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Abstract: KLEIN-64 is a lightweight block cipher designed for resource-constrained 
environment, and it has advantages in software performance and hardware 
implementation. Recent investigation shows that KLEIN-64 is vulnerable to differential 
fault attack (DFA). In this paper, an improved DFA is performed to KLEIN-64. It is 
found that the differential propagation path and the distribution of the S-box can be fully 
utilized to distinguish the correct and wrong keys when a half-byte fault is injected in the 
10th round. By analyzing the difference matrix before the last round of S-box, the location 
of fault injection can be limited to a small range. Thus, this improved analysis can greatly 
improve the attack efficiency. For the best case, the scale of brute-force attack is only 256. 
While for the worst case, the scale of brute-force attack is far less than 232 with another 
half byte fault injection, and the probability for this case is 1/64. Furthermore, the 
measures for KLEIN-64 in resisting the improved DFA are proposed. 
 
Keywords: Block cipher, KLEIN-64, differential fault analysis, half-byte fault injection. 

1 Introduction 
Information security is an important research topic in information field. As an important 
security technology, encryption has been constantly improved and matured for protecting 
data. Currently, encryption is closely related to our daily life, such as embedded systems, 
wireless sensors, RFID and other devices, which are widely used in bank cards, bus cards, 
access control cards, and etc. These situations require fast information processing. 
Classical encryption algorithms can be processed in parallel to improve the real-time 
performance of encryption [Min, Yang and Wang (2019)]. Due to the strict requirements 
on circuits size, computing power and storage space of cryptographic devices, 
lightweight block cipher has emerged and developed. Common lightweight cryptographic 
algorithms include LBlock [Wu and Zhang (2011)], LED [Guo, Peyrin, Poschmann et al. 
(2011)], PRINCE [Borghoff, Canteaut, Güneysu et al. (2012)]. And there are some recent 
proposed methods, such as CSL [Lamkuche and Pramod (2020)], SFN [Li, Liu, Zhou et 
al. (2018)]. A typical lightweight block cipher must address three challenges: minimal 
overhead, low-power consumption and adequate security capability [Liu, Wang, 
Chaudhry et al. (2018)]. As a typical lightweight block cipher, KLEIN-64 was proposed 
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by Gong et al. [Gong, Nikova and Law (2011)] in RFIDsec. It is not only suitable for 
hardware resource-constrained environment, but also has good performance in software 
implementation. 
At present, many attacks are proposed to compromise cryptographic algorithms. Among 
them, DFA is a bypass attack that uses an operation error in the case of interference to 
restore the secret key. Thereafter, DFA has been widely used in public key cryptosystems 
and block ciphers, which imposes a serious threat to the security of many ciphers. 
According to the structure of lightweight cryptographic algorithms, there are various 
models of DFA. Jeong et al. [Jeong, Lee and Lim (2013)] have found that injecting 
random nibble faults to the input register of round 29 can recover the secret key of 
LBlock by using an exhaustive search of 230 and seven random nibble fault injections on 
average. Vafaei et al. [Vafaei, Bagheri, Saha et al. (2018)] have revealed that DFA for 
random half-byte fault injection of SKINNY, and the extraction of the master key of 
SKINNY requires about 10 nibble fault injections in an average for 64-bit version of the 
cipher. Wang et al. [Wang, Zhang, Wang et al. (2018)] proposed that a DFA of MIBS 
cipher by injecting two faults in the last round, and the data complexity is only 217. Later, 
Gao et al. [Gao, Wang, Yuan et al. (2019)] have found that probabilistic analysis of 
differential fault attack on MIBS was proposed by a new method of differential fault 
attack, which based on the nibble-group differential diffusion property. Zhang et al. 
[Zhang, Wu, Li et al. (2019)] proposed that 64 bits of AES-128 key can be recovered by 
inducing a random two-byte fault in the first column of the 9th round key with 
discontinuous rows. Wei et al. [Wei, Rong and Fan (2018)] have found that a DFA of 
LBlock based on a nibble oriented random fault model was presented by injecting faults 
in the 27th round to the 29th round, an average of 13.3 faults are needed for revealing the 
whole key information. Gruber et al. [Gruber and Selmke (2019)] proposed that a DFA of 
KLEIN-64 is introduced. It determines the last round of keys with one byte random fault 
and at least five fault ciphertext, and the key space is reduced from 64 bit to 32 bit. Liao 
et al. [Liao, Cui, Liao et al. (2017)] have found that an efficient differential analysis 
algorithm for random faults of AES. The actual results show that the algorithm can 
recover the key by analyzing only 2.17 fault ciphertexts on average. Fu et al. [Fu, Xu and 
Pan (2016)] discussed the possible injection positions with different number of faults of 
ITUbee. The most efficient attack takes 225 round function operations with 4 faults, which 
is achieved in a few seconds on a PC. 
The main attack idea of this paper is derived from [Gruber and Selmke (2019)]. In the 
proposed attack, if a random nibble fault is injected into the register in the 10th round, it is 
necessary to exhaust at least 28 to recover the subkeys of the last round, and the initial 
key can be obtained by the inverse key schedule algorithm with this analysis. 
The rest of this paper is organized as follows. In Section 2, the basic principle of KLEIN-
64 is briefly introduced, the details of the attack are described in Section 3. Some 
measures of improving the security are provided in Section 4. Finally, some conclusions 
are drawn in Section 5.  

