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Abstract: Software defect prediction plays a very important role in software quality 
assurance, which aims to inspect as many potentially defect-prone software modules as 
possible. However, the performance of the prediction model is susceptible to high 
dimensionality of the dataset that contains irrelevant and redundant features. In addition, 
software metrics for software defect prediction are almost entirely traditional features 
compared to the deep semantic feature representation from deep learning techniques. To 
address these two issues, we propose the following two solutions in this paper: (1) We 
leverage a novel non-linear manifold learning method - SOINN Landmark Isomap (SL-
Isomap) to extract the representative features by selecting automatically the reasonable 
number and position of landmarks, which can reveal the complex intrinsic structure 
hidden behind the defect data. (2) We propose a novel defect prediction model named 
DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder 
to learn true input features that are not contaminated by noise, and utilizes deep neural 
network to learn the abstract deep semantic features. We combine the squared error loss 
function of denoising autoencoder with the cross entropy loss function of deep neural 
network to achieve the best prediction performance by adjusting a hyperparameter. We 
compare the SL-Isomap with seven state-of-the-art feature extraction methods and 
compare the DLDD model with six baseline models across 20 open source software 
projects. The experimental results verify that the superiority of SL-Isomap and DLDD on 
four evaluation indicators. 

Keywords: Software defect prediction, non-linear manifold learning, denoising 
autoencoder, deep neural network, loss function, deep learning.  

1 Introduction 
Software defect prediction plays an important role in software quality assurance, and it 
can help to allocate limited testing resources reasonably, rank the testing priority of 
different software modules, and improve software quality by inspecting as many 
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potentially defective software modules (such as components, files, classes) as possible 
before releasing the new software product [Hall, Beecham, Bowes et al. (2012)]. 
Nevertheless, a serious challenge that threatens the modeling process of defect prediction 
is the high dimensionality of defect datasets, i.e., datasets that contain excessive 
irrelevant and redundant features. To solve this issue, a few feature extraction methods 
have been proposed to alleviate irrelevant and redundant features by constructing new, 
combined features form the original features, which have not been thoroughly 
investigated in software defect prediction [Kondo, Bezemer, Kamei et al. (2019)]. In this 
paper, we leverage a non-linear manifold learning method - SOINN Landmark Isomap 
(SL-Isomap) [Gan, Shen, Zhao et al. (2014)] to extract the  representative features form 
the original defect features by selecting automatically the reasonable number and position 
of landmarks, which can reveal the complex intrinsic structure hidden behind the defect 
data. SL-Isomap adopts the SOINN (Self-Organizing Incremental Neural Network) 
algorithm [Shen, Tomotaka and Osamu (2007)] to automatically select the reasonable 
number of landmarks, thus characterizing topological structure of defect data in the high 
dimensional input space. In addition, SL-Isomap also utilizes the L-Isomap (Landmark 
Isomap) algorithm to search low dimensional manifolds from high dimensional defect 
data based on selected landmarks. 
At present, deep learning techniques are research hotspot in the field of artificial 
intelligence, and have been successfully used in many domains, such as image 
classification [Zhang, Wang, Lu et al. (2019)]. In this paper, in order to bridge the 
research gap, while taking into account the superior prediction performance of deep 
learning techniques, we leverage hybrid deep learning techniques-denoising autoencoder 
(DAE) [Vincent, Larochelle Bengio et al. (2008)] and deep neural network (DNN) to 
construct a novel defect prediction model named DLDD by further processing the defect 
features extracted by SL-Isomap. Denoising autoencoder can remove noise through 
training to learn true input features that are not contaminated by noise, and reconstruct a 
clean “repaired” input form the “corrupted” input, thus learning the reconstructed 
distribution by changing the reconstruction error term. The learned features not only have 
more robust feature representation, but also stronger generalization capability. Then we 
integrate these defect features processed by denoising autoencoder into the abstract deep 
semantic features by deep neural network. The deep neural network trained by these deep 
semantic features has stronger discriminative capacity for different classes [Wang, Jiang, 
Luo et al. (2019); Zhou, Tan, Yu et al. (2019)]. For the loss function of the entire DLDD 
model, we combine the squared error loss function of denoising autoencoder with the 
cross entropy loss function of deep neural network to reinforce the learned defect feature 
representation by controlling a hyperparameter θ, thereby achieving the best defect 
prediction effect. 
The main contributions of this paper can be summarized as follows:  
(1) We utilize a novel non-linear manifold learning method - SOINN Landmark Isomap 
(SL-Isomap) to extract the representative features from the original defect features by 
selecting automatically the reasonable number and position of landmarks, which can 
reveal the complex intrinsic structure hidden behind the defect data. 
(2) Encouraged by the superior performance of deep learning techniques, we propose a 
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novel defect prediction model called DLDD based on hybrid deep learning techniques, 
which leverages denoising autoencoder to learn the reconstructed distribution and more 
robust feature representation by changing the reconstruction error term, and utilizes deep 
neural network to learn the abstract deep semantic features. 
(3) For the loss function of the entire DLDD model, we combine the squared error loss 
function of denoising autoencoder with the cross entropy loss function of deep neural 
network to achieve the best performance of defect prediction by adjusting a 
hyperparameter. 
(4) To verify the performance of SL-Isomap and DLDD, we conduct extensive experiments 
for feature extraction and defect prediction across 20 software defect projects from large 
open source datasets. We compare the SL-Isomap with seven state-of-the-art feature 
extraction methods, and compare the DLDD model with six baseline models contain five 
classic defect predictors and deep neural network. The experimental results demonstrate 
that the effectiveness of SL-Isomap and DLDD on four evaluation indicators. 

2 Related work 
Software defect prediction is a research hotspot in software engineering domain. The 
majority of previous studies use different machine learning methods to construct defect 
prediction models. Li et al. [Li, Jing, Zhu et al. (2018) ] leverage a new Two-Stage 
Ensemble Learning (TSEL) method to conduct software defect prediction model, and the 
method includes two stages: ensemble multi-kernel domain adaptation stage and 
ensemble data sampling stage. Wang et al. [Wang, Zhang, Jing et al. (2016)]. propose a 
semiboost defect prediction model called NSSB based on non-negative sparse graphs, 
which can utilize the adaboost algorithm to boost the model performance. The 
experimental results demonstrate that the NSSB model can effectively address the issues 
of label instances inadequacy and class imbalance. Chen et al. [Chen and Ma (2015)] use 
six regression models to conduct extensive empirical studies, and the experimental 
results show that decision tree regression can achieve the best prediction performance. 
Lov et al. [Lov, Saikrishna, Ashish et al. (2018)] construct the defect prediction model 
based on Least Squares Support Vector Machine (LSSVM) associated with linear, 
polynomial and radial basis function kernel functions. 
Different from previous studies, we leverage hybrid deep learning techniques - denoising 
autoencoder and deep neural network to construct a novel software defect prediction 
model in this paper. 

