stages: encoder and decoder. For the encoder
stage, the d-dimensional Gaussian noise input data 𝑥𝑥� is mapped to the k-dimensional
hidden layer h, as shown in Eq. (10); for the decoder stage, the hidden layer h is
reconstructed to the d-dimensional output r, as shown in Eq. (11) .
ℎ = 𝑓𝑓(𝑊𝑊𝑥𝑥� + 𝑏𝑏1), (10)
𝑟𝑟 = 𝑔𝑔(𝑊𝑊′ℎ + 𝑏𝑏2), (11)
where f(.) and g(.) denote the activation function of the encoder and decoder, respectively,
𝑊𝑊 ∈ 𝑅𝑅𝑑𝑑×𝑘𝑘 and 𝑊𝑊′ ∈ 𝑅𝑅𝑘𝑘×𝑑𝑑 present the weight matrix of the encoder and decoder,
respectively, 𝑏𝑏1 ∈ 𝑅𝑅𝑘𝑘 and 𝑏𝑏2 ∈ 𝑅𝑅𝑑𝑑 denote the bias of hidden layer and output layer,
respectively, and the parameter of denoising autoencoder can be defined as follows: 𝜆𝜆 =
(𝑊𝑊,𝑊𝑊′,𝑏𝑏1,𝑏𝑏2).
The parameter 𝜆𝜆 is trained to minimize the reconstruction error, as shown in Eq. (12):

𝜆𝜆′ = argmin
𝜆𝜆

1
𝑁𝑁
∑ 𝐿𝐿(𝑋𝑋(𝑖𝑖), 𝑟𝑟(𝑖𝑖))𝑁𝑁
𝑖𝑖=1 = argmin

𝜆𝜆

1
𝑁𝑁
∑ 𝐿𝐿(𝑋𝑋(𝑖𝑖),𝑔𝑔𝜆𝜆(𝑓𝑓𝜆𝜆(𝑋𝑋�(𝑖𝑖))))𝑁𝑁
𝑖𝑖=1 , (12)

where L(.) denotes the squared error loss function, N represents the total number of
training instances.
We adopt the squared error (the average reconstruction error) as the loss function of
denoising autoencoder. The smaller the value, the better the performance of denoising
autoencoder. The loss function LDAE of denoising autoencoder is as shown in Eq. (13):

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐿𝐿�𝑋𝑋�, 𝑟𝑟� = || 1
𝑁𝑁
∑ (�𝑔𝑔𝜆𝜆 �𝑓𝑓𝜆𝜆�𝑥𝑥�(𝑖𝑖)���

2
− �𝑥𝑥(𝑖𝑖)�

2
)𝑁𝑁

𝑖𝑖=1 ||2, (13)

where || || is the norm of the squared error.

Software Defect Prediction Based on Non-Linear Manifold 1473

4.2 Feature integration based on deep neural network
We integrate these defect features processed by denoising autoencoder into the abstract
deep semantic features by deep neural network (DNN). The deep neural network trained
by these deep semantic features has stronger discriminative capacity for different classes
(defective or non-defective). We utilize the trained deep neural network to predict
whether the defect of unknown label is defective or non-defective.
According to the location of different layers, the network layers of deep neural network
can be divided into three categories: input layer, hidden layer and output layer. Generally
speaking, the first layer is the input layer, the last layer is the output layer, and the middle
layers are all hidden layers. The neurons among various network layers are fully
connected, whereas the neurons within the same layer have no direct connections.
Moreover, the number of the neurons in the input and output layers are determined in
accordance with specific applications, while the number of hidden layers and the number
of neurons for each hidden layer are determined empirically.
The network structure of deep neural network in this paper is shown in Fig. 2. The output
of the first hidden layer can be expressed as shown in Eq. (14):
𝐻𝐻𝑘𝑘 = 𝑔𝑔(∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏𝑘𝑘𝑀𝑀

𝑚𝑚=1), (14)
where 𝑥𝑥𝑚𝑚 presents the mth input vector, 𝑤𝑤𝑚𝑚𝑚𝑚 presents the input weight vector
connecting the mth input node and the kth hidden node, 𝑏𝑏𝑘𝑘 denotes the bias of the kth
hidden node, g(.) denotes the nonlinear activation function.
The output of the output layer is as follows:
𝑂𝑂𝑗𝑗 = 𝑔𝑔(∑ 𝑤𝑤𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑆𝑆

𝑠𝑠=1), (15)
where 𝑤𝑤𝑠𝑠𝑠𝑠 presents the output weight connecting the jth output node and the sth hidden
node, and 𝑟𝑟𝑠𝑠 presents the output value of the sth hidden node. 𝑂𝑂𝑗𝑗 denotes the probability
that a specific module belongs to the jth class.

Figure 2: The network structure of deep neural network

The training process of deep neural network is mainly divided into the forward
transmission of the information and the backpropagation of the loss. In the training

1474 CMC, vol.65, no.2, pp.1467-1486, 2020

process of deep neural network, the loss is used for updating the network parameters
(weights and biases) by gradient descent, aiming to maximize the probability of the
correct class label and minimize the probability of the incorrect class label, in other
words, to minimize the classification loss on the given training set. In this paper, the deep
neural network adopts cross entropy loss function to train the network parameters. From
the perspective of classification, it is the probability that the input instances are predicted
to belong to a certain class. The smaller the cross entropy, the more accurate the
prediction result. The equation for cross entropy loss function is as shown in Eq. (16):
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = −∑ 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) log𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡)𝐶𝐶

𝑗𝑗=1 , (16)
where 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) presents the actual probability of the jth input vector of the tth module 𝜒𝜒𝑡𝑡,
𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡) presents the output probability of the jth input vector of the tth module 𝜒𝜒𝑡𝑡 by deep
neural network, and C presents the number of defect classes.

