

Computers, Materials & Continua CMC, vol.65, no.2, pp.1425-1436, 2020

CMC. doi:10.32604/cmc.2020.011116 www.techscience.com/journal/cmc

An Improved Differential Fault Analysis on Block Cipher
KLEIN-64

Min Long1, *, Man Kong1, Sai Long1 and Xiang Zhang2

Abstract: KLEIN-64 is a lightweight block cipher designed for resource-constrained
environment, and it has advantages in software performance and hardware
implementation. Recent investigation shows that KLEIN-64 is vulnerable to differential
fault attack (DFA). In this paper, an improved DFA is performed to KLEIN-64. It is
found that the differential propagation path and the distribution of the S-box can be fully
utilized to distinguish the correct and wrong keys when a half-byte fault is injected in the
10th round. By analyzing the difference matrix before the last round of S-box, the location
of fault injection can be limited to a small range. Thus, this improved analysis can greatly
improve the attack efficiency. For the best case, the scale of brute-force attack is only 256.
While for the worst case, the scale of brute-force attack is far less than 232 with another
half byte fault injection, and the probability for this case is 1/64. Furthermore, the
measures for KLEIN-64 in resisting the improved DFA are proposed.

Keywords: Block cipher, KLEIN-64, differential fault analysis, half-byte fault injection.

1 Introduction
Information security is an important research topic in information field. As an important
security technology, encryption has been constantly improved and matured for protecting
data. Currently, encryption is closely related to our daily life, such as embedded systems,
wireless sensors, RFID and other devices, which are widely used in bank cards, bus cards,
access control cards, and etc. These situations require fast information processing.
Classical encryption algorithms can be processed in parallel to improve the real-time
performance of encryption [Min, Yang and Wang (2019)]. Due to the strict requirements
on circuits size, computing power and storage space of cryptographic devices,
lightweight block cipher has emerged and developed. Common lightweight cryptographic
algorithms include LBlock [Wu and Zhang (2011)], LED [Guo, Peyrin, Poschmann et al.
(2011)], PRINCE [Borghoff, Canteaut, Güneysu et al. (2012)]. And there are some recent
proposed methods, such as CSL [Lamkuche and Pramod (2020)], SFN [Li, Liu, Zhou et
al. (2018)]. A typical lightweight block cipher must address three challenges: minimal
overhead, low-power consumption and adequate security capability [Liu, Wang,
Chaudhry et al. (2018)]. As a typical lightweight block cipher, KLEIN-64 was proposed

1 Changsha University of Science and Technology, Changsha, 410014, China.
2 School of Computing, National University of Singapore, Singapore.
* Corresponding Author: Min Long. Email: caslongm@aliyun.com.
Received: 20 April 2020; Accepted: 03 June 2020.