2 Preliminary knowledge on KLEIN-64 
The general structure of KLEIN-64 is shown in Algorithm 1, and it mainly consists of 
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four parts: AddRoundKey, SubNibble, RotateNibble and MixNibble.  
Algorithm 1. The structure of the KLEIN cipher 
Sk1 ← KEY 
STATE ← PLAINTEXT 
for i = 1 to R do 
AddRoundKey(STATE,ski) 
SubNibbles(STATE) 
RotateNibbles(STATE) 
MixNibbles(STATE) 
Ski+1 ← KeySchedule(ski,i) 
end for 
CIPHERTEXT ← AddRoundKey(STATE,skR+1) 

2.1 AddRoundKey 
KLEIN-64 starts from AddRoundKey and ends with AddRound-Key. Therefore, it is not 
easy to carry out inverse operation when the key is unknown. The plaintext is denoted by 
a 4×4 matrix P, and it is represented as 
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
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The key is denoted by a 4×4 matrix K as 

                                                                                           (2) 

2.2 SubNibbles 
Table 1: The 4-bit S-box used in KLEIN 

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F 
Output 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5 

In SubNibbles, the results after XOR operation will be divided into 16 4-bit nibbles, and 
they are used as the inputs of 16 S-boxes. The S-box S of KLEIN-64 is a 4×4 involutive 
permutation. The non-linear permutation executed by S is described in Tab. 1. 
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2.3 RotateNibbles 
As shown in Fig. 1, 16 nibbles 0

is , 1
is , ..., 15

is  are rotated to the left by two bytes per round, 
and 16 4-bit state data 0

ir , 1
ir , ..., 15

ir  can be obtained. The inverse operation is simply 
rotated to the right by two bytes per round. 
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Figure 1: The rotate nibbles step 

2.4 MixNibbles 
The input states are divided into left and right parts. Every 8-bit forms an element of the 
matrix, so the left and the right can be viewed as two column vectors. The intermediate 
state C is obtained by multiplying an MDS matrix M with two column vectors, 
respectively. The input nibbles of the i-th round are divided in two tuples. They are 
proceeded by an MDS matrix M, which are represented as 
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2.5 Key schedule 
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Figure 2: The key schedule algorithm of 64-bit key length 
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The key schedule algorithm is illustrated in Fig. 2. A 64-bit master key is denoted by 
0
ik , ..., 7

ik  (i is the round counter), and it is divided in two parts. 

3 The proposed DFA on KLEIN-64 
Here are 3 assumptions for the proposed DFA: 
(1) The attacker has the capability of specifying a plaintext for encryption and obtaining 
the corresponding ciphertext;  
(2) The attacker can induce a random nibble fault in the 10th round;  
(3) The fault location and value are both unknown. 