4.3 Hybrid loss function for the DLDD model
For the loss function of the entire DLDD model, we combine the squared error loss
function of denoising autoencoder with the cross entropy loss function of deep neural
network to further reinforce the learned defect feature representation. The equation of the
hybrid loss function for the DLDD model is as shown in Eq. (17):
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜃𝜃𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷

= 𝜃𝜃|| 1
𝑁𝑁
∑ (�𝑔𝑔𝜆𝜆 �𝑓𝑓𝜆𝜆�𝑥𝑥�(𝑖𝑖)���

2
− (𝑥𝑥(𝑖𝑖))2)𝑁𝑁

𝑖𝑖=1 ||2 − ∑ 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) log𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡)𝐶𝐶
𝑗𝑗=1 . (17)

For the hyperparameter 𝜃𝜃 , 𝜃𝜃 ∈ [0, 1], we can adjust 𝜃𝜃 according to the experimental
result. In this paper, we discuss the performance of the DLDD model when the
hyperparameter 𝜃𝜃=0.25, 0.5, 0.75 and 1, respectively. This experiment part will introduce
the experimental results for different hyperparameter 𝜃𝜃 in detail.
We utilize the proposed DLDD model to learn the deep semantic features with stronger
discriminative capacity for the training set. After using the defect instances with known
labels to train the proposed DLDD model, the weights and biases of deep neural network
will no longer change. For the defect instances with unknown labels in the test set, we
feed them to the DLDD model for prediction with the same mapping rule, the class label
with the highest probability manifests that the defect instance belongs to this class
(defective or not-defective).

5 Experimental setup
In this section, we introduce the experimental setup, including benchmark datasets,
evaluation indicators and baseline models.

5.1 Benchmark datasets
We conduct extensive experiments on 20 software projects, including 14 projects from
the PROMISE data repository and 6 projects from the NASA data repository, which are
publicly available and well-known datasets in software defect prediction study [Lov,
Saikrishna, Ashish et al. (2018)]. Tab. 1 summarizes the basic information of 14 projects

Software Defect Prediction Based on Non-Linear Manifold 1475

(the first fourteen rows) from the PROMISE data repository and 6 projects (the latter six
rows) from the NASA data repository respectively.
For all software projects, we adopt the SMOTE (Synthetic Minority Oversampling
Technique) algorithm for class imbalance processing and the z-score method for data
normalization in this paper. Moreover, we conduct 10 times 10-fold cross-validation to
evaluate the performance of the models in this paper. In this paper, we adopt four
commonly used evaluation indicators-F1, MCC (Matthews correlation coefficient), pf
and G-measure [Zhu, Zhang, Ying et al. (2020)] to evaluate the model performance.

Table 1: The statistics of 20 projects from the PROMISE and NASA data repository

Projects
of

features
of

instances

of
defective
instances

of
non-defective

instances

Defective
Ratio (%)

Imbalance
ratio

ant-1.6 20 351 92 259 26.21 2.82
ant-1.7 20 745 166 579 22.28 3.49

camel-1.0 20 339 13 326 3.83 25.08
camel-1.2 20 608 216 392 35.53 1.81
camel-1.4 20 872 145 727 16.63 5.01

ivy-2.0 20 352 40 312 11.36 7.80
jedit-4.1 20 312 79 233 25.32 2.95
jedit-4.2 20 367 48 319 13.08 6.65
jedit-4.3 20 492 11 481 2.24 43.73
poi-2.0 20 314 37 277 11.78 7.49
prop-6 20 660 66 594 10.00 9.00

synapse-1.2 20 256 86 170 33.59 1.98
xalan-2.4 20 723 110 613 15.21 5.57
xerces-1.2 20 440 71 369 16.14 5.20

KC2 21 522 107 415 20.50 3.88
CM1 37 327 42 285 12.84 6.79
MC1 38 1988 46 1942 2.31 42.22
MW1 37 253 27 226 10.67 8.37
PC1 37 705 61 644 8.65 10.56
PC2 36 745 16 729 2.15 45.56

5.2 Baseline models
To validate the feature extraction capability of SL-Isomap and the prediction
performance of DLDD, we conduct extensive experiments for feature extraction and
software defect prediction. For our DLDD model, we conduct experiments respectively
when the hyperparameter 𝜃𝜃=0.25, 0.5, 0.75 and 1.
For feature extraction, we compare the SL-Isomap model with seven state-of-the-art
feature extraction methods, including Factor Analysis (FA) [Ali, Ahmed, Ferzund et al.

1476 CMC, vol.65, no.2, pp.1467-1486, 2020

(2017)], Principal Component Analysis (PCA) [Kondo, Bezemer, Kamei et al. (2019)]],
Stochastic Proximity Embedding (SPE) [Eberhardt, Stote and Dejaegere (2018)],
Stochastic Neighbor Embedding (SNE) [Bunte, Haase, Biehl et al. (2012)],
Neighborhood Preserving Embedding (NPE) [Zhao, Zou and Gao (2013)], Generalized
Discriminant Analysis-Gaussion (GDA-G) [Uddin and Hassan (2015)] and Isometric
Mapping (Isomap) [Li, Zhang, Zhang et al. (2017)]. These feature extraction methods all
use the DLDD as the defect predictor.
For software defect prediction, we compare the SL-Isomap model with five classic defect
predictor, include Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest
Neighbor (KNN), Decision Tree (DT) and Logistic Regression (LR). These defect
predictors all use the features extracted by SL-Isomap.
In addition, we also compare the DLDD with Deep Neural Network (DNN) that does not
combine denoising autoencoder (DAE), and the DNN also use the features extracted by
the SL-Isomap.