3 Feature extraction based on SL-Isomap 
We utilize a non-linear manifold learning technique-SOINN Landmark Isomap (SL-Isomap) 
[Gan, Shen, Zhao et al. (2014)] to extract the representative features form the original 
defect features, which can reveal the complex intrinsic structure hidden behind the defect 
data. SL-Isomap is a variant of Isomap [Li, Zhang, Zhang et al. (2017)], which leverages 
the SOINN (Self-Organizing Incremental Neural Network) algorithm to automatically 
select the reasonable number and position of landmarks, so as to depict topological 
structure of defect data in the high dimensional input space and lessen short-circuit errors. 



 
 
 
1470                                                                       CMC, vol.65, no.2, pp.1467-1486, 2020 

In addition, L-Isomap (Landmark Isomap) algorithm is adopted to search low dimensional 
manifolds from high dimensional defect data based on selected landmarks. 
The implementation process for SL-Isomap is as follows. The data points on each 
software project are defined as 𝑋𝑋 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1,2, … ,𝑁𝑁}. 
1) Select the reasonable number and position of SOINN landmarks 
We utilize the SOINN algorithm to select the reasonable number and position of landmarks 
automatically. We first initialize the following variables: The output nodes: 𝑂𝑂 = {𝑥𝑥1,𝑥𝑥2}, 
the number of local cumulative signals: 𝑆𝑆𝑥𝑥1 = 𝑆𝑆𝑥𝑥2 = 1 , the thresholds: 𝐵𝐵𝑥𝑥1 = 𝐵𝐵𝑥𝑥2 =
𝐷𝐷𝐸𝐸(1,2) , the connection value: 𝐶𝐶 = ∅, the connection age: 𝑎𝑎(1,2) = 0. We can find the 
winner 𝑤𝑤1 and second winner (second-nearest) 𝑤𝑤2 by searching the output nodes 𝑂𝑂 from 
the input data points  𝑥𝑥𝑖𝑖(𝑖𝑖 ∈ [3,𝑁𝑁]) one by one, as shown in Eqs. (1) and (2): 
𝑤𝑤1 = argmin

𝑛𝑛𝑐𝑐∈𝑂𝑂
||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑐𝑐||.                                                                                                   (1) 

𝑤𝑤2 = argmin
𝑛𝑛𝑐𝑐∈𝑂𝑂\𝑤𝑤1

||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑐𝑐||.                                                                                                  (2) 

The 𝑥𝑥𝑖𝑖  is a new data node and 𝑂𝑂 = 𝑂𝑂 ∪ 𝑥𝑥𝑖𝑖  when ||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑤𝑤1|| > 𝐵𝐵𝑤𝑤1  or ||𝑥𝑥𝑖𝑖 − 𝑛𝑛𝑤𝑤2|| >
𝐵𝐵𝑤𝑤2, and go back to find winner again. If there is no the connection between 𝑤𝑤1 and 𝑤𝑤2, 
we need to recreate the connection and reset the connection age 𝑎𝑎(𝑤𝑤1,𝑤𝑤2) to 0, and assign 
1 to the age of all edges in 𝑤𝑤1 and increase the number of local cumulative signals 𝑆𝑆𝑤𝑤1 by 
1, and then adjust the winner 𝑤𝑤1 to input data 𝑥𝑥𝑖𝑖 by a certain fraction 𝜀𝜀 and delete invalid 
edges and connections.  
The SOINN can automatically determine the number of landmarks n. After updating the 
threshold and removing noise nodes, we can obtain the node set 𝑂𝑂 = {𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑛𝑛} and 
Nearest neighbors of O in D, namely the landmark set 𝐿𝐿 = {𝑥𝑥𝑙𝑙1 ,𝑥𝑥𝑙𝑙2 , … , 𝑥𝑥𝑙𝑙𝑛𝑛}, which can 
be expressed as follows: 
𝑥𝑥𝑙𝑙𝑖𝑖= argmin

𝑥𝑥𝑐𝑐𝜖𝜖𝜖𝜖
||𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑐𝑐||.                                                                                                     (3) 

2) Apply MDS on SOINN landmarks 
We utilize MDS (MultiDimensional Scaling) to construct matrix Hn based on the selected 
n landmarks, as shown in Eq. (4): 
𝐻𝐻𝑛𝑛 = −𝑀𝑀𝑛𝑛𝐼𝐼𝑛𝑛𝑀𝑀𝑛𝑛/2,                                                                                                           (4) 
(𝑀𝑀𝑛𝑛)𝑖𝑖𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖 − 1/𝑛𝑛,                                                                                                         (5) 
where 𝐼𝐼𝑛𝑛 denotes the matrix of squared G, G represents landmarks-only distance matrix. 
Next the l-dimensional coordinates of n landmarks are represented as the columns of 
matrix U: 

𝑈𝑈 =

⎣
⎢
⎢
⎢
⎡�𝜃𝜃1𝜇𝜇1

𝑇𝑇

�𝜃𝜃2𝜇𝜇2𝑇𝑇
⋮

�𝜃𝜃𝑙𝑙𝜇⃗𝜇𝑙𝑙𝑇𝑇 ⎦
⎥
⎥
⎥
⎤
,                                                                                                                    (6) 

where 𝜃𝜃𝑖𝑖  denotes the ith biggest eigenvalues of 𝐻𝐻𝑛𝑛 , 𝜇𝜇𝑖𝑖 represents the corresponding 
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eigenvector. 
3) LMDS based on SOINN landmarks 
We calculate embedding coordinates for the remaining data nodes according to the 
distances from the SOINN landmarks. First, we need to conduct n times Dijkstra 
algorithm to compute single-source shortest path matrix G’(n*N), which denotes the 
approximate geodesic distance between landmarks and remaining data nodes. Second, we 
leverage LMDS (Landmark MDS) to generate the low dimensional embedding, the 
embedding of   x can be expressed as follows: 

𝑥⃗𝑥 = 1
2
𝑈𝑈′(𝐼𝐼𝑛̅𝑛 − 𝐼𝐼𝑥𝑥),                                                                                                              (7) 

𝑈𝑈′ =

⎣
⎢
⎢
⎢
⎡𝜇𝜇1

𝑇𝑇/�𝜃𝜃1
𝜇𝜇2𝑇𝑇/�𝜃𝜃2

⋮
𝜇𝜇𝑙𝑙𝑇𝑇/�𝜃𝜃𝑙𝑙 ⎦

⎥
⎥
⎥
⎤
,                                                                                                                 (8) 

where 𝐼𝐼𝑥𝑥 represents the column vector of squared distances between data node x and n 
landmarks (one column vector in squared G’), 𝐼𝐼𝑛̅𝑛 denotes the average value of the column 
for 𝐼𝐼𝑛𝑛. 
Finally, we utilize PCA to reorient the axes to reflect the entire distribution of 
{𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, thus extracting the representative features Xf. 