mailto:caslongm@aliyun.com

1426 CMC, vol.65, no.2, pp.1425-1436, 2020

by Gong et al. [Gong, Nikova and Law (2011)] in RFIDsec. It is not only suitable for
hardware resource-constrained environment, but also has good performance in software
implementation.
At present, many attacks are proposed to compromise cryptographic algorithms. Among
them, DFA is a bypass attack that uses an operation error in the case of interference to
restore the secret key. Thereafter, DFA has been widely used in public key cryptosystems
and block ciphers, which imposes a serious threat to the security of many ciphers.
According to the structure of lightweight cryptographic algorithms, there are various
models of DFA. Jeong et al. [Jeong, Lee and Lim (2013)] have found that injecting
random nibble faults to the input register of round 29 can recover the secret key of
LBlock by using an exhaustive search of 230 and seven random nibble fault injections on
average. Vafaei et al. [Vafaei, Bagheri, Saha et al. (2018)] have revealed that DFA for
random half-byte fault injection of SKINNY, and the extraction of the master key of
SKINNY requires about 10 nibble fault injections in an average for 64-bit version of the
cipher. Wang et al. [Wang, Zhang, Wang et al. (2018)] proposed that a DFA of MIBS
cipher by injecting two faults in the last round, and the data complexity is only 217. Later,
Gao et al. [Gao, Wang, Yuan et al. (2019)] have found that probabilistic analysis of
differential fault attack on MIBS was proposed by a new method of differential fault
attack, which based on the nibble-group differential diffusion property. Zhang et al.
[Zhang, Wu, Li et al. (2019)] proposed that 64 bits of AES-128 key can be recovered by
inducing a random two-byte fault in the first column of the 9th round key with
discontinuous rows. Wei et al. [Wei, Rong and Fan (2018)] have found that a DFA of
LBlock based on a nibble oriented random fault model was presented by injecting faults
in the 27th round to the 29th round, an average of 13.3 faults are needed for revealing the
whole key information. Gruber et al. [Gruber and Selmke (2019)] proposed that a DFA of
KLEIN-64 is introduced. It determines the last round of keys with one byte random fault
and at least five fault ciphertext, and the key space is reduced from 64 bit to 32 bit. Liao
et al. [Liao, Cui, Liao et al. (2017)] have found that an efficient differential analysis
algorithm for random faults of AES. The actual results show that the algorithm can
recover the key by analyzing only 2.17 fault ciphertexts on average. Fu et al. [Fu, Xu and
Pan (2016)] discussed the possible injection positions with different number of faults of
ITUbee. The most efficient attack takes 225 round function operations with 4 faults, which
is achieved in a few seconds on a PC.
The main attack idea of this paper is derived from [Gruber and Selmke (2019)]. In the
proposed attack, if a random nibble fault is injected into the register in the 10th round, it is
necessary to exhaust at least 28 to recover the subkeys of the last round, and the initial
key can be obtained by the inverse key schedule algorithm with this analysis.
The rest of this paper is organized as follows. In Section 2, the basic principle of KLEIN-
64 is briefly introduced, the details of the attack are described in Section 3. Some
measures of improving the security are provided in Section 4. Finally, some conclusions
are drawn in Section 5.

2 Preliminary knowledge on KLEIN-64
The general structure of KLEIN-64 is shown in Algorithm 1, and it mainly consists of

An Improved Differential Fault Analysis on Block Cipher KLEIN-64 1427

four parts: AddRoundKey, SubNibble, RotateNibble and MixNibble.
Algorithm 1. The structure of the KLEIN cipher
Sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R do
AddRoundKey(STATE,ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)
Ski+1 ← KeySchedule(ski,i)
end for
CIPHERTEXT ← AddRoundKey(STATE,skR+1)

2.1 AddRoundKey
KLEIN-64 starts from AddRoundKey and ends with AddRound-Key. Therefore, it is not
easy to carry out inverse operation when the key is unknown. The plaintext is denoted by
a 4×4 matrix P, and it is represented as

[] [] [] []
[] [] [] []
[] [] [] []
[] [] [] []

=

151476
131254
111032
9810

pppp
pppp
pppp
pppp

P

 (1)
The key is denoted by a 4×4 matrix K as

 (2)

2.2 SubNibbles
Table 1: The 4-bit S-box used in KLEIN

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

In SubNibbles, the results after XOR operation will be divided into 16 4-bit nibbles, and
they are used as the inputs of 16 S-boxes. The S-box S of KLEIN-64 is a 4×4 involutive
permutation. The non-linear permutation executed by S is described in Tab. 1.

[] [] [] []
[] [] [] []
[] [] [] []
[] [] [] []

=

15k14k7k6k
13k12k5k4k
11k10k3k2k
9k8k1k0k

K

1428 CMC, vol.65, no.2, pp.1425-1436, 2020

2.3 RotateNibbles
As shown in Fig. 1, 16 nibbles 0

is , 1
is , ..., 15

is are rotated to the left by two bytes per round,
and 16 4-bit state data 0

ir , 1
ir , ..., 15

ir can be obtained. The inverse operation is simply
rotated to the right by two bytes per round.