3.1 Design inspiration and related modified work 
KLEIN-64 is designed by half byte except nonlinear transformation. Other steps are 
converted in bytes. Gruber et al. [Gruber and Selmke (2019)] have found that the attack 
on KLEIN-64 is based on one byte fault injection, which will be more convenient in the 
analysis. However, when a fault is introduced in the intermediate state, four-byte subkeys 
including 32 bits in the last round need to be exhausted. This paper is to inject a random 
half byte fault into the 10th round and exhaust the remaining 8 half bytes in the last round. 
In the worst case, the scale of brute-force attack is 232, which is the same as that [Gruber 
and Selmke (2019)], and the probability of this situation is 1/64. In the best case, the 
scale of brute-force attack is only 28. 

Algorithm 2. The structure of the KLEIN-64 cipher 

Sk1 ← KEY 
STATE ← PLAINTEXT 
for i = 1 to R-1 do 

AddRoundKey(STATE,ski) 
SubNibbles(STATE) 
RotateNibbles(STATE) 
MixNibbles(STATE) 
Ski+1 ← KeySchedule(ski,i) 

end for 
AddRoundKey(STATE,skR) 
SubNibbles(STATE) 
RotateNibbles(STATE) 
SkR+1 ← KeySchedule(skR, R) 
AddRoundKey(STATE, invMixNibble(skR+1)) 
CIPHERTEXT ←MixNibble(STATE) 

In encryption, the column mixing transformation is a linear matrix transformation, and 
the MDS matrix is invertible. It means that A⊕ M(B)=M(M-1(A)⊕ B) always holds. 
Therefore, the encryption process can be changed without changing the encryption results. 
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As shown in Algorithm 2, the inverse column transformation is first performed on the 
key of the last round, and then XOR the results of row shift in the last round. Thereafter, 
column mixing transformation is performed on it. The final encryption results are 
consistent with the encryption results before modification. 

3.2 Difference propagation path 
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Figure 3: The diffusion process 

In this attack, it is supposed that a half-byte fault is injected at the register I10 in the 10th 
round, and the input difference is f, and the output difference is f*. Pairs (C, C*) is the 
correct ciphertext and the fault ciphertext with a same length of 64 bits, respectively. 
The diffusion process is shown in Fig. 3. The gray part denotes that the value of difference is 
stable, and the blue part indicates the uncertainty of the difference. If the XOR results of the 
first bit of the status byte and the first bit of the fault is 0, it means that the difference is 0000; 
otherwise, it means that the difference is 1011. This difference comes from the column 
mixing transformation. That is, when a value is multiplied by 2, the result shifts one bit to the 
left. If the leftmost bit of the value is 1, it will XOR 0X1B after the shift. According to the 
column mixing transformation of KLEIN-64, the following conclusions can be drawn. 
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(1) When the fault only occurs in the four higher bits, the whole fault byte is ((3f*+1) ||b) 
by multiplying 3 or ((2f*+1) ||b) by multiplying 2, where b denotes the difference 0000 or 
1011, and || denotes concatenation.  
(2) When the fault only occurs in the four lower bits, the whole fault byte is (1|| (3f*)) 
multiplying 3 or (1||2f*) multiplying 2, where the four higher bits cannot be determined.  
(3) When the fault occurs both in four higher bits and four lower bits, the whole fault 
byte is ((3 *

1f +1) || (3 *
1f +b)) multiplying 3 or ((2 *

1f +1)||(2 *
1f +b)) multiplying 2. 

The K* in Figure 3 denotes the inverse column mixing transformation on the secret key in 
the last round, and K*=Invmixnibble (RK13). 