4 The proposed DLDD model 
4.1 Robustness feature representation based on denoising autoencoder 
Denoising autoencoder can remove noise through training to learn true input features that 
are not contaminated by noise, thereby reconstructing a clean “repaired” input form the 
“corrupted” input. We utilize denoising autoencoder to further process these defect 
features Xf extracted by SL-Isomap, aiming to generate more robust feature 
representation, which has stronger generalization capability. 
Denoising autoencoder regards the corrupted data as the input and the predicted 
undamaged data as the output, and can learn useful information by changing the 
reconstruction error term. The training process of denoising autoencoder is shown in Fig. 
1. Denoising autoencoder is trained to reconstruct clean data points x from damaged 
version 𝑥𝑥� , which can be achieved by minimizing the loss 𝐿𝐿 = − log𝑃𝑃𝑑𝑑(𝑥𝑥|ℎ = 𝑓𝑓(𝑥𝑥�)), 
where 𝑥𝑥� is the damaged version of the each defect instance x by the damage process 
𝐶𝐶(𝑥𝑥�|𝑥𝑥). Denoising autoencoder can learn the reconstructed distribution 𝑃𝑃𝑟𝑟(𝑋𝑋|𝑋𝑋�) from the 
data pairs (𝑥𝑥, 𝑥𝑥�) according to the follow training process: 
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Figure 1: The training process schematic diagram of denoising autoencoder 

First, given a d-dimensional input vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑, we introduce a damage process 𝐶𝐶(𝑥𝑥�|𝑥𝑥) 
by adding Gaussian noise, the conditional distribution denotes the probability that the 
given defect instance X generates the corrupted instance 𝑋𝑋�. Gaussian noise is a type of 
noise whose probability density function obeys the Gaussian distribution (i.e., normal 
distribution). The probability density function can be expressed as shown in Eq. (9): 

𝑠𝑠(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎

exp (− (𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2
),                                                                                              (9) 

where 𝜎𝜎 represents the standard deviation and 𝜇𝜇 represents the expectation. 
Then, we leverage the training instances (𝑥𝑥, 𝑥𝑥�) to estimate the reconstructed distribution 
𝑝𝑝𝑟𝑟(𝑥𝑥|𝑥𝑥�) = 𝑝𝑝𝑑𝑑(𝑥𝑥|ℎ), which contains two stages: encoder and decoder. For the encoder 
stage, the d-dimensional Gaussian noise input data 𝑥𝑥�  is mapped to the k-dimensional 
hidden layer h, as shown in Eq. (10); for the decoder stage, the hidden layer h is 
reconstructed to the d-dimensional output  r, as shown in Eq. (11) . 
ℎ = 𝑓𝑓(𝑊𝑊𝑥𝑥� + 𝑏𝑏1),                                                                                                             (10) 
𝑟𝑟 = 𝑔𝑔(𝑊𝑊′ℎ + 𝑏𝑏2),                                                                                                           (11) 
where f(.) and g(.) denote the activation function of the encoder and decoder, respectively,  
𝑊𝑊 ∈ 𝑅𝑅𝑑𝑑×𝑘𝑘 and 𝑊𝑊′ ∈ 𝑅𝑅𝑘𝑘×𝑑𝑑  present the weight matrix of the encoder and decoder, 
respectively, 𝑏𝑏1 ∈ 𝑅𝑅𝑘𝑘  and 𝑏𝑏2 ∈ 𝑅𝑅𝑑𝑑  denote the bias of hidden layer and output layer, 
respectively, and the parameter of denoising autoencoder can be defined as follows: 𝜆𝜆 =
(𝑊𝑊,𝑊𝑊′,𝑏𝑏1,𝑏𝑏2). 
The parameter 𝜆𝜆 is trained to minimize the reconstruction error, as shown in Eq. (12): 

𝜆𝜆′ = argmin
𝜆𝜆

1
𝑁𝑁
∑ 𝐿𝐿(𝑋𝑋(𝑖𝑖), 𝑟𝑟(𝑖𝑖))𝑁𝑁
𝑖𝑖=1 = argmin

𝜆𝜆

1
𝑁𝑁
∑ 𝐿𝐿(𝑋𝑋(𝑖𝑖),𝑔𝑔𝜆𝜆(𝑓𝑓𝜆𝜆(𝑋𝑋�(𝑖𝑖))))𝑁𝑁
𝑖𝑖=1 ,                     (12) 

where L(.) denotes the squared error loss function, N represents the total number of 
training instances. 
We adopt the squared error (the average reconstruction error) as the loss function of 
denoising autoencoder. The smaller the value, the better the performance of denoising 
autoencoder. The loss function LDAE of denoising autoencoder is as shown in Eq. (13): 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐿𝐿�𝑋𝑋�, 𝑟𝑟� = || 1
𝑁𝑁
∑ (�𝑔𝑔𝜆𝜆 �𝑓𝑓𝜆𝜆�𝑥𝑥�(𝑖𝑖)���

2
− �𝑥𝑥(𝑖𝑖)�

2
)𝑁𝑁

𝑖𝑖=1 ||2,                                        (13) 

where || || is the norm of the squared error. 
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4.2 Feature integration based on deep neural network 
We integrate these defect features processed by denoising autoencoder into the abstract 
deep semantic features by deep neural network (DNN). The deep neural network trained 
by these deep semantic features has stronger discriminative capacity for different classes 
(defective or non-defective). We utilize the trained deep neural network to predict 
whether the defect of unknown label is defective or non-defective. 
According to the location of different layers, the network layers of deep neural network 
can be divided into three categories: input layer, hidden layer and output layer. Generally 
speaking, the first layer is the input layer, the last layer is the output layer, and the middle 
layers are all hidden layers. The neurons among various network layers are fully 
connected, whereas the neurons within the same layer have no direct connections. 
Moreover, the number of the neurons in the input and output layers are determined in 
accordance with specific applications, while the number of hidden layers and the number 
of neurons for each hidden layer are determined empirically.  
The network structure of deep neural network in this paper is shown in Fig. 2. The output 
of the first hidden layer can be expressed as shown in Eq. (14): 
𝐻𝐻𝑘𝑘 = 𝑔𝑔(∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏𝑘𝑘𝑀𝑀

𝑚𝑚=1 ),                                                                                         (14) 
where  𝑥𝑥𝑚𝑚  presents the mth input vector, 𝑤𝑤𝑚𝑚𝑚𝑚  presents the input weight vector 
connecting the mth input node and the kth hidden node, 𝑏𝑏𝑘𝑘 denotes the bias of the kth 
hidden node, g(.) denotes the nonlinear activation function. 
The output of the output layer is as follows:  
𝑂𝑂𝑗𝑗 = 𝑔𝑔(∑ 𝑤𝑤𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑆𝑆

𝑠𝑠=1 ),                                                                                                        (15) 
where 𝑤𝑤𝑠𝑠𝑠𝑠 presents the output weight connecting the jth output node and the sth hidden 
node, and 𝑟𝑟𝑠𝑠 presents the output value of the sth hidden node. 𝑂𝑂𝑗𝑗 denotes the probability 
that a specific module belongs to the jth class.  