s0
i s7

is6
is5

is4
is3

is2
is1

i s15
is14

is13
is12

is11
is10

is9
is8

i

r0
i r1

i r2
i r3

i r4
i r5

i r6
i r7

i r8
i r9

i r10
i r11

i r12
i r13

i r14
i r15

i

Figure 1: The rotate nibbles step

2.4 MixNibbles
The input states are divided into left and right parts. Every 8-bit forms an element of the
matrix, so the left and the right can be viewed as two column vectors. The intermediate
state C is obtained by multiplying an MDS matrix M with two column vectors,
respectively. The input nibbles of the i-th round are divided in two tuples. They are
proceeded by an MDS matrix M, which are represented as

×

=

=

++++

++++

++++

++++

++++

++++

++++

++++

+

1
15

1
14

1
7

1
6

1
13

1
12

1
5

1
4

1
11

1
10

1
3

1
2

1
9

1
8

1
1

1
0

1
15

1
14

1
7

1
6

1
13

1
12

1
5

1
4

1
11

1
10

1
3

1
2

1
91

1
8

1
1

1
0

1

||||

||||

||||

||||

2113
3211
1321
1132

||||

||||

||||

||||

iiii

iiii

iiii

iiii

iiii

iiii

iiii

iiii

i

rrrr
rrrr
rrrr
rrrr

cccc
cccc
cccc
cccc

C (3)

2.5 Key schedule

k0
i k2

ik1
i

k1
i k0

ik3
ik2

i k4
ik7

ik6
ik5

i

<<< 8 bit <<< 8 bit

SS

K0
i+1 K3

i+1K2
i+1K1

i+1 K7
i+1K6

i+1K5
i+1K4

i+1

i

k3
i k4

i k5
i k6

i k7
i

Figure 2: The key schedule algorithm of 64-bit key length

An Improved Differential Fault Analysis on Block Cipher KLEIN-64 1429

The key schedule algorithm is illustrated in Fig. 2. A 64-bit master key is denoted by
0
ik , ..., 7

ik (i is the round counter), and it is divided in two parts.

3 The proposed DFA on KLEIN-64
Here are 3 assumptions for the proposed DFA:
(1) The attacker has the capability of specifying a plaintext for encryption and obtaining
the corresponding ciphertext;
(2) The attacker can induce a random nibble fault in the 10th round;
(3) The fault location and value are both unknown.

3.1 Design inspiration and related modified work
KLEIN-64 is designed by half byte except nonlinear transformation. Other steps are
converted in bytes. Gruber et al. [Gruber and Selmke (2019)] have found that the attack
on KLEIN-64 is based on one byte fault injection, which will be more convenient in the
analysis. However, when a fault is introduced in the intermediate state, four-byte subkeys
including 32 bits in the last round need to be exhausted. This paper is to inject a random
half byte fault into the 10th round and exhaust the remaining 8 half bytes in the last round.
In the worst case, the scale of brute-force attack is 232, which is the same as that [Gruber
and Selmke (2019)], and the probability of this situation is 1/64. In the best case, the
scale of brute-force attack is only 28.

Algorithm 2. The structure of the KLEIN-64 cipher

Sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R-1 do

AddRoundKey(STATE,ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)
Ski+1 ← KeySchedule(ski,i)

end for
AddRoundKey(STATE,skR)
SubNibbles(STATE)
RotateNibbles(STATE)
SkR+1 ← KeySchedule(skR, R)
AddRoundKey(STATE, invMixNibble(skR+1))
CIPHERTEXT ←MixNibble(STATE)

In encryption, the column mixing transformation is a linear matrix transformation, and
the MDS matrix is invertible. It means that A⊕ M(B)=M(M-1(A)⊕ B) always holds.
Therefore, the encryption process can be changed without changing the encryption results.

1430 CMC, vol.65, no.2, pp.1425-1436, 2020

As shown in Algorithm 2, the inverse column transformation is first performed on the
key of the last round, and then XOR the results of row shift in the last round. Thereafter,
column mixing transformation is performed on it. The final encryption results are
consistent with the encryption results before modification.