6 Experimental results
We detail the experimental results by the following three research questions (RQ) in the
section.
RQ1: How about the feature extraction capability of the non-linear manifold
learning method SL-Isomap compared with seven state-of-the-art feature extraction
methods in software defect prediction?
To verify the effectiveness of the representative features extracted by the non-linear
manifold learning method SL-Isomap, we compare the SL-Isomap with seven state-of-
the-art feature extraction methods with the same defect predictor-DLDD (𝜃𝜃=0.75),
including FA, PCA, SPE, SNE, NPE, GDA-G and Isomap. In RQ2, the experiment
results demonstrate that the DLDD model can achieve the best defect prediction
performance when 𝜃𝜃=0.75, so we choose the DLDD with 𝜃𝜃=0.75 in RQ1.
Tabs. 2-4 show the F1, MCC and G-measure of SL-Isomap and seven state-of-the-art
feature extraction methods across all 20 projects. Note that the highest value of each row
is marked in bold. From Tabs. 2-4, we can observe that our method SL-Isomap achieves
the best average performance in terms of F1, MCC and G-measure. More specifically,
the average F1 (0.7957) by SL-Isomap gains improvement between 4.40% (for Isomap)
and 18.46% (for NPE) with an average improvement of 8.96%, the average MCC
(0.5714) by SL-Isomap yields improvement between 12.48% (for Isomap) and 89.46%
(for NPE) with an average improvement of 34.83% and the average G-measure (0.7820)
by SL-Isomap achieves improvement between 4.78% (for PCA) and 23.15% (for NPE)
with an average improvement of 11.35%.
Fig. 3 shows the box-plots of four indicators for our method SL-Isomap and seven
feature extraction methods across all 20 projects. From Figs. 3(a)-3(d), we can observe
that the median values gained by SL-Isomap are higher than those gained by seven
feature extraction methods from the point of F1, MCC and G-measure respectively, and
the median value gained by SL-Isomap is lower than those gained by seven feature
extraction methods from the point of pf, which can fully demonstrate the superiority of

Software Defect Prediction Based on Non-Linear Manifold 1477

our method SL-Isomap. In addition, for F1, MCC and G-measure, the median values by
SL-Isomap are higher than the maximum values by SPE and NPE, respectively.
Compared with other feature extraction methods, our method SL-Isomap can achieve the
best experimental results. This is because SL-Isomap can utilize the SOINN algorithm to
automatically select the reasonable number of landmarks, thereby characterizing
topological structure of defect data in the high dimensional input space. Moreover, SL-
Isomap also leverages the L-Isomap algorithm to search low dimensional manifolds from
high dimensional defect data based on selected landmarks.

Conclusion 1: Our method SL-Isomap performs better than seven state-of-the-art
feature extraction methods in terms of F1, MCC and G-measure. The SL-Isomap
can achieve the average 8.96%, 34.83% and 11.35% performance improvements
compared with seven feature extraction methods across all 20 projects in terms of
F1, MCC and G-measure. In terms of pf, the median value gained by SL-Isomap is
lower than those gained by other seven methods.

Table 2: The F1 for our method SL-Isomap compared with seven feature extraction methods

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap

ant-1.6 0.7241 0.7308 0.6792 0.6909 0.6316 0.7097 0.7119 0.7586
ant-1.7 0.7273 0.7225 0.7018 0.7363 0.6637 0.7358 0.7437 0.7834

camel-1.0 0.7727 0.8430 0.7344 0.8331 0.7059 0.7786 0.8281 0.8105
camel-1.2 0.5443 0.5271 0.5191 0.5691 0.5042 0.5170 0.5410 0.6014
camel-1.4 0.6967 0.6638 0.6201 0.6824 0.5914 0.6741 0.7177 0.7414

ivy-2.0 0.7619 0.7576 0.7097 0.7606 0.6857 0.7302 0.7937 0.8116
jedit-4.1 0.7097 0.7250 0.6970 0.7213 0.6575 0.7143 0.7273 0.7742
jedit-4.2 0.7838 0.8485 0.7564 0.8125 0.7170 0.7799 0.7925 0.8344
jedit-4.3 0.8426 0.8364 0.7327 0.8436 0.7085 0.8360 0.8725 0.8804
poi-2.0 0.7692 0.7949 0.7105 0.8148 0.6933 0.7391 0.7789 0.7949
prop-6 0.7835 0.7273 0.6730 0.7396 0.6452 0.7447 0.7717 0.8259

synapse-1.2 0.7241 0.7458 0.7018 0.6984 0.6441 0.7077 0.7119 0.7368
xalan-2.4 0.7079 0.7018 0.6946 0.7019 0.6387 0.7111 0.7487 0.7677
xerces-1.2 0.7133 0.7448 0.6757 0.7778 0.6587 0.6822 0.7328 0.7682

KC2 0.7552 0.7652 0.7059 0.7581 0.6446 0.7692 0.7156 0.7910
CM1 0.7692 0.7714 0.7671 0.8462 0.7273 0.7937 0.8205 0.8421
MC1 0.8229 0.8407 0.6454 0.8161 0.7586 0.8152 0.8554 0.8936
MW1 0.7234 0.7458 0.7368 0.7636 0.7407 0.7547 0.7500 0.7931
PC1 0.7629 0.7735 0.7160 0.8084 0.7038 0.7631 0.8043 0.8551
PC2 0.8104 0.8244 0.6128 0.8497 0.7132 0.8178 0.8253 0.8492
Avg 0.7453 0.7545 0.6895 0.7612 0.6717 0.7387 0.7622 0.7957

RQ2: How about the prediction performance of the proposed DLDD model
compared with five classic defect predictors with the same feature extraction

1478 CMC, vol.65, no.2, pp.1467-1486, 2020

Table 3: The MCC for our method SL-Isomap compared with seven feature extraction methods