 

Figure 2: The network structure of deep neural network 

The training process of deep neural network is mainly divided into the forward 
transmission of the information and the backpropagation of the loss. In the training 
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process of deep neural network, the loss is used for updating the network parameters 
(weights and biases) by gradient descent, aiming to maximize the probability of the 
correct class label and minimize the probability of the incorrect class label, in other 
words, to minimize the classification loss on the given training set. In this paper, the deep 
neural network adopts cross entropy loss function to train the network parameters. From 
the perspective of classification, it is the probability that the input instances are predicted 
to belong to a certain class. The smaller the cross entropy, the more accurate the 
prediction result. The equation for cross entropy loss function is as shown in Eq. (16): 
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = −∑ 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) log𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡)𝐶𝐶

𝑗𝑗=1 ,                                                                                 (16) 
where 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) presents the actual probability of the jth input vector of the tth module 𝜒𝜒𝑡𝑡,   
𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡) presents the output probability of the jth input vector of the tth module 𝜒𝜒𝑡𝑡 by deep 
neural network, and C presents the number of defect classes. 

4.3 Hybrid loss function for the DLDD model  
For the loss function of the entire DLDD model, we combine the squared error loss 
function of denoising autoencoder with the cross entropy loss function of deep neural 
network to further reinforce the learned defect feature representation. The equation of the 
hybrid loss function for the DLDD model is as shown in Eq. (17): 
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜃𝜃𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 

= 𝜃𝜃|| 1
𝑁𝑁
∑ (�𝑔𝑔𝜆𝜆 �𝑓𝑓𝜆𝜆�𝑥𝑥�(𝑖𝑖)���

2
− (𝑥𝑥(𝑖𝑖))2)𝑁𝑁

𝑖𝑖=1 ||2 − ∑ 𝑇𝑇𝑗𝑗(𝜒𝜒𝑡𝑡) log𝑂𝑂𝑗𝑗(𝜒𝜒𝑡𝑡)𝐶𝐶
𝑗𝑗=1  .        (17) 

For the hyperparameter 𝜃𝜃 , 𝜃𝜃 ∈ [0, 1], we can adjust 𝜃𝜃  according to the experimental 
result. In this paper, we discuss the performance of the DLDD model when the 
hyperparameter 𝜃𝜃=0.25, 0.5, 0.75 and 1, respectively. This experiment part will introduce 
the experimental results for different hyperparameter 𝜃𝜃 in detail. 
We utilize the proposed DLDD model to learn the deep semantic features with stronger 
discriminative capacity for the training set. After using the defect instances with known 
labels to train the proposed DLDD model, the weights and biases of deep neural network 
will no longer change. For the defect instances with unknown labels in the test set, we 
feed them to the DLDD model for prediction with the same mapping rule, the class label 
with the highest probability manifests that the defect instance belongs to this class 
(defective or not-defective). 

5 Experimental setup 
In this section, we introduce the experimental setup, including benchmark datasets, 
evaluation indicators and baseline models.  

5.1 Benchmark datasets 
We conduct extensive experiments on 20 software projects, including 14 projects from 
the PROMISE data repository and 6 projects from the NASA data repository, which are 
publicly available and well-known datasets in software defect prediction study [Lov, 
Saikrishna, Ashish et al. (2018)]. Tab. 1 summarizes the basic information of 14 projects  
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(the first fourteen rows) from the PROMISE data repository and 6 projects (the latter six 
rows) from the NASA data repository respectively. 
For all software projects, we adopt the SMOTE (Synthetic Minority Oversampling 
Technique) algorithm for class imbalance processing and the z-score method for data 
normalization in this paper. Moreover, we conduct 10 times 10-fold cross-validation to 
evaluate the performance of the models in this paper. In this paper, we adopt four 
commonly used evaluation indicators-F1, MCC (Matthews correlation coefficient), pf 
and G-measure [Zhu, Zhang, Ying et al. (2020)] to evaluate the model performance.  

Table 1: The statistics of 20 projects from the PROMISE and NASA data repository 

Projects 
# of 

features 
# of 

instances 

# of 
defective 
instances 

# of 
non-defective 

instances 

Defective 
Ratio (%) 

Imbalance  
ratio 

ant-1.6 20 351 92 259 26.21 2.82 
ant-1.7 20 745 166 579 22.28 3.49 

camel-1.0 20 339 13 326 3.83 25.08 
camel-1.2 20 608 216 392 35.53 1.81 
camel-1.4 20 872 145 727 16.63 5.01 

ivy-2.0 20 352 40 312 11.36 7.80 
jedit-4.1 20 312 79 233 25.32 2.95 
jedit-4.2 20 367 48 319 13.08 6.65 
jedit-4.3 20 492 11 481 2.24 43.73 
poi-2.0 20 314 37 277 11.78 7.49 
prop-6 20 660 66 594 10.00 9.00 

synapse-1.2 20 256 86 170 33.59 1.98 
xalan-2.4 20 723 110 613 15.21 5.57 
xerces-1.2 20 440 71 369 16.14 5.20 

KC2 21 522 107 415 20.50 3.88 
CM1 37 327 42 285 12.84 6.79 
MC1 38 1988 46 1942 2.31 42.22 
MW1 37 253 27 226 10.67 8.37 
PC1 37 705 61 644 8.65 10.56 
PC2 36 745 16 729 2.15 45.56 

 
5.2 Baseline models 
To validate the feature extraction capability of SL-Isomap and the prediction 
performance of DLDD, we conduct extensive experiments for feature extraction and 
software defect prediction. For our DLDD model, we conduct experiments respectively 
when the hyperparameter 𝜃𝜃=0.25, 0.5, 0.75 and 1. 
For feature extraction, we compare the SL-Isomap model with seven state-of-the-art 
feature extraction methods, including Factor Analysis (FA) [Ali, Ahmed, Ferzund et al. 
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(2017)], Principal Component Analysis (PCA) [Kondo, Bezemer, Kamei et al. (2019)]], 
Stochastic Proximity Embedding (SPE) [Eberhardt, Stote and Dejaegere (2018)], 
Stochastic Neighbor Embedding (SNE) [Bunte, Haase, Biehl et al. (2012)], 
Neighborhood Preserving Embedding (NPE) [Zhao, Zou and Gao (2013)], Generalized 
Discriminant Analysis-Gaussion (GDA-G) [Uddin and Hassan (2015)] and Isometric 
Mapping (Isomap) [Li, Zhang, Zhang et al. (2017)]. These feature extraction methods all 
use the DLDD as the defect predictor.  
For software defect prediction, we compare the SL-Isomap model with five classic defect 
predictor, include Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest 
Neighbor (KNN), Decision Tree (DT) and Logistic Regression (LR). These defect 
predictors all use the features extracted by SL-Isomap. 
In addition, we also compare the DLDD with Deep Neural Network (DNN) that does not 
combine denoising autoencoder (DAE), and the DNN also use the features extracted by 
the SL-Isomap. 