3.2 Difference propagation path

f

f2*

A1

?

f f*

f*

f*

f2*

f1*

f*

F5

F3

F1

F0

A0

F2

ARK10

ARK11

ARK12

K*

SC RC MC

SC RC MC

SC RC

MC

f4*

f*

f3*

f1*

f*

f2*

f4* F4

F1

F0

F2

F5

F3 F4

A8

A6

A4

A2

A7

A5

A3 A10

A14

A12

A9

A11

A15

A13

A1A0 A8

A6

A4

A2

A7

A5

A3 A10

A14

A12

A9

A11

A15

A13

a1a0 a8

a6

a4

a2

a7

a5

a3 a10

a14

a12

a9

a11

a15

a13 a1a0

a2 a3

a6

a4

a7

a5

a8

a10

a9

a11

a14

a12

a15

a13

a1a0

a2 a3

a6

a4

a7

a5

a8

a10

a9

a11

a14

a12

a15

a13

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

I10

I11

I12

C

Figure 3: The diffusion process

In this attack, it is supposed that a half-byte fault is injected at the register I10 in the 10th
round, and the input difference is f, and the output difference is f*. Pairs (C, C*) is the
correct ciphertext and the fault ciphertext with a same length of 64 bits, respectively.
The diffusion process is shown in Fig. 3. The gray part denotes that the value of difference is
stable, and the blue part indicates the uncertainty of the difference. If the XOR results of the
first bit of the status byte and the first bit of the fault is 0, it means that the difference is 0000;
otherwise, it means that the difference is 1011. This difference comes from the column
mixing transformation. That is, when a value is multiplied by 2, the result shifts one bit to the
left. If the leftmost bit of the value is 1, it will XOR 0X1B after the shift. According to the
column mixing transformation of KLEIN-64, the following conclusions can be drawn.

An Improved Differential Fault Analysis on Block Cipher KLEIN-64 1431

(1) When the fault only occurs in the four higher bits, the whole fault byte is ((3f*+1) ||b)
by multiplying 3 or ((2f*+1) ||b) by multiplying 2, where b denotes the difference 0000 or
1011, and || denotes concatenation.
(2) When the fault only occurs in the four lower bits, the whole fault byte is (1|| (3f*))
multiplying 3 or (1||2f*) multiplying 2, where the four higher bits cannot be determined.
(3) When the fault occurs both in four higher bits and four lower bits, the whole fault
byte is ((3 *

1f +1) || (3 *
1f +b)) multiplying 3 or ((2 *

1f +1)||(2 *
1f +b)) multiplying 2.

The K* in Figure 3 denotes the inverse column mixing transformation on the secret key in
the last round, and K*=Invmixnibble (RK13).

3.3. Description of attack
According to Fig. 3, since RK13 can be calculated by K*, the attack is to recover K*. The
attack is described in the following.
(1) Collect correct ciphertext. Select plaintext P for encryption and obtain the correct
ciphertext C.
(2) Collect fault ciphertext. Encrypt the same plaintext P, and obtain the fault ciphertext
C* by injecting a random nibble fault in the 10th round.
(3) Get the results of inverse column transformation. For each pair (C, C*), compute
X=MC-1 (C) and X*=MC-1 (C*).
(4) Analyze column mixing transformation in the 10th round. After column mixing
transformation in the 10th round, the difference *

2f and *
4f is 0 or B. From 3.2, it can be

determined whether *
1f and *

3f needs to be XORed 1 or not.
(5) Analyze column mixing transformation in the 11th round. After column mixing
transformation in the 11th round, the difference A1, A3, A5, A7, A9, A11, A13, A15 is 0 or B. From
3.2, it can be determined whether A0, A2, A4, A6, A8, A10, A12, A14 need to be XORed 1 or not.
(6) Calculate the candidate value of K*. Since S-box is an involutive permutation, S[X]=S-