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap

ant-1.6 0.4971 0.5530 0.4559 0.4584 0.3361 0.4497 0.4687 0.5602

ant-1.7 0.4598 0.4867 0.4627 0.4643 0.1979 0.4142 0.4895 0.5030

camel-1.0 0.5342 0.7049 0.4691 0.6318 0.3810 0.5490 0.6567 0.6055

camel-1.2 -0.1086 0.0520 0.0226 0.1712 0.0736 -0.0933 0.1233 0.1342

camel-1.4 0.4207 0.3979 0.3186 0.3689 0.0591 0.3221 0.4527 0.5317

ivy-2.0 0.5345 0.4995 0.4426 0.4715 0.3116 0.4719 0.5972 0.5948

jedit-4.1 0.4370 0.3886 0.3798 0.4679 0.2180 0.3915 0.3977 0.5621

jedit-4.2 0.5012 0.5766 0.3779 0.5000 0.2531 0.4191 0.4523 0.6047

jedit-4.3 0.6468 0.6286 0.4361 0.6551 0.3182 0.6873 0.7281 0.7387

poi-2.0 0.4107 0.4764 0.2928 0.4383 0.2674 0.1240 0.2437 0.4764

prop-6 0.5667 0.3186 0.2759 0.4850 0.1897 0.5103 0.5789 0.6350

synapse-1.2 0.4971 0.5287 0.4656 0.4092 0.4184 0.4147 0.4658 0.5290

xalan-2.4 0.4633 0.4656 0.2140 0.3592 0.2813 0.3439 0.4898 0.5219

xerces-1.2 0.3526 0.4123 0.2955 0.4936 0.0438 0.3900 0.4789 0.4347

KC2 0.4949 0.5762 0.4505 0.5323 0.3262 0.5759 0.5163 0.5805

CM1 0.4152 0.5015 0.4584 0.6130 0.5222 0.6422 0.5471 0.6130

MC1 0.6457 0.6817 0.0180 0.6346 0.5648 0.6583 0.7116 0.7928

MW1 0.5845 0.5379 0.5290 0.5860 0.5516 0.5818 0.5551 0.6281

PC1 0.4590 0.4899 0.2626 0.5694 0.3307 0.5513 0.5681 0.6792

PC2 0.6077 0.6325 0.2900 0.6780 0.3882 0.6943 0.6391 0.7031

Avg 0.4710 0.4955 0.3459 0.4994 0.3016 0.4549 0.5080 0.5714

method SL-Isomap?
In this paper, we combine the squared error loss function of denoising autoencoder with
the cross entropy loss function of deep neural network to further reinforce the learned
defect feature representation by controlling the hyperparameter 𝜃𝜃 , 𝜃𝜃 ∈ [0, 1] . To
investigate the influence of 𝜃𝜃 on the performance of the DLDD model, we select 𝜃𝜃=0.25,
0.5, 0.75, 1, and discuss the performance of the DLDD model when the hyperparameter
𝜃𝜃=0.25, 0.5, 0.75, 1, respectively. In addition, this question is also designed to evaluate
the effectiveness of the DLDD model compared with five classic defect predictors with
the same feature extraction method SL-Isomap, including SVM, NB, KNN, DT and LR.

Software Defect Prediction Based on Non-Linear Manifold 1479

Table 4: The G-measure for our method SL-Isomap compared with seven feature
extraction methods

Tabs. 5-7 show the F1, MCC and G-measure of the DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) model
compared with those of five classic predictors across all 20 projects, respectively. Note
that the highest value of each row is marked in bold. From Tabs. 5-7, compared with
DLDD (𝜃𝜃=0.25, 0.5, 1), we can find that the DLDD model is the best performer in terms
of F1, MCC and G-measure when the hyperparameter 𝜃𝜃=0.75. Moreover, compared with
SVM, NB, KNN, DT and LR, we can observe that the proposed DLDD (𝜃𝜃=0.75) model
also achieves the best average performance in terms of F1, MCC and G-measure. More
specifically, the average F1 (0.7957) by DLDD achieves improvement between 7.14%
(for DT) and 19.19% (for NB) with an average improvement of 11.31%, the average
MCC (0.5714) by DLDD yields improvement between 19.97% (for LR) and 97.65% (for
NB) with an average improvement of 46.55% and the average G-measure (0.7820) by
DLDD achieves improvement between 8.04% (for LR) and 27.15% (for NB) with an
average improvement of 15.08%.
Fig. 4 shows the box-plots of four indicators for the proposed DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1)
model and five classic defect predictors across all 20 projects. From Figs. 4(a)-4(d), we can
observe that the median values gained by DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) are higher than
those gained by five classic defect predictors from the point of F1, MCC, and G-measure,
respectively. We also find that the median values by DLDD (𝜃𝜃=0.75) are higher than the

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap
ant-1.6 0.7500 0.7590 0.7151 0.7248 0.6677 0.7213 0.7358 0.7817
ant-1.7 0.7223 0.7231 0.7317 0.7283 0.5911 0.7093 0.7383 0.7530

camel-1.0 0.7639 0.8489 0.7344 0.8031 0.6809 0.7724 0.8281 0.8213
camel-1.2 0.3018 0.6228 0.5053 0.5858 0.5342 0.3878 0.5615 0.5230
camel-1.4 0.7097 0.6874 0.6473 0.6837 0.4541 0.6496 0.7264 0.7578

ivy-2.0 0.7648 0.7497 0.7164 0.7214 0.6457 0.7336 0.7961 0.7916
jedit-4.1 0.7184 0.7254 0.6851 0.7328 0.5811 0.6719 0.6048 0.7810
jedit-4.2 0.7569 0.7700 0.6886 0.7448 0.6154 0.7045 0.7221 0.8098
jedit-4.3 0.8116 0.7952 0.7182 0.8224 0.6317 0.8373 0.8640 0.8663
poi-2.0 0.7059 0.7402 0.6490 0.7168 0.6373 0.3864 0.3936 0.7402
prop-6 0.7818 0.6604 0.6314 0.7396 0.5785 0.7481 0.7764 0.8180

synapse-1.2 0.7441 0.7625 0.7248 0.7038 0.6878 0.7018 0.7309 0.7568
xalan-2.4 0.7219 0.7248 0.4581 0.6668 0.6406 0.6168 0.7445 0.7591
xerces-1.2 0.6777 0.7068 0.5769 0.7487 0.4237 0.6808 0.7295 0.7096