3.3. Description of attack  
According to Fig. 3, since RK13 can be calculated by K*, the attack is to recover K*. The 
attack is described in the following. 
(1) Collect correct ciphertext. Select plaintext P for encryption and obtain the correct 
ciphertext C. 
(2) Collect fault ciphertext. Encrypt the same plaintext P, and obtain the fault ciphertext 
C* by injecting a random nibble fault in the 10th round. 
(3) Get the results of inverse column transformation. For each pair (C, C*), compute 
X=MC-1 (C) and X*=MC-1 (C*). 
(4) Analyze column mixing transformation in the 10th round. After column mixing 
transformation in the 10th round, the difference *

2f and *
4f is 0 or B. From 3.2, it can be 

determined whether *
1f and *

3f  needs to be XORed 1 or not. 
(5) Analyze column mixing transformation in the 11th round. After column mixing 
transformation in the 11th round, the difference A1, A3, A5, A7, A9, A11, A13, A15 is 0 or B. From 
3.2, it can be determined whether A0, A2, A4, A6, A8, A10, A12, A14 need to be XORed 1 or not. 
(6) Calculate the candidate value of K*. Since S-box is an involutive permutation, S[X]=S-

1 [X] can be obtained. 
(a) Guess K*[12,14,0,2]. Because X[12], X[14], X[0] and X[2] are all known, their 
differences can be obtained. (The bold indicates that it may or may not exist. If b is 1, it 
means it exists, otherwise, it does not exist.) 
A0=F0⊕F1=S(X[12]⊕K*[12])⊕S(X[12]⊕a12⊕K*[12])                                               (4) 
A2=3F0⊕F1⊕1=S(X[14]⊕K*[14])⊕S(X[14]⊕a14⊕K*[14])                                        (5) 
A4=2F0⊕3F1⊕1⊕1=S(X[0]⊕K*[0])⊕S(X[0]⊕a0⊕K*[0])                                         (6) 
A6=F0⊕2F1⊕1=S(X[2]⊕K*[2])⊕S(X[2]⊕a2⊕K*[2])                                                  (7) 
(b) Guess K*[13,15,1,3]. Because X[13], X[15], X[1] and X[3] are known, their 
differences can be obtained. The bold indicates that it may or may not exist. When the 
difference value equals the output difference with the input difference b of S-box, b exists; 
otherwise, it does not exist.  
A1=F2=b=S(X[13]⊕K*[13])⊕S(X[13]⊕a13⊕K*[13])                                                   (8) 
A3=b⊕F2=b⊕b=S(X[15]⊕K*[15])⊕S(X[15]⊕a15⊕K*[15])                                       (9) 
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A5=b⊕3F2⊕b=b⊕3b⊕b=S(X[1]⊕K*[1])⊕S(X[1]⊕a1⊕K*[1])                               (10) 
A7=2F2⊕b=2b⊕b=S(X[3]⊕K*[3])⊕S(X[3]⊕a3⊕K*[3])                                           (11) 
(c) Guess K*[4,6,8,10]. Because X[4], X[6], X[8] and X[10] are known, their differences 
can be obtained. (The bold indicates that it may or may not exist. If b is 1, it means it 
exists; otherwise, it does not exist.) 
A8=2F3⊕1⊕3F5⊕1=S(X[4]⊕K*[4])⊕S(X[4]⊕a4⊕K*[4])                                        (12) 
A10=F3⊕2F5⊕1=S(X[6]⊕K*[6])⊕S(X[6]⊕a6⊕K*[6])                                               (13) 
A12=F3⊕F5=S(X[8]⊕K*[8])⊕S(X[8]⊕a8⊕K*[8])                                                       (14) 
A14=3F3⊕1⊕F5=S(X[10]⊕K*[10])⊕S(X[10]⊕a10⊕K*[10])                                      (15) 
(d) Guess K*[5,7,9,11]. Because X[5], X[7], X[9] and X[11] are known, their differences 
can be obtained. (The boldface indicates that it may or may not exist. When the 
difference value equals the output difference with the input difference b of S-box, b exists; 
otherwise, it does not exist.  
A9=2F4⊕b⊕b=2b⊕b⊕b=S(X[5]⊕K*[5])⊕S(X[5]⊕a5⊕K*[5])                                  (16) 
A11=F4⊕b=b⊕b=S(X[7]⊕K*[7])⊕S(X[7]⊕a7⊕K*[7])                                                (17) 
A13=F4=b=S(X[9]⊕K*[9])⊕S(X[9]⊕a9⊕K*[9])                                                            (18) 
A15=3F4⊕b=3b⊕b=S(X[11]⊕K*[11])⊕S(X[11]⊕a11⊕K*[11])                                   (19) 
(e) Calculate the candidates of nibble K* in (a) and (c). Half-byte keys that do not satisfy 
the equation can be discarded in (a) and (c), and the remaining keys can be exhausted. 
When another half byte fault is injected, the half byte secret keys that does not satisfy the 
equation are discarded. In this way, the scale of brute-force attack is far less than 232. 
(f) Calculate the candidates of nibble K* in (b) and (d). If the difference in (b) and (d) is 0, 
the exhaustion of guessing the half-byte keys is 232. However, it can be reduced by 
combining (16) (here, another nibble fault injection is needed), and this happens with a 
probability of 1/ 64. If the difference value in (b) and (d) is not zero, the input of the S 
box can be derived from the known difference of the input and the output of S box. The 
number of elements in the input set is 2 or 4. MC-1 (C) XOR the results of S box and the 
row shifting, and the candidate values of half-byte keys in (b) and (d) can also be 
obtained.  The exhaustion of it is at least 28. 
In the difference matrix before the last round of the S-box, it can be found: 
(i) If it is 0 or b in the 2nd and 4th column of the matrix, the fault is possibly injected at I0