1 [X] can be obtained.
(a) Guess K*[12,14,0,2]. Because X[12], X[14], X[0] and X[2] are all known, their
differences can be obtained. (The bold indicates that it may or may not exist. If b is 1, it
means it exists, otherwise, it does not exist.)
A0=F0⊕F1=S(X[12]⊕K*[12])⊕S(X[12]⊕a12⊕K*[12]) (4)
A2=3F0⊕F1⊕1=S(X[14]⊕K*[14])⊕S(X[14]⊕a14⊕K*[14]) (5)
A4=2F0⊕3F1⊕1⊕1=S(X[0]⊕K*[0])⊕S(X[0]⊕a0⊕K*[0]) (6)
A6=F0⊕2F1⊕1=S(X[2]⊕K*[2])⊕S(X[2]⊕a2⊕K*[2]) (7)
(b) Guess K*[13,15,1,3]. Because X[13], X[15], X[1] and X[3] are known, their
differences can be obtained. The bold indicates that it may or may not exist. When the
difference value equals the output difference with the input difference b of S-box, b exists;
otherwise, it does not exist.
A1=F2=b=S(X[13]⊕K*[13])⊕S(X[13]⊕a13⊕K*[13]) (8)
A3=b⊕F2=b⊕b=S(X[15]⊕K*[15])⊕S(X[15]⊕a15⊕K*[15]) (9)

1432 CMC, vol.65, no.2, pp.1425-1436, 2020

A5=b⊕3F2⊕b=b⊕3b⊕b=S(X[1]⊕K*[1])⊕S(X[1]⊕a1⊕K*[1]) (10)
A7=2F2⊕b=2b⊕b=S(X[3]⊕K*[3])⊕S(X[3]⊕a3⊕K*[3]) (11)
(c) Guess K*[4,6,8,10]. Because X[4], X[6], X[8] and X[10] are known, their differences
can be obtained. (The bold indicates that it may or may not exist. If b is 1, it means it
exists; otherwise, it does not exist.)
A8=2F3⊕1⊕3F5⊕1=S(X[4]⊕K*[4])⊕S(X[4]⊕a4⊕K*[4]) (12)
A10=F3⊕2F5⊕1=S(X[6]⊕K*[6])⊕S(X[6]⊕a6⊕K*[6]) (13)
A12=F3⊕F5=S(X[8]⊕K*[8])⊕S(X[8]⊕a8⊕K*[8]) (14)
A14=3F3⊕1⊕F5=S(X[10]⊕K*[10])⊕S(X[10]⊕a10⊕K*[10]) (15)
(d) Guess K*[5,7,9,11]. Because X[5], X[7], X[9] and X[11] are known, their differences
can be obtained. (The boldface indicates that it may or may not exist. When the
difference value equals the output difference with the input difference b of S-box, b exists;
otherwise, it does not exist.
A9=2F4⊕b⊕b=2b⊕b⊕b=S(X[5]⊕K*[5])⊕S(X[5]⊕a5⊕K*[5]) (16)
A11=F4⊕b=b⊕b=S(X[7]⊕K*[7])⊕S(X[7]⊕a7⊕K*[7]) (17)
A13=F4=b=S(X[9]⊕K*[9])⊕S(X[9]⊕a9⊕K*[9]) (18)
A15=3F4⊕b=3b⊕b=S(X[11]⊕K*[11])⊕S(X[11]⊕a11⊕K*[11]) (19)
(e) Calculate the candidates of nibble K* in (a) and (c). Half-byte keys that do not satisfy
the equation can be discarded in (a) and (c), and the remaining keys can be exhausted.
When another half byte fault is injected, the half byte secret keys that does not satisfy the
equation are discarded. In this way, the scale of brute-force attack is far less than 232.
(f) Calculate the candidates of nibble K* in (b) and (d). If the difference in (b) and (d) is 0,
the exhaustion of guessing the half-byte keys is 232. However, it can be reduced by
combining (16) (here, another nibble fault injection is needed), and this happens with a
probability of 1/ 64. If the difference value in (b) and (d) is not zero, the input of the S
box can be derived from the known difference of the input and the output of S box. The
number of elements in the input set is 2 or 4. MC-1 (C) XOR the results of S box and the
row shifting, and the candidate values of half-byte keys in (b) and (d) can also be
obtained. The exhaustion of it is at least 28.
In the difference matrix before the last round of the S-box, it can be found:
(i) If it is 0 or b in the 2nd and 4th column of the matrix, the fault is possibly injected at I0

10,
I2

10, I4
10, I6

10, I8
10, I10

10, I12
10, or I14

10.
(ii) If it is 0 or b in the 1th and 3rd column of the matrix, the fault is possibly injected at
I1

10, I3
10, I5

10, I7
10, I9

10, I11
10, I13

10, or I15
10.