6 Experimental results 
We detail the experimental results by the following three research questions (RQ) in the 
section. 
RQ1: How about the feature extraction capability of the non-linear manifold 
learning method SL-Isomap compared with seven state-of-the-art feature extraction 
methods in software defect prediction? 
To verify the effectiveness of the representative features extracted by the non-linear 
manifold learning method SL-Isomap, we compare the SL-Isomap with seven state-of-
the-art feature extraction methods with the same defect predictor-DLDD (𝜃𝜃=0.75), 
including FA, PCA, SPE, SNE, NPE, GDA-G and Isomap. In RQ2, the experiment 
results demonstrate that the DLDD model can achieve the best defect prediction 
performance when 𝜃𝜃=0.75, so we choose the DLDD with 𝜃𝜃=0.75 in RQ1.  
Tabs. 2-4 show the F1, MCC and G-measure of SL-Isomap and seven state-of-the-art 
feature extraction methods across all 20 projects. Note that the highest value of each row 
is marked in bold. From Tabs. 2-4, we can observe that our method SL-Isomap achieves 
the best average performance in terms of F1, MCC and G-measure. More specifically, 
the average F1 (0.7957) by SL-Isomap gains improvement between 4.40% (for Isomap) 
and 18.46% (for NPE) with an average improvement of 8.96%, the average MCC 
(0.5714) by SL-Isomap yields improvement between 12.48% (for Isomap) and 89.46% 
(for NPE) with an average improvement of 34.83% and the average G-measure (0.7820) 
by SL-Isomap achieves improvement between 4.78% (for PCA) and 23.15% (for NPE) 
with an average improvement of 11.35%. 
Fig. 3 shows the box-plots of four indicators for our method SL-Isomap and seven 
feature extraction methods across all 20 projects. From Figs. 3(a)-3(d), we can observe 
that the median values gained by SL-Isomap are higher than those gained by seven 
feature extraction methods from the point of F1, MCC and G-measure respectively, and 
the median value gained by SL-Isomap is lower than those gained by seven feature 
extraction methods from the point of pf, which can fully demonstrate the superiority of 
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our method SL-Isomap. In addition, for F1, MCC and G-measure, the median values by 
SL-Isomap are higher than the maximum values by SPE and NPE, respectively. 
Compared with other feature extraction methods, our method SL-Isomap can achieve the 
best experimental results. This is because SL-Isomap can utilize the SOINN algorithm to 
automatically select the reasonable number of landmarks, thereby characterizing 
topological structure of defect data in the high dimensional input space. Moreover, SL-
Isomap also leverages the L-Isomap algorithm to search low dimensional manifolds from 
high dimensional defect data based on selected landmarks. 
 

Conclusion 1: Our method SL-Isomap performs better than seven state-of-the-art 
feature extraction methods in terms of F1, MCC and G-measure. The SL-Isomap 
can achieve the average 8.96%, 34.83% and 11.35% performance improvements 
compared with seven feature extraction methods across all 20 projects in terms of 
F1, MCC and G-measure. In terms of pf, the median value gained by SL-Isomap is 
lower than those gained by other seven methods.  

Table 2: The F1 for our method SL-Isomap compared with seven feature extraction methods 

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap 

ant-1.6 0.7241 0.7308 0.6792 0.6909 0.6316 0.7097 0.7119 0.7586 
ant-1.7 0.7273 0.7225 0.7018 0.7363 0.6637 0.7358 0.7437 0.7834 

camel-1.0 0.7727 0.8430 0.7344 0.8331 0.7059 0.7786 0.8281 0.8105 
camel-1.2 0.5443 0.5271 0.5191 0.5691 0.5042 0.5170 0.5410 0.6014 
camel-1.4 0.6967 0.6638 0.6201 0.6824 0.5914 0.6741 0.7177 0.7414 

ivy-2.0 0.7619 0.7576 0.7097 0.7606 0.6857 0.7302 0.7937 0.8116 
jedit-4.1 0.7097 0.7250 0.6970 0.7213 0.6575 0.7143 0.7273 0.7742 
jedit-4.2 0.7838 0.8485 0.7564 0.8125 0.7170 0.7799 0.7925 0.8344 
jedit-4.3 0.8426 0.8364 0.7327 0.8436 0.7085 0.8360 0.8725 0.8804 
poi-2.0 0.7692 0.7949 0.7105 0.8148 0.6933 0.7391 0.7789 0.7949 
prop-6 0.7835 0.7273 0.6730 0.7396 0.6452 0.7447 0.7717 0.8259 

synapse-1.2 0.7241 0.7458 0.7018 0.6984 0.6441 0.7077 0.7119 0.7368 
xalan-2.4 0.7079 0.7018 0.6946 0.7019 0.6387 0.7111 0.7487 0.7677 
xerces-1.2 0.7133 0.7448 0.6757 0.7778 0.6587 0.6822 0.7328 0.7682 

KC2 0.7552 0.7652 0.7059 0.7581 0.6446 0.7692 0.7156 0.7910 
CM1 0.7692 0.7714 0.7671 0.8462 0.7273 0.7937 0.8205 0.8421 
MC1 0.8229 0.8407 0.6454 0.8161 0.7586 0.8152 0.8554 0.8936 
MW1 0.7234 0.7458 0.7368 0.7636 0.7407 0.7547 0.7500 0.7931 
PC1 0.7629 0.7735 0.7160 0.8084 0.7038 0.7631 0.8043 0.8551 
PC2 0.8104 0.8244 0.6128 0.8497 0.7132 0.8178 0.8253 0.8492 
Avg 0.7453 0.7545 0.6895 0.7612 0.6717 0.7387 0.7622 0.7957 

 
RQ2: How about the prediction performance of the proposed DLDD model 
compared with five classic defect predictors with the same feature extraction  
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Table 3: The MCC for our method SL-Isomap compared with seven feature extraction methods 