KC2 0.7006 0.7823 0.7241 0.7663 0.6630 0.7850 0.7378 0.7755
CM1 0.6847 0.7530 0.7293 0.7867 0.7617 0.7941 0.7529 0.7980
MC1 0.8174 0.8136 0.5810 0.8148 0.7847 0.8259 0.8446 0.8963
MW1 0.7473 0.7699 0.7671 0.7940 0.7742 0.7863 0.6786 0.8164
PC1 0.7132 0.7339 0.4761 0.7739 0.6534 0.7669 0.7791 0.8331
PC2 0.7968 0.7972 0.6354 0.8227 0.6936 0.8242 0.8125 0.8515
Avg 0.7195 0.7463 0.6548 0.7441 0.6350 0.7052 0.7279 0.7820

1480 CMC, vol.65, no.2, pp.1467-1486, 2020

maximum values by NB respectively in terms of F1, MCC, G-measure, and the median
value by DLDD (𝜃𝜃=0.75) is lower than the minimum values by SVM, KNN and DT in
terms of pf. In addition, the median values gained by DLDD (𝜃𝜃=0.75) are higher than those
gained by DLDD (𝜃𝜃=0.25, 0.5, 1) respectively in terms of MCC and G-measure, and the
median value gained by DLDD (𝜃𝜃=0.75) is lower than those gained by DLDD (𝜃𝜃=0.25, 0.5,
1) respectively in terms of pf (the smaller the pf, the better the performance).
Compared with five classic defect predictors, our DLDD model can achieve the best
prediction performance. This is because the DLDD model adopts denoising autoencoder to
learn the reconstructed distribution and more robust feature representation by changing the
reconstruction error term, and utilizes deep neural network to learn the abstract deep
semantic features. The deep semantic features have stronger discriminative capacity for
different classes. In addition, the model performance can be affected by the degree of noise
added, the DLDD model can achieve the best experimental performance when 𝜃𝜃=0.75.

(a) F1 (b) MCC

(c) pf (d) G-measure

Figure 3: The box-plots for our method SL-Isomap compared with seven feature
extraction methods in terms of four indicators

Software Defect Prediction Based on Non-Linear Manifold 1481

Table 5: The F1 for our model DLDD compared with five classic defect predictors

Datasets SVM NB KNN DT LR
SLDD
(0.25)

SLDD
(0.5)

SLDD
(0.75)

SLDD
(1)

ant-1.6 0.6901 0.6452 0.7038 0.6870 0.7467 0.7241 0.7458 0.7586 0.7541
ant-1.7 0.6866 0.6585 0.6890 0.7445 0.7069 0.7562 0.7761 0.7834 0.7905

camel-1.0 0.7568 0.7368 0.7832 0.8048 0.7933 0.8387 0.8444 0.8105 0.8000
camel-1.2 0.5507 0.5263 0.6033 0.5873 0.5685 0.5793 0.6179 0.6014 0.5857
camel-1.4 0.6841 0.6469 0.6473 0.6900 0.6653 0.7194 0.7265 0.7414 0.7137

ivy-2.0 0.6912 0.6441 0.7398 0.7237 0.7380 0.8308 0.8235 0.8116 0.8060
jedit-4.1 0.7055 0.6914 0.7670 0.7312 0.7973 0.7813 0.7536 0.7742 0.7353
jedit-4.2 0.6667 0.6560 0.7621 0.7348 0.7454 0.7947 0.8153 0.8344 0.8435
jedit-4.3 0.7543 0.7013 0.8601 0.7814 0.8432 0.8421 0.8700 0.8804 0.8071
poi-2.0 0.7399 0.6609 0.7170 0.7670 0.8072 0.7895 0.8052 0.7949 0.7901
prop-6 0.7585 0.6914 0.8357 0.7622 0.7574 0.8058 0.8061 0.8259 0.8200

synapse-1.2 0.6923 0.6753 0.6475 0.6803 0.6667 0.6866 0.6913 0.7368 0.7143
xalan-2.4 0.6992 0.6486 0.6853 0.7071 0.7762 0.7385 0.7594 0.7677 0.7407
xerces-1.2 0.6277 0.6038 0.6649 0.6787 0.6316 0.7463 0.7518 0.7682 0.7703

KC2 0.7004 0.6753 0.7032 0.7697 0.7360 0.7778 0.7797 0.7910 0.7534
CM1 0.6950 0.6692 0.7063 0.8087 0.7692 0.8205 0.8312 0.8421 0.8267
MC1 0.7206 0.6857 0.7582 0.8221 0.7817 0.8059 0.8682 0.8936 0.8420
MW1 0.7162 0.7253 0.7417 0.7544 0.7379 0.7755 0.7797 0.7931 0.8235
PC1 0.7117 0.6769 0.7667 0.8028 0.7632 0.7673 0.8293 0.8551 0.8295
PC2 0.7436 0.7326 0.7835 0.8160 0.8069 0.8048 0.8163 0.8492 0.8473
Avg 0.6996 0.6676 0.7283 0.7427 0.7419 0.7693 0.7846 0.7957 0.7797

RQ3: Does the proposed DLDD (𝜽𝜽 = 0.75) model outperform the single deep neural
network that does not combine denoising autoencoder?
Denoising autoencoder can remove noise through training to learn more robust feature
representation that are not contaminated by noise, and reconstruct a clean “repaired”
input form the “corrupted” input. To explore the influence of the denoising autoencoder
on the prediction performance of the DLDD (𝜃𝜃=0.75) model, we compare the DLDD
(𝜃𝜃 =0.75) model (with denoising autoencoder) with deep neural network (without
denoising autoencoder) in this experiment.