10, 
I2

10, I4
10, I6

10, I8
10, I10

10, I12
10, or I14

10. 
(ii) If it is 0 or b in the 1th and 3rd column of the matrix, the fault is possibly injected at 
I1

10, I3
10, I5

10, I7
10, I9

10, I11
10, I13

10, or I15
10. 

(iii) In the case of (1), according to the coefficient relationship between F0 and F1 in (a), 
F3 and F5 in (c), the location of fault injection is limited in the part of I0

10, I2
10, I12

10, I14
10 

or the part of I4
10, I6

10, I8
10, I10

10. 
Finally, the location can be exhausted only for 4 times. 
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4 The improvement of KLEIN-64  
In the proposed DFA, it takes the column mixing step in KLEIN-64 as a breakthrough to 
reduce the search space of secret keys, and the non-uniform difference distribution of the 
S-box also help finding the candidate secret keys. In this section, some improvements are 
made to resist the proposed DFA from two aspects. 

4.1 Improved MixNibbles 
In the original MixNibbles, the intermediate state C is obtained by multiplying an MDS 
matrix M with two column vectors, respectively. As the MDS matrix is invertible, A⊕
M(B)=M(M-1(A)⊕B) always holds. Therefore, the change of the encryption process will 
not change the encryption results. Here, let the intermediate state of the S-box multiply 
the matrix M, the results have a modular arithmetic X4+1. Then, the cipher state can be 
conceptually arranged in a 4×4 grid, where each nibble represents an element from GF 
(24). The matrix M is  



















=

2113
3211
1321
1132

M                                                                                                            (20) 

With the above operations, it cannot find the rule of reducing the complexity of secret 
key through the second half byte of each byte state in the improved algorithm. 

4.2 Improved S-box 
KLEIN-64 adopts the S-box with 4 in and 4 out, which is essentially a multi-output 
function from GF (2)4 to GF (2)4. The difference distribution of the S-box is listed in Tab. 
2. From Tab. 2, it can be seen that the number of non-zero in each row is not the same. 
The non-uniformity of the distribution of the input difference and the output difference 
leads to the possibility of differential analysis. Here, a new S-box is constructed to 
improve the capability of resisting DFA.  
(i) x4+x+1, x4+x3+1, and x4+x3+x2+1 are irreducible polynomials in GF (24). Take one of 
them, such as x4+x+1, for an example, find the inverse of the corresponding state half-
byte [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 A, B, C, D, E, F] : [0, 9, E, D, B, 7, 6, F, 2, C, 5, A, 4, 3, 8]. 
(ii) Affine transformation is performed on the result of (i) as follows 
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Table 2: The difference distribution of s-box of KLEIN algorithm 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 4 2 0 2 0 2 0 0 2 0 0 2 2 
2 0 0 0 0 0 4 0 0 0 0 2 2 0 4 2 2 
3 0 4 0 2 2 0 0 0 0 0 2 0 0 2 4 0 
4 0 2 0 2 2 0 2 0 0 2 0 2 0 2 0 2 
5 0 0 4 0 0 2 0 2 2 0 2 4 0 0 0 0 
6 0 2 0 0 2 0 4 0 2 0 2 2 0 2 0 0 
7 0 0 0 0 0 2 0 2 2 2 0 0 2 0 4 2 
8 0 2 0 0 0 2 2 2 2 2 0 2 0 0 0 2 
9 0 0 0 0 2 0 0 2 2 0 0 2 2 2 2 2 
A 0 0 2 2 0 2 2 0 0 0 4 0 2 0 2 0 
B 0 2 2 0 2 4 2 0 2 2 0 0 0 0 0 0 
C 0 0 0 0 0 0 2 2 0 2 2 0 4 2 0 2 
D 0 0 4 2 2 0 0 0 0 2 0 0 2 2 0 2 
E 0 2 2 4 0 0 0 4 0 2 2 0 0 0 0 0 
F 0 2 2 2 0 0 0 2 2 2 0 0 2 2 0 0 