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap 

ant-1.6 0.4971 0.5530 0.4559 0.4584 0.3361 0.4497 0.4687 0.5602 

ant-1.7 0.4598 0.4867 0.4627 0.4643 0.1979 0.4142 0.4895 0.5030 

camel-1.0 0.5342 0.7049 0.4691 0.6318 0.3810 0.5490 0.6567 0.6055 

camel-1.2 -0.1086 0.0520 0.0226 0.1712 0.0736 -0.0933 0.1233 0.1342 

camel-1.4 0.4207 0.3979 0.3186 0.3689 0.0591 0.3221 0.4527 0.5317 

ivy-2.0 0.5345 0.4995 0.4426 0.4715 0.3116 0.4719 0.5972 0.5948 

jedit-4.1 0.4370 0.3886 0.3798 0.4679 0.2180 0.3915 0.3977 0.5621 

jedit-4.2 0.5012 0.5766 0.3779 0.5000 0.2531 0.4191 0.4523 0.6047 

jedit-4.3 0.6468 0.6286 0.4361 0.6551 0.3182 0.6873 0.7281 0.7387 

poi-2.0 0.4107 0.4764 0.2928 0.4383 0.2674 0.1240 0.2437 0.4764 

prop-6 0.5667 0.3186 0.2759 0.4850 0.1897 0.5103 0.5789 0.6350 

synapse-1.2 0.4971 0.5287 0.4656 0.4092 0.4184 0.4147 0.4658 0.5290 

xalan-2.4 0.4633 0.4656 0.2140 0.3592 0.2813 0.3439 0.4898 0.5219 

xerces-1.2 0.3526 0.4123 0.2955 0.4936 0.0438 0.3900 0.4789 0.4347 

KC2 0.4949 0.5762 0.4505 0.5323 0.3262 0.5759 0.5163 0.5805 

CM1 0.4152 0.5015 0.4584 0.6130 0.5222 0.6422 0.5471 0.6130 

MC1 0.6457 0.6817 0.0180 0.6346 0.5648 0.6583 0.7116 0.7928 

MW1 0.5845 0.5379 0.5290 0.5860 0.5516 0.5818 0.5551 0.6281 

PC1 0.4590 0.4899 0.2626 0.5694 0.3307 0.5513 0.5681 0.6792 

PC2 0.6077 0.6325 0.2900 0.6780 0.3882 0.6943 0.6391 0.7031 

Avg 0.4710 0.4955 0.3459 0.4994 0.3016 0.4549 0.5080 0.5714 

 
method SL-Isomap? 
In this paper, we combine the squared error loss function of denoising autoencoder with 
the cross entropy loss function of deep neural network to further reinforce the learned 
defect feature representation by controlling the hyperparameter 𝜃𝜃 , 𝜃𝜃 ∈ [0, 1] . To 
investigate the influence of 𝜃𝜃 on the performance of the DLDD model, we select 𝜃𝜃=0.25, 
0.5, 0.75, 1, and discuss the performance of the DLDD model when the hyperparameter 
𝜃𝜃=0.25, 0.5, 0.75, 1, respectively. In addition, this question is also designed to evaluate 
the effectiveness of the DLDD model compared with five classic defect predictors with 
the same feature extraction method SL-Isomap, including SVM, NB, KNN, DT and LR. 
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Table 4: The G-measure for our method SL-Isomap compared with seven feature 
extraction methods 

Tabs. 5-7 show the F1, MCC and G-measure of the DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) model 
compared with those of five classic predictors across all 20 projects, respectively. Note 
that the highest value of each row is marked in bold. From Tabs. 5-7, compared with 
DLDD (𝜃𝜃=0.25, 0.5, 1), we can find that the DLDD model is the best performer in terms 
of F1, MCC and G-measure when the hyperparameter 𝜃𝜃=0.75. Moreover, compared with 
SVM, NB, KNN, DT and LR, we can observe that the proposed DLDD (𝜃𝜃=0.75) model 
also achieves the best average performance in terms of F1, MCC and G-measure. More 
specifically, the average F1 (0.7957) by DLDD achieves improvement between 7.14% 
(for DT) and 19.19% (for NB) with an average improvement of 11.31%, the average 
MCC (0.5714) by DLDD yields improvement between 19.97% (for LR) and 97.65% (for 
NB) with an average improvement of 46.55% and the average G-measure (0.7820) by 
DLDD achieves improvement between 8.04% (for LR) and 27.15% (for NB) with an 
average improvement of 15.08%. 
Fig. 4 shows the box-plots of four indicators for the proposed DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) 
model and five classic defect predictors across all 20 projects. From Figs. 4(a)-4(d), we can 
observe that the median values gained by DLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) are higher than 
those gained by five classic defect predictors from the point of F1, MCC, and G-measure, 
respectively. We also find that the median values by DLDD (𝜃𝜃=0.75) are higher than the 

Datasets FA PCA SPE SNE NPE GDA-G Isomap SL-Isomap 
ant-1.6 0.7500 0.7590 0.7151 0.7248 0.6677 0.7213 0.7358 0.7817 
ant-1.7 0.7223 0.7231 0.7317 0.7283 0.5911 0.7093 0.7383 0.7530 

camel-1.0 0.7639 0.8489 0.7344 0.8031 0.6809 0.7724 0.8281 0.8213 
camel-1.2 0.3018 0.6228 0.5053 0.5858 0.5342 0.3878 0.5615 0.5230 
camel-1.4 0.7097 0.6874 0.6473 0.6837 0.4541 0.6496 0.7264 0.7578 

ivy-2.0 0.7648 0.7497 0.7164 0.7214 0.6457 0.7336 0.7961 0.7916 
jedit-4.1 0.7184 0.7254 0.6851 0.7328 0.5811 0.6719 0.6048 0.7810 
jedit-4.2 0.7569 0.7700 0.6886 0.7448 0.6154 0.7045 0.7221 0.8098 
jedit-4.3 0.8116 0.7952 0.7182 0.8224 0.6317 0.8373 0.8640 0.8663 
poi-2.0 0.7059 0.7402 0.6490 0.7168 0.6373 0.3864 0.3936 0.7402 
prop-6 0.7818 0.6604 0.6314 0.7396 0.5785 0.7481 0.7764 0.8180 

synapse-1.2 0.7441 0.7625 0.7248 0.7038 0.6878 0.7018 0.7309 0.7568 
xalan-2.4 0.7219 0.7248 0.4581 0.6668 0.6406 0.6168 0.7445 0.7591 
xerces-1.2 0.6777 0.7068 0.5769 0.7487 0.4237 0.6808 0.7295 0.7096 

KC2 0.7006 0.7823 0.7241 0.7663 0.6630 0.7850 0.7378 0.7755 
CM1 0.6847 0.7530 0.7293 0.7867 0.7617 0.7941 0.7529 0.7980 
MC1 0.8174 0.8136 0.5810 0.8148 0.7847 0.8259 0.8446 0.8963 
MW1 0.7473 0.7699 0.7671 0.7940 0.7742 0.7863 0.6786 0.8164 
PC1 0.7132 0.7339 0.4761 0.7739 0.6534 0.7669 0.7791 0.8331 
PC2 0.7968 0.7972 0.6354 0.8227 0.6936 0.8242 0.8125 0.8515 
Avg 0.7195 0.7463 0.6548 0.7441 0.6350 0.7052 0.7279 0.7820 
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maximum values by NB respectively in terms of F1, MCC, G-measure, and the median 
value by DLDD (𝜃𝜃=0.75) is lower than the minimum values by SVM, KNN and DT in 
terms of pf. In addition, the median values gained by DLDD (𝜃𝜃=0.75) are higher than those 
gained by DLDD (𝜃𝜃=0.25, 0.5, 1) respectively in terms of MCC and G-measure, and the 
median value gained by DLDD (𝜃𝜃=0.75) is lower than those gained by DLDD (𝜃𝜃=0.25, 0.5, 
1) respectively in terms of pf (the smaller the pf, the better the performance). 
Compared with five classic defect predictors, our DLDD model can achieve the best 
prediction performance. This is because the DLDD model adopts denoising autoencoder to 
learn the reconstructed distribution and more robust feature representation by changing the 
reconstruction error term, and utilizes deep neural network to learn the abstract deep 
semantic features. The deep semantic features have stronger discriminative capacity for 
different classes. In addition, the model performance can be affected by the degree of noise 
added, the DLDD model can achieve the best experimental performance when 𝜃𝜃=0.75. 