Conclusion 2: The proposed DLDD model can achieve the best prediction
performance in terms of F1, MCC, pf and G-measure when the hyperparameter
𝜃𝜃=0.75. The DLDD (𝜃𝜃=0.75) can achieve the average 11.31%, 46.55% and
15.08% performance improvements compared with five defect predictors across
all 20 projects in terms of F1, MCC and G-measure.

1482 CMC, vol.65, no.2, pp.1467-1486, 2020

Table 6: The MCC for our model DLDD compared with five classic defect predictors

Datasets SVM NB KNN DT LR
SLDD
(0.25)

SLDD
(0.5)

SLDD
(0.75)

SLDD
(1)

ant-1.6 0.2704 0.3594 0.3307 0.3091 0.5123 0.4971 0.5318 0.5602 0.5397
ant-1.7 0.3426 0.1280 0.4122 0.4677 0.4475 0.5065 0.5488 0.5030 0.5437

camel-1.0 0.4366 0.3881 0.5135 0.6242 0.5556 0.6876 0.6792 0.6055 0.6093
camel-1.2 0.0567 0.0847 0.2112 0.1943 0.2018 0.0715 0.2652 0.1342 0.1132
camel-1.4 0.5643 0.2659 0.2967 0.3764 0.3599 0.4084 0.4996 0.5317 0.4314

ivy-2.0 0.3412 0.3262 0.4648 0.4316 0.4746 0.6566 0.6251 0.5948 0.5932
jedit-4.1 0.3639 0.4620 0.4892 0.4104 0.5336 0.5640 0.4834 0.5621 0.4481
jedit-4.2 0.2599 0.3416 0.5170 0.4729 0.4591 0.5073 0.5233 0.6047 0.6502
jedit-4.3 0.4425 0.2909 0.7113 0.5207 0.6771 0.6547 0.7074 0.7387 0.8222
poi-2.0 0.4429 0.3050 0.2531 0.4892 0.5839 0.4880 0.5147 0.4764 0.4288
prop-6 0.5970 0.2347 0.6390 0.4658 0.4824 0.5813 0.6068 0.6350 0.6251

synapse-1.2 0.3511 0.2234 0.2630 0.3876 0.2599 0.3586 0.4679 0.5290 0.4981
xalan-2.4 0.3748 0.1863 0.3107 0.3969 0.4976 0.4690 0.5320 0.5219 0.4898
xerces-1.2 0.2395 0.1465 0.2824 0.3101 0.3633 0.4854 0.4518 0.4347 0.4555

KC2 0.3477 0.2234 0.4162 0.4971 0.5515 0.6306 0.5916 0.5805 0.4265
CM1 0.3232 0.3219 0.3893 0.5837 0.5057 0.5471 0.5800 0.6130 0.5818
MC1 0.4039 0.3116 0.4034 0.6223 0.5132 0.6062 0.7387 0.7928 0.6839
MW1 0.3396 0.4115 0.3775 0.4576 0.4027 0.6474 0.6011 0.6281 0.7107
PC1 0.5132 0.3439 0.5063 0.5607 0.5814 0.5839 0.6172 0.6792 0.6612
PC2 0.4658 0.4272 0.5070 0.6018 0.5626 0.6171 0.7497 0.7031 0.6899
Avg 0.3738 0.2891 0.4147 0.4590 0.4763 0.5284 0.5658 0.5714 0.5501

Fig. 5 shows the average F1, MCC, pf and G-measure of the DLDD (𝜃𝜃=0.75) model
(with denoising autoencoder) compared with deep neural network (without denoising
autoencoder) on the PROMISE and NASA, respectively. From Fig. 5, we can observe
that the DLDD (𝜃𝜃=0.75) model perform better than deep neural network in terms of F1,
MCC, pf and G-measure. More specifically, the average F1 (0.7778), MCC (0.5309), pf
(0.2433) and G-measure (0.7621) by DLDD (𝜃𝜃=0.75) yield improvements of 7.37%,
16.25%, 7.31% and 5.66% compared with deep neural network without denoising
autoencoder on PROMISE respectively, and the average F1 (0.8374), MCC (0.6661), pf
(0.1919) and G-measure (0.8285) by DLDD (𝜃𝜃=0.75) yield improvements of 7.36%,
32.85%, 38.81% and 11.67% compared with deep neural network without denoising
autoencoder on NASA respectively.
Compared with single deep neural network, our DLDD model not only adopt deep neural
network, but also remove noise to learn more robust feature representation by combining
denoising autoencoder. Therefore, the DLDD model can achieve better prediction
performance than single deep neural network.

Software Defect Prediction Based on Non-Linear Manifold 1483

Table 7: The G-measure for our model DLDD compared with five classic defect predictors

Datasets SVM NB KNN DT LR
SLDD
(0.25)

SLDD
(0.5)

SLDD
(0.75)