(iii) In the case of (1), according to the coefficient relationship between F0 and F1 in (a),
F3 and F5 in (c), the location of fault injection is limited in the part of I0

10, I2
10, I12

10, I14
10

or the part of I4
10, I6

10, I8
10, I10

10.
Finally, the location can be exhausted only for 4 times.

An Improved Differential Fault Analysis on Block Cipher KLEIN-64 1433

4 The improvement of KLEIN-64
In the proposed DFA, it takes the column mixing step in KLEIN-64 as a breakthrough to
reduce the search space of secret keys, and the non-uniform difference distribution of the
S-box also help finding the candidate secret keys. In this section, some improvements are
made to resist the proposed DFA from two aspects.

4.1 Improved MixNibbles
In the original MixNibbles, the intermediate state C is obtained by multiplying an MDS
matrix M with two column vectors, respectively. As the MDS matrix is invertible, A⊕
M(B)=M(M-1(A)⊕B) always holds. Therefore, the change of the encryption process will
not change the encryption results. Here, let the intermediate state of the S-box multiply
the matrix M, the results have a modular arithmetic X4+1. Then, the cipher state can be
conceptually arranged in a 4×4 grid, where each nibble represents an element from GF
(24). The matrix M is

=

2113
3211
1321
1132

M (20)

With the above operations, it cannot find the rule of reducing the complexity of secret
key through the second half byte of each byte state in the improved algorithm.

4.2 Improved S-box
KLEIN-64 adopts the S-box with 4 in and 4 out, which is essentially a multi-output
function from GF (2)4 to GF (2)4. The difference distribution of the S-box is listed in Tab.
2. From Tab. 2, it can be seen that the number of non-zero in each row is not the same.
The non-uniformity of the distribution of the input difference and the output difference
leads to the possibility of differential analysis. Here, a new S-box is constructed to
improve the capability of resisting DFA.
(i) x4+x+1, x4+x3+1, and x4+x3+x2+1 are irreducible polynomials in GF (24). Take one of
them, such as x4+x+1, for an example, find the inverse of the corresponding state half-
byte [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 A, B, C, D, E, F] : [0, 9, E, D, B, 7, 6, F, 2, C, 5, A, 4, 3, 8].
(ii) Affine transformation is performed on the result of (i) as follows

+

=

0
1
0
0

1011
1101
1110
0111

0

1

2

3

0

1

2

3

X
X
X
X

Y
Y
Y
Y

. (21)

1434 CMC, vol.65, no.2, pp.1425-1436, 2020

Table 2: The difference distribution of s-box of KLEIN algorithm

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 2 0 2 0 2 0 0 2 0 0 2 2
2 0 0 0 0 0 4 0 0 0 0 2 2 0 4 2 2
3 0 4 0 2 2 0 0 0 0 0 2 0 0 2 4 0
4 0 2 0 2 2 0 2 0 0 2 0 2 0 2 0 2
5 0 0 4 0 0 2 0 2 2 0 2 4 0 0 0 0
6 0 2 0 0 2 0 4 0 2 0 2 2 0 2 0 0
7 0 0 0 0 0 2 0 2 2 2 0 0 2 0 4 2
8 0 2 0 0 0 2 2 2 2 2 0 2 0 0 0 2
9 0 0 0 0 2 0 0 2 2 0 0 2 2 2 2 2
A 0 0 2 2 0 2 2 0 0 0 4 0 2 0 2 0
B 0 2 2 0 2 4 2 0 2 2 0 0 0 0 0 0
C 0 0 0 0 0 0 2 2 0 2 2 0 4 2 0 2
D 0 0 4 2 2 0 0 0 0 2 0 0 2 2 0 2
E 0 2 2 4 0 0 0 4 0 2 2 0 0 0 0 0
F 0 2 2 2 0 0 0 2 2 2 0 0 2 2 0 0