 
(a) F1                                                         (b) MCC 

 
(c) pf                                                           (d) G-measure    

Figure 3: The box-plots for our method SL-Isomap compared with seven feature 
extraction methods in terms of four indicators 
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Table 5: The F1 for our model DLDD compared with five classic defect predictors 

Datasets SVM NB KNN DT LR 
SLDD 
(0.25) 

SLDD 
(0.5) 

SLDD 
(0.75) 

SLDD 
(1) 

ant-1.6 0.6901 0.6452 0.7038 0.6870 0.7467 0.7241 0.7458 0.7586 0.7541 
ant-1.7 0.6866 0.6585 0.6890 0.7445 0.7069 0.7562 0.7761 0.7834 0.7905 

camel-1.0 0.7568 0.7368 0.7832 0.8048 0.7933 0.8387 0.8444 0.8105 0.8000 
camel-1.2 0.5507 0.5263 0.6033 0.5873 0.5685 0.5793 0.6179 0.6014 0.5857 
camel-1.4 0.6841 0.6469 0.6473 0.6900 0.6653 0.7194 0.7265 0.7414 0.7137 

ivy-2.0 0.6912 0.6441 0.7398 0.7237 0.7380 0.8308 0.8235 0.8116 0.8060 
jedit-4.1 0.7055 0.6914 0.7670 0.7312 0.7973 0.7813 0.7536 0.7742 0.7353 
jedit-4.2 0.6667 0.6560 0.7621 0.7348 0.7454 0.7947 0.8153 0.8344 0.8435 
jedit-4.3 0.7543 0.7013 0.8601 0.7814 0.8432 0.8421 0.8700 0.8804 0.8071 
poi-2.0 0.7399 0.6609 0.7170 0.7670 0.8072 0.7895 0.8052 0.7949 0.7901 
prop-6 0.7585 0.6914 0.8357 0.7622 0.7574 0.8058 0.8061 0.8259 0.8200 

synapse-1.2 0.6923 0.6753 0.6475 0.6803 0.6667 0.6866 0.6913 0.7368 0.7143 
xalan-2.4 0.6992 0.6486 0.6853 0.7071 0.7762 0.7385 0.7594 0.7677 0.7407 
xerces-1.2 0.6277 0.6038 0.6649 0.6787 0.6316 0.7463 0.7518 0.7682 0.7703 

KC2 0.7004 0.6753 0.7032 0.7697 0.7360 0.7778 0.7797 0.7910 0.7534 
CM1 0.6950 0.6692 0.7063 0.8087 0.7692 0.8205 0.8312 0.8421 0.8267 
MC1 0.7206 0.6857 0.7582 0.8221 0.7817 0.8059 0.8682 0.8936 0.8420 
MW1 0.7162 0.7253 0.7417 0.7544 0.7379 0.7755 0.7797 0.7931 0.8235 
PC1 0.7117 0.6769 0.7667 0.8028 0.7632 0.7673 0.8293 0.8551 0.8295 
PC2 0.7436 0.7326 0.7835 0.8160 0.8069 0.8048 0.8163 0.8492 0.8473 
Avg 0.6996 0.6676 0.7283 0.7427 0.7419 0.7693 0.7846 0.7957 0.7797 

 
RQ3: Does the proposed DLDD (𝜽𝜽 = 0.75) model outperform the single deep neural 
network that does not combine denoising autoencoder? 
Denoising autoencoder can remove noise through training to learn more robust feature 
representation that are not contaminated by noise, and reconstruct a clean “repaired” 
input form the “corrupted” input. To explore the influence of the denoising autoencoder 
on the prediction performance of the DLDD (𝜃𝜃=0.75) model, we compare the DLDD 
( 𝜃𝜃 =0.75) model (with denoising autoencoder) with deep neural network (without 
denoising autoencoder) in this experiment. 
 
 
 

Conclusion 2: The proposed DLDD model can achieve the best prediction 
performance in terms of F1, MCC, pf and G-measure when the hyperparameter 
𝜃𝜃=0.75. The DLDD (𝜃𝜃=0.75) can achieve the average 11.31%, 46.55% and 
15.08% performance improvements compared with five defect predictors across 
all 20 projects in terms of F1, MCC and G-measure.  
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Table 6: The MCC for our model DLDD compared with five classic defect predictors 

Datasets SVM NB KNN DT LR 
SLDD 
(0.25) 

SLDD 
(0.5) 

SLDD 
(0.75) 

SLDD 
(1) 

ant-1.6 0.2704 0.3594 0.3307 0.3091 0.5123 0.4971 0.5318 0.5602 0.5397 
ant-1.7 0.3426 0.1280 0.4122 0.4677 0.4475 0.5065 0.5488 0.5030 0.5437 

camel-1.0 0.4366 0.3881 0.5135 0.6242 0.5556 0.6876 0.6792 0.6055 0.6093 
camel-1.2 0.0567 0.0847 0.2112 0.1943 0.2018 0.0715 0.2652 0.1342 0.1132 
camel-1.4 0.5643 0.2659 0.2967 0.3764 0.3599 0.4084 0.4996 0.5317 0.4314 

ivy-2.0 0.3412 0.3262 0.4648 0.4316 0.4746 0.6566 0.6251 0.5948 0.5932 
jedit-4.1 0.3639 0.4620 0.4892 0.4104 0.5336 0.5640 0.4834 0.5621 0.4481 
jedit-4.2 0.2599 0.3416 0.5170 0.4729 0.4591 0.5073 0.5233 0.6047 0.6502 
jedit-4.3 0.4425 0.2909 0.7113 0.5207 0.6771 0.6547 0.7074 0.7387 0.8222 
poi-2.0 0.4429 0.3050 0.2531 0.4892 0.5839 0.4880 0.5147 0.4764 0.4288 
prop-6 0.5970 0.2347 0.6390 0.4658 0.4824 0.5813 0.6068 0.6350 0.6251 

synapse-1.2 0.3511 0.2234 0.2630 0.3876 0.2599 0.3586 0.4679 0.5290 0.4981 
xalan-2.4 0.3748 0.1863 0.3107 0.3969 0.4976 0.4690 0.5320 0.5219 0.4898 
xerces-1.2 0.2395 0.1465 0.2824 0.3101 0.3633 0.4854 0.4518 0.4347 0.4555 