SLDD
(1)

ant-1.6 0.3393 0.6743 0.6534 0.6251 0.7564 0.7500 0.7674 0.7817 0.7686
ant-1.7 0.6715 0.4286 0.7010 0.7313 0.7171 0.7492 0.7701 0.7530 0.7741

camel-1.0 0.7241 0.6418 0.7469 0.8104 0.7269 0.8431 0.7315 0.8213 0.7044
camel-1.2 0.5236 0.5389 0.6054 0.5963 0.5896 0.4821 0.6328 0.5230 0.5252
camel-1.4 0.6887 0.6332 0.6483 0.6881 0.6774 0.6814 0.7435 0.7578 0.7150

ivy-2.0 0.6700 0.6615 0.7306 0.7156 0.7369 0.8283 0.8096 0.7916 0.7956
jedit-4.1 0.6802 0.7195 0.7409 0.7012 0.7432 0.7813 0.7237 0.7810 0.7114
jedit-4.2 0.6228 0.6614 0.7584 0.7357 0.7294 0.7603 0.7629 0.8098 0.8310
jedit-4.3 0.7076 0.5820 0.8145 0.7567 0.7722 0.8242 0.8281 0.8663 0.9107
poi-2.0 0.7207 0.6450 0.6154 0.7409 0.7906 0.7500 0.7623 0.7402 0.7018
prop-6 0.7695 0.5004 0.8154 0.7229 0.7408 0.7895 0.8028 0.8180 0.8130

synapse-1.2 0.3778 0.5474 0.6270 0.6903 0.6228 0.6657 0.7343 0.7568 0.7368
xalan-2.4 0.6877 0.5572 0.6569 0.6973 0.7389 0.7340 0.7647 0.7591 0.7445
xerces-1.2 0.6112 0.5667 0.6258 0.6387 0.6508 0.7388 0.7283 0.7096 0.7252

KC2 0.6709 0.5474 0.7072 0.7455 0.7482 0.7920 0.7941 0.7755 0.7130
CM1 0.6548 0.6599 0.6903 0.7896 0.7522 0.7529 0.7760 0.7980 0.7863
MC1 0.7015 0.6457 0.7058 0.7945 0.7488 0.7895 0.8512 0.8963 0.8181
MW1 0.6748 0.7049 0.6937 0.7235 0.6861 0.7970 0.8015 0.8164 0.8425
PC1 0.7488 0.6720 0.7445 0.7727 0.7799 0.7906 0.7979 0.8331 0.8285
PC2 0.7309 0.7128 0.7375 0.7923 0.7668 0.8084 0.8488 0.8515 0.8427
Avg 0.6488 0.6150 0.7009 0.7234 0.7238 0.7554 0.7716 0.7820 0.7644

(a) PROMISE (b) NASA

Figure 5: The average performance comparison of SLDD and DNN on PROMISE and
NASA datasets

1484 CMC, vol.65, no.2, pp.1467-1486, 2020

(a) F1 (b) MCC

(c) pf (d) G-measure

Figure 4: The box-plots for our proposed SLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) compared with
five classic predictors in terms of four indicators

7 Conclusion
Software defect prediction can effectively guide the direction of software testing by
allocating reasonably limited testing resources to highly risky modules before releasing
the new software product. In this work, we construct an effective software defect
prediction model based on a novel non-linear manifold learning feature extraction
method and hybrid deep learning techniques. First, we leverage an advanced non-linear

Conclusion 3：The DLDD (𝜃𝜃 = 0.75) model outperforms the single
deep neural network that does not combine denoising autoencoder, and
the experimental results prove that the denoising autoencoder can
boost the prediction performance of the DLDD (𝜃𝜃=0.75) model.

http://dict.youdao.com/w/single/#keyfrom=E2Ctranslation

Software Defect Prediction Based on Non-Linear Manifold 1485

manifold learning method - SL-Isomap to extract the representative features from the
original defect features. Second, we propose a novel defect prediction model called
DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder
to learn the reconstructed distribution and more robust feature representation by changing
the reconstruction error term, and utilizes deep neural network to learn the abstract deep
semantic features. In addition, we also combine loss functions of two deep learning
techniques to achieve the best performance of defect prediction by adjusting a
hyperparameter. We conduct extensive experiments for feature extraction and defect
prediction across 20 software defect projects from large open source datasets, and the
experimental results demonstrate that the effectiveness of SL-Isomap and DLDD.
In future work, in order to verify generalization capability and practicability of SL-Isomap
and DLDD, we will evaluate them in more open source and commercial projects. Moreover,
we also plan to extend SL-Isomap and DLDD to cross-project defect prediction.

Funding Statement: This work is supported in part by the National Science Foundation
of China (Grant Nos. 61672392, 61373038), and in part by the National Key Research
and Development Program of China (Grant No. 2016YFC1202204).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Ali, M. U.; Ahmed, S.; Ferzund, J.; Mehmood, A.; Rehman, A. (2017): Using PCA
and factor analysis for dimensionality reduction of bio-informatics data. arXiv, arXiv-
1707.
Bunte, K.; Haase, S.; Biehl, M.; Villmann, T. (2012): Stochastic neighbor embedding
(SNE) for dimension reduction and visualization using arbitrary divergences.
Neurocomputing, vol. 90, pp. 23-45.
Chen, M. M.; Ma, Y. T. (2015): An empirical study on predicting defect numbers.
Proceedings of the International Conference on Software Engineering and Knowledge
Engineering, pp. 397-402.
Eberhardt, J.; Stote, R. H.; Dejaegere, A. (2018): Unrolr: structural analysis of protein
conformations using stochastic proximity embedding. Journal of Computational
Chemistry, vol. 39, no. 30, pp. 2551-2557.
Gan, Q.; Shen, F. R.; Zhao, J. X. (2014): An extended isomap for manifold topology
learning with SOINN landmarks. Proceedings of the 22th International Conference on
Pattern Recognition, pp. 1579-1584.
Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. (2012): A systematic
literature review on fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1276-1304.