Table 3: The improved S-box

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 2 F 4 0 3 A 6 B D C E 8 7 5 1 9

Table 4: The improved s-box difference distribution

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 0 2 0 2 0 2 2 0 0 0 4 0 0
2 0 2 0 2 2 2 4 0 0 0 0 0 2 0 0 2
3 0 0 4 0 2 2 0 0 2 0 0 2 2 0 2 0
4 0 4 2 0 0 2 0 0 0 2 2 2 0 0 0 2
5 0 0 0 0 0 0 2 2 4 2 0 2 0 2 0 2
6 0 0 0 0 4 2 0 2 0 2 2 0 2 2 0 0
7 0 0 0 2 2 0 0 0 0 4 0 2 0 2 2 2
8 0 0 2 2 2 0 0 2 2 0 2 0 0 0 0 4
9 0 0 2 0 0 0 2 0 0 0 2 0 2 2 4 2
A 0 2 2 2 0 0 0 2 0 2 0 0 4 0 2 0
B 0 2 0 2 0 0 0 0 2 0 4 2 2 2 0 0
C 0 0 0 2 0 4 2 0 2 2 2 0 0 0 2 0
D 0 2 0 0 0 2 0 4 2 0 0 0 0 2 2 2
E 0 0 2 4 0 2 2 2 0 0 0 2 0 2 0 0
F 0 2 0 0 2 0 2 2 0 0 2 4 0 0 2 0

The affine transformation is expressed as

() () () () ()xmxXxxY mod1 µυ ⋅+= − . (22)

An Improved Differential Fault Analysis on Block Cipher KLEIN-64 1435

Here, it needs to discuss how to select polynomials v (x), u (x), and m (x) in GF (24),
where m (x) should be a polynomial with the highest degree of 4. m(x)=x4+1 is a
reducible polynomial with simple form in GF (24), and u (x) is arbitrarily chosen and it is
prime with m (x). Here, u (x)=x3+x+1. V (x) is an affine constant to ensure that there is
no fixed point or inverse fixed point in the S-box and v (x)=x.
Through the above steps, the S-box is calculated by Tab. 3 and its difference distribution
is listed in Tab. 4. For this S-box, the capability of resisting DFA essentially depends on
the differential distribution and differential uniformity. Since all the number of non-zero
in each row are 7, and it is evenly distributed, which can improve the capability of
resisting DFA.

5 Conclusion
In this paper, an improved DFA is successfully launched on KLEIN-64 by half-byte fault
injection. In the proposed attack, the fault location can be limited to 4 positions, and half
of the whole key can be exhausted by another random half-byte fault, which significantly
reduces the exhaustion scale. Another part of half-byte of the key can be guessed by 28 at
the best case. Even at the worst case, the scale of brute-force attack is far less than 232
with another half byte fault injection, and this case happens with a probability of 1/64. In
order to enhance the capability of resisting the differential attack, some measures are also
proposed in the design of mix nibbles part and S-box in the original algorithm.

Funding Statement: This work was supported in part by project supported by National
Natural Science Foundation of China (Grant Nos. U1936115, 61572182).

Conflicts of Interest: Authors declare that they have no conflicts of interest to report
regarding the present study.