Table 3: The improved S-box 

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F 
Output 2 F 4 0 3 A 6 B D C E 8 7 5 1 9 

Table 4: The improved s-box difference distribution 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 2 2 0 2 0 2 0 2 2 0 0 0 4 0 0 
2 0 2 0 2 2 2 4 0 0 0 0 0 2 0 0 2 
3 0 0 4 0 2 2 0 0 2 0 0 2 2 0 2 0 
4 0 4 2 0 0 2 0 0 0 2 2 2 0 0 0 2 
5 0 0 0 0 0 0 2 2 4 2 0 2 0 2 0 2 
6 0 0 0 0 4 2 0 2 0 2 2 0 2 2 0 0 
7 0 0 0 2 2 0 0 0 0 4 0 2 0 2 2 2 
8 0 0 2 2 2 0 0 2 2 0 2 0 0 0 0 4 
9 0 0 2 0 0 0 2 0 0 0 2 0 2 2 4 2 
A 0 2 2 2 0 0 0 2 0 2 0 0 4 0 2 0 
B 0 2 0 2 0 0 0 0 2 0 4 2 2 2 0 0 
C 0 0 0 2 0 4 2 0 2 2 2 0 0 0 2 0 
D 0 2 0 0 0 2 0 4 2 0 0 0 0 2 2 2 
E 0 0 2 4 0 2 2 2 0 0 0 2 0 2 0 0 
F 0 2 0 0 2 0 2 2 0 0 2 4 0 0 2 0 

The affine transformation is expressed as 

( ) ( ) ( ) ( ) ( )xmxXxxY mod1 µυ ⋅+= − .                                                                                   (22) 
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Here, it needs to discuss how to select polynomials v (x), u (x), and m (x) in GF (24), 
where m (x) should be a polynomial with the highest degree of 4. m(x)=x4+1 is a 
reducible polynomial with simple form in GF (24), and u (x) is arbitrarily chosen and it is 
prime with m (x). Here, u (x)=x3+x+1. V (x) is an affine constant to ensure that there is 
no fixed point or inverse fixed point in the S-box and v (x)=x. 
Through the above steps, the S-box is calculated by Tab. 3 and its difference distribution 
is listed in Tab. 4. For this S-box, the capability of resisting DFA essentially depends on 
the differential distribution and differential uniformity. Since all the number of non-zero 
in each row are 7, and it is evenly distributed, which can improve the capability of 
resisting DFA.  

5 Conclusion 
In this paper, an improved DFA is successfully launched on KLEIN-64 by half-byte fault 
injection. In the proposed attack, the fault location can be limited to 4 positions, and half 
of the whole key can be exhausted by another random half-byte fault, which significantly 
reduces the exhaustion scale. Another part of half-byte of the key can be guessed by 28 at 
the best case. Even at the worst case, the scale of brute-force attack is far less than 232 
with another half byte fault injection, and this case happens with a probability of 1/64. In 
order to enhance the capability of resisting the differential attack, some measures are also 
proposed in the design of mix nibbles part and S-box in the original algorithm.  
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