KC2 0.3477 0.2234 0.4162 0.4971 0.5515 0.6306 0.5916 0.5805 0.4265 
CM1 0.3232 0.3219 0.3893 0.5837 0.5057 0.5471 0.5800 0.6130 0.5818 
MC1 0.4039 0.3116 0.4034 0.6223 0.5132 0.6062 0.7387 0.7928 0.6839 
MW1 0.3396 0.4115 0.3775 0.4576 0.4027 0.6474 0.6011 0.6281 0.7107 
PC1 0.5132 0.3439 0.5063 0.5607 0.5814 0.5839 0.6172 0.6792 0.6612 
PC2 0.4658 0.4272 0.5070 0.6018 0.5626 0.6171 0.7497 0.7031 0.6899 
Avg 0.3738 0.2891 0.4147 0.4590 0.4763 0.5284 0.5658 0.5714 0.5501 

 
Fig. 5 shows the average F1, MCC, pf and G-measure of the DLDD (𝜃𝜃=0.75) model 
(with denoising autoencoder) compared with deep neural network (without denoising 
autoencoder) on the PROMISE and NASA, respectively. From Fig. 5, we can observe 
that the DLDD (𝜃𝜃=0.75) model perform better than deep neural network in terms of F1, 
MCC, pf and G-measure. More specifically, the average F1 (0.7778), MCC (0.5309), pf 
(0.2433) and G-measure (0.7621) by DLDD (𝜃𝜃=0.75) yield improvements of 7.37%, 
16.25%, 7.31% and 5.66% compared with deep neural network without denoising 
autoencoder on PROMISE respectively, and the average F1 (0.8374), MCC (0.6661), pf 
(0.1919) and G-measure (0.8285) by DLDD (𝜃𝜃=0.75) yield improvements of 7.36%, 
32.85%, 38.81% and 11.67% compared with deep neural network without denoising 
autoencoder on NASA respectively. 
Compared with single deep neural network, our DLDD model not only adopt deep neural 
network, but also remove noise to learn more robust feature representation by combining 
denoising autoencoder. Therefore, the DLDD model can achieve better prediction 
performance than single deep neural network. 
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Table 7: The G-measure for our model DLDD compared with five classic defect predictors 

Datasets SVM NB KNN DT LR 
SLDD 
(0.25) 

SLDD 
(0.5) 

SLDD 
(0.75) 

SLDD 
(1) 

ant-1.6 0.3393 0.6743 0.6534 0.6251 0.7564 0.7500 0.7674 0.7817 0.7686 
ant-1.7 0.6715 0.4286 0.7010 0.7313 0.7171 0.7492 0.7701 0.7530 0.7741 

camel-1.0 0.7241 0.6418 0.7469 0.8104 0.7269 0.8431 0.7315 0.8213 0.7044 
camel-1.2 0.5236 0.5389 0.6054 0.5963 0.5896 0.4821 0.6328 0.5230 0.5252 
camel-1.4 0.6887 0.6332 0.6483 0.6881 0.6774 0.6814 0.7435 0.7578 0.7150 

ivy-2.0 0.6700 0.6615 0.7306 0.7156 0.7369 0.8283 0.8096 0.7916 0.7956 
jedit-4.1 0.6802 0.7195 0.7409 0.7012 0.7432 0.7813 0.7237 0.7810 0.7114 
jedit-4.2 0.6228 0.6614 0.7584 0.7357 0.7294 0.7603 0.7629 0.8098 0.8310 
jedit-4.3 0.7076 0.5820 0.8145 0.7567 0.7722 0.8242 0.8281 0.8663 0.9107 
poi-2.0 0.7207 0.6450 0.6154 0.7409 0.7906 0.7500 0.7623 0.7402 0.7018 
prop-6 0.7695 0.5004 0.8154 0.7229 0.7408 0.7895 0.8028 0.8180 0.8130 

synapse-1.2 0.3778 0.5474 0.6270 0.6903 0.6228 0.6657 0.7343 0.7568 0.7368 
xalan-2.4 0.6877 0.5572 0.6569 0.6973 0.7389 0.7340 0.7647 0.7591 0.7445 
xerces-1.2 0.6112 0.5667 0.6258 0.6387 0.6508 0.7388 0.7283 0.7096 0.7252 

KC2 0.6709 0.5474 0.7072 0.7455 0.7482 0.7920 0.7941 0.7755 0.7130 
CM1 0.6548 0.6599 0.6903 0.7896 0.7522 0.7529 0.7760 0.7980 0.7863 
MC1 0.7015 0.6457 0.7058 0.7945 0.7488 0.7895 0.8512 0.8963 0.8181 
MW1 0.6748 0.7049 0.6937 0.7235 0.6861 0.7970 0.8015 0.8164 0.8425 
PC1 0.7488 0.6720 0.7445 0.7727 0.7799 0.7906 0.7979 0.8331 0.8285 
PC2 0.7309 0.7128 0.7375 0.7923 0.7668 0.8084 0.8488 0.8515 0.8427 
Avg 0.6488 0.6150 0.7009 0.7234 0.7238 0.7554 0.7716 0.7820 0.7644 

 

 
(a) PROMISE                                                            (b) NASA 

Figure 5: The average performance comparison of SLDD and DNN on PROMISE and 
NASA datasets 
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(a) F1                                                                    (b) MCC 

 
(c) pf                                                             (d) G-measure   

Figure 4: The box-plots for our proposed SLDD (𝜃𝜃=0.25, 0.5, 0.75, 1) compared with 
five classic predictors in terms of four indicators 
 
 
 

 

7 Conclusion  
Software defect prediction can effectively guide the direction of software testing by 
allocating reasonably limited testing resources to highly risky modules before releasing 
the new software product. In this work, we construct an effective software defect 
prediction model based on a novel non-linear manifold learning feature extraction 
method and hybrid deep learning techniques. First, we leverage an advanced non-linear 

Conclusion 3：The DLDD (𝜃𝜃 = 0.75) model outperforms the single 
deep neural network that does not combine denoising autoencoder, and 
the experimental results prove that the denoising autoencoder can 
boost the prediction performance of the DLDD (𝜃𝜃=0.75) model. 

http://dict.youdao.com/w/single/#keyfrom=E2Ctranslation
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manifold learning method - SL-Isomap to extract the representative features from the 
original defect features. Second, we propose a novel defect prediction model called 
DLDD based on hybrid deep learning techniques, which leverages denoising autoencoder 
to learn the reconstructed distribution and more robust feature representation by changing 
the reconstruction error term, and utilizes deep neural network to learn the abstract deep 
semantic features. In addition, we also combine loss functions of two deep learning 
techniques to achieve the best performance of defect prediction by adjusting a 
hyperparameter. We conduct extensive experiments for feature extraction and defect 
prediction across 20 software defect projects from large open source datasets, and the 
experimental results demonstrate that the effectiveness of SL-Isomap and DLDD. 
In future work, in order to verify generalization capability and practicability of SL-Isomap 
and DLDD, we will evaluate them in more open source and commercial projects. Moreover, 
we also plan to extend SL-Isomap and DLDD to cross-project defect prediction. 
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