References
Borghoff, J.; Canteaut, A.; Güneysu, T.; Kavun, B.; Knezevic, M. (2012): PRINCE-a
low-latency block cipher for pervasive computing applications. ASIACRYPT 2012, LNCS,
International Association for Cryptologic Research, vol. 7658, pp. 208-225.
Fu, S.; Xu, G. A.; Pan, J.; Wang, Z. Y.; Wang, A. (2016): Differential fault attack on
ITUbee block cipher. ACM Transactions on Embedded Computing Systems, vol. 16, no. 2,
pp. 1-10.
Gao, Y.; Wang, Y. J.; Yuan, Q. J.; Wang, T.; Wang, X. B. (2019): Probabilistic
analysis of differential fault attack on MIBS. The Institute of Electronics, Information
and Communication Engineers, vol. E102-D, no. 2, pp. 299-306.
Gong, Z.; Nikova, S. L.; Law, Y. W. (2011): KLEIN: a new family of lightweight block
ciphers. RFIDSec, Amherst, USA, pp. 1-18.
Gruber, M.; Selmke, B. (2019): Differential fault attack on KLEIN. Constructive Side-
Channel Analysis and Secure Design, pp. 80-95, Darmstadt, Germany.
Guo, J.; Peyrin, T; Poschmann, A.; Tobshaw, M. (2011): The LED block cipher.

1436 CMC, vol.65, no.2, pp.1425-1436, 2020

International Workshop on Cryptographic Hardware and Embedded Systems, pp. 326-
341, Nara, Japan.
Jeong, K.; Lee, C. (2012): Differential fault analysis on block cipher LED-64, Lecture
Notes in Electrical Engineering, Future Information Technology, Application, and
Service, pp. 747-755, Seoul, Korea.
Jeong, K.; Lee, C.; Lim, J. I. (2013): Improved differential fault analysis on lightweight
block cipher LBlock for wireless sensor networks. EURASIP Journal on Wireless
Communications and Networking, vol. 151, no. 1, pp. 1-9.
Lamkuche, H. S.; Pramod, D. (2020): CSL: FPGA implementation of lightweight block
cipher for power-constrained devices. International Journal of Information and
Computer Security, vol. 12, no. 2/3, pp. 349-377.
Li, L.; Liu, B. T.; Zhou, Y. M.; Zou, Y. (2018): SFN: a new lightweight block cipher.
Microprocessors and Microsystems, vol. 60, no. 9, pp. 138-150.
Liao, N.; Cui, X. X.; Liao, K.; Wang, T.; Yu, D. S. et al. (2017): Improving DFA
attacks on AES with unknown and random faults. Science China Information Sciences,
vol. 60, no. 4, pp. 1-14.
Liu, P. C.; Wang X. J.; Chaudhry, S. R.; Javeed, K.; Ma, Y. et al. (2018): Secure
video streaming with lightweight cipher PRESENT in an SDN testbed. Computers,
Materials & Continua, vol. 57, no. 3, pp. 353-363.
Min, Z.; Yang, G.; Wang, J.; Kim, G. J. (2019): A privacy-preserving BGN-type
parallel homomorphic encryption algorithm based on LWE, Journal of Internet
Technology, vol. 20, no. 7, pp. 2189-2200.
Vafaei, N.; Bagheri, N.; Saha, S.; Mukhopadhyay, D. (2018): Differential fault attacks
on SKINNY block cipher. International Conference on Security, Privacy, and Applied
Cryptography Engineering, pp. 177-197, Kanpur, India.
Wang, Y.; Zhang, S.; Wang, T.; Cao, Y. (2018): Differential fault attack on block
cipher MIBS, J. University of Electronic Science and Technology of China, vol. 47, no. 4,
pp. 601-605.
Wei, Y.; Rong, Y.; Fan, C. (2018): Differential fault attacks on lightweight cipher
lblock. Fundamenta Informaticae, vol. 157, no. 1-2, pp. 125-139.
Wu, W.; Zhang, L. (2011): LBlock: a lightweight block cipher. 9th International
Conference on Applied Cryptography and Network Security, Nerja, Spain, pp. 327-344.
Zhang, J.; Wu, N.; Li, J; Zhou, F. (2019): A novel differential fault analysis using two
byte fault model on AES Key schedule”. IET Circuits Devices & Systems, vol. 13, no. 5,
pp. 661-666.

	Min Long0F , *, Man Kong1, Sai Long1 and Xiang Zhang2
	5 Conclusion
	References