https://dblp.uni-trier.de/pers/hd/b/Bunte:Kerstin
https://dblp.uni-trier.de/pers/hd/h/Haase:Sven
https://dblp.uni-trier.de/pers/hd/b/Biehl:Michael
https://dblp.uni-trier.de/pers/hd/v/Villmann:Thomas
https://dblp.uni-trier.de/pers/hd/e/Eberhardt:J=eacute=r=ocirc=me
http://www.baidu.com/link?url=TFePKoPZt4PRwOM6CZ19J6wpqH9sMJb0eEUxe5Ch2UgeYo-ulv4aRCknWexh2pl7cqzWISu2aNaPhjZltE_0mz2bEE2Guat-K5yAsKs0dfVlpJTVvZdkdZrVEkkiuduhIJ_fl3Kt7l4IXyciH9LFYrZY7HWRXvjnYg-Bno2irh4t43Mq_XRLNIAXClAPllQ3gaCp6DhxHiM3ykiWBvLd5DI9D98q6Edq_ktuVdbmy9AaOpJo9NLxzRDDvf9CRkpZi84IIelnMy2v_FsLIC1pDT6SeB8rODYrXxtVoQMyVmC
http://www.baidu.com/link?url=TFePKoPZt4PRwOM6CZ19J6wpqH9sMJb0eEUxe5Ch2UgeYo-ulv4aRCknWexh2pl7cqzWISu2aNaPhjZltE_0mz2bEE2Guat-K5yAsKs0dfVlpJTVvZdkdZrVEkkiuduhIJ_fl3Kt7l4IXyciH9LFYrZY7HWRXvjnYg-Bno2irh4t43Mq_XRLNIAXClAPllQ3gaCp6DhxHiM3ykiWBvLd5DI9D98q6Edq_ktuVdbmy9AaOpJo9NLxzRDDvf9CRkpZi84IIelnMy2v_FsLIC1pDT6SeB8rODYrXxtVoQMyVmC

1486 CMC, vol.65, no.2, pp.1467-1486, 2020

Kirihata, M.; Ma, Q. (2019): A trend-shift model for global factor analysis of
investment products. IEICE Transactions on Information and Systems, vol. 102, no. 11,
pp. 2205-2213.
Kondo, M.; Bezemer, C. P.; Kamei, Y.; Ahmed, E. H.; Osamu, M. (2019): The
impact of feature reduction techniques on defect prediction models. Empirical Software
Engineering, vol. 24, no. 4, pp. 1925-1963.
Li, W.; Zhang, L. P.; Zhang, L. F.; Du, B. (2017): GPU parallel implementation of
isometric mapping for hyperspectral classification. IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 9, pp. 1532-1536.
Li, Z. Q.; Jing, X. Y.; Zhu, X. K.; Zhang, H. Y.; Xu, B. W. et al. (2019):
Heterogeneous defect prediction with two-stage ensemble learning. Automated Software
Engineering, vol. 26, no. 3, pp. 599-651.
Lov, K.; Saikrishna, S.; Ashish, S.; Santanu, K. R. (2018): Effective fault prediction
model developed using least square support vector machine (LSSVM). The Journal of
Systems and Software, vol. 137, no. 3, pp. 686-712.
Shen, F. R.; Tomotaka, O.; Osamu, H. (2007): An enhanced self-organizing
incremental neural network for online unsupervised learning. Neural Networks, vol. 20,
no. 8, pp. 893-903.
Uddin, M. Z.; Hassan, M. M. (2015): A depth video-based facial expression recognition
system using radon transform, generalized discriminant analysis, and hidden Markov
model. Multimedia Tools and Applications, vol. 74, no. 11, pp. 3675-3690.
Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P. A. (2008): Extracting and
composing robust features with denoising autoencoders. The 25th International
Conference on Machine, pp. 1096-1103.
Wang, T. J.; Zhang, Z. W.; Jing, X. Y.; Liu, Y. L. (2016): Non-negative sparse-based
semiboost for software defect prediction. Software Testing, Verification and Reliability,
vol. 26, no. 7, pp. 498-515.
Wang, W.; Jiang, Y. B.; Luo, Y. H.; Li, J.; Wang, X. (2019): An advanced deep
residual dense network (DRDN) approach for image super-resolution. International
Journal of Computational Intelligence Systems, vol. 12, no. 2, pp. 1592-1601.
Zhang, J. M.; Wang, W.; Lu, C. Q.; Wang, J.; Sangaiah, A. K. (2019): Lightweight
deep network for traffic sign classification. Annals of Telecommunications, pp. 1-11.
Zhao, L.; Zou, D.; Gao, G. (2013): Subsampling based neighborhood preserving
embedding for image classification. In Ninth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, pp. 358-360.
Zhou, L. L.; Tan, F.; Yu, F.; Liu, W. (2019): Cluster synchronization of two-layer
nonlinearly coupled multiplex networks with multi-links and time-delays.
Neurocomputing, vol. 359, pp. 264-275.
Zhu, K.; Zhang, N.; Ying, S.; Wang, X. (2020): Within-project and cross-project
software defect prediction based on improved transfer Naive Bayes algorithm.
Computers, Materials & Continua, vol. 63, no. 2, pp. 891-910.

https://dblp.uni-trier.de/pers/hd/k/Kirihata:Makoto
https://dblp.uni-trier.de/pers/hd/h/Hassan:Ahmed_E=
https://dblp.uni-trier.de/pers/hd/m/Mizuno:Osamu
https://dblp.uni-trier.de/db/journals/lgrs/index.html
https://dblp.uni-trier.de/db/journals/lgrs/index.html
https://dblp.uni-trier.de/db/journals/ase/index.html
https://dblp.uni-trier.de/db/journals/ase/index.html
https://dblp.uni-trier.de/pers/hd/s/Sripada:Saikrishna
https://dblp.uni-trier.de/pers/hd/s/Sureka:Ashish
https://dblp.uni-trier.de/pers/hd/r/Rath:Santanu_Ku=
https://dblp.uni-trier.de/pers/hd/o/Ogura:Tomotaka
https://dblp.uni-trier.de/pers/hd/h/Hasegawa:Osamu
https://link.springer.com/journal/11042
https://dblp.uni-trier.de/pers/hd/m/Manzagol:Pierre=Antoine

	Software Defect Prediction Based on Non-Linear Manifold Learning and Hybrid Deep Learning Techniques
	Kun Zhu0F , Nana Zhang1, Qing Zhang2, Shi Ying1, * and Xu Wang3

