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Polynomials of Degree-Based Indices for Three-Dimensional Mesh
Network

Ali N. A. Koam' and Ali Ahmad?>”~

Abstract: In order to study the behavior and interconnection of network devices, graphs
structures are used to formulate the properties in terms of mathematical models. Mesh
network (meshnet) is a LAN topology in which devices are connected either directly or
through some intermediate devices. These terminating and intermediate devices are
considered as vertices of graph whereas wired or wireless connections among these
devices are shown as edges of graph. Topological indices are used to reflect structural
property of graphs in form of one real number. This structural invariant has
revolutionized the field of chemistry to identify molecular descriptors of chemical
compounds. These indices are extensively used for establishing relationships between the
structure of nanotubes and their physico-chemical properties. In this paper a
representation of sodium chloride (NaCl) is studied, because structure of NaCl is same as
the Cartesian product of three paths of length exactly like a mesh network. In this way the
general formula obtained in this paper can be used in chemistry as well as for any degree-
based topological polynomials of three-dimensional mesh networks.

Keywords: Topological polynomials, degree-based index, three-dimensional mesh
network, chemical compounds.

1 Introduction

During the exploratoery research of graph products some new structures and their
associated problems are evolved or sometimes their optimum solutions are also obtained.
That’s the reason invariance and inheritance of graph parameters and their factors are of
great interest. Among several graph products the Cartesian product given in Imrich et al.
[Imrich and Klavzar, (2000)] refers the fact that many of the classical graph parameters
are inherited additively. In this nomenclature many important classes of graphs are
evolved due to Cartesian product like n-dimensional grid (Cartesian product of lower
dimensional grids), Hypercubes and its recursive structures (m-dimensional and n-
dimensional hypercubesas (m + n)-dimensional. The Cartesian product of graphs G and
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H is the graph G O H with vertices V(GOH) =V (G) X V(H), and (a,y)(B,{) is an
edge,ifa=fandy{ € E(H)oraf € E(G) andy = (.

Graph theory supports combinatorial structures that are used in the area of computer
science, biological science and modern chemistry that helps in determining different
solutions of computer network problems and to characterize the chemical compound with
respect to their properties. Topological indices are used to reflect structural properties of
graphs in form of one real number. In structural chemistry they are used to explain the
chemical, physical and biological properties of the chemical compounds like melting and
boiling point, temperature, pressure, heat formation and density [Briickler, Doslic’, Graovac
et al. (2011); Gonzalez-Diaz, Vilar, Santana et al. (2007); Gutman (1994)]; Matamala and
Estrada (2005); Riicker and Riicker (1999)]. In 1947 an American chemist named Wienere,
introduced distance-based topological indices (as path number) for the paraffin’s boiling
point in his article [Wiener (1947)]. Gutman et al. [Gutman and Trinajsti (1972)]
characterized the degree-based indices to determine the m-electrons energy of chemical
molecules. Recently, Wasson introduced the idea of linker competition with a Metal-
Organic Frameworks (MOFs) for topological insights in Wasson et al. [Wasson, Lyu,
Islamoglu et al. (2019)] and lately Hong et al. [Hong, Gu, Javaid et al. (2020)] determined
the degree-based topological indices of Metal-Organic Networks.

Moreover, topological indices have shown a significant role in the studies of quantitative
structure activity or property relationships (QSAR/QSPR) to relate the different structures
with a biological property or activity. This relation can be expressed mathematically as
P =¢d(M), where P is a property or activity (value of a biological or a chemical
measurement) and M is a chemical structure. Topological indices for hexagonal network
are in limelight for almost 15 years. Initial studies included [Diudea, Stefu, Parv et al.
(2004)], since then hundreds of papers have been published on topological indices for
different networks. Topological indices are often studied with the help of their
polynomials. The first Zagreb polynomial and the second Zagreb polynomial for
hexagonal nanotubes were explained in [Farahani (2012)]. The first and second Zagreb
polynomial along with forgotten polynomial of generalized prisms and toroidal polyhex
networks were computed in Ajmal et al. [Ajmal, Nazeer, Munir et al. (2017)]. Zagreb
polynomials of nanostars were computed in Li et al. [Li, Liu, Farahani et al. (2016);
Siddiqui, Imran and Ahmad (2016)]. The harmonic polynomial of polycyclic aromatic
hydrocarbons was studied in Farahani et al. [Farahani, Gao, Kanna et al. (2016)].
Polynomials of various networks are studied in Saheli et al. [Saheli, Loghman and
Diudea (2016); Seiberta and Zahradka (2013)] and hexagonal nanotubes were
investigated in BaCa et al. [Baca, Horvathova, MokriSova et al. (2015, 2019); Vetrik
(2018)]. The topological indices of different networks such as hexagonal oxide,
icosahedral honeycomb, fullerene, octahedral, carbon nanotubes, benzene ring and
benzenoid are studied in Akhter et al. [Akhter and Imran (2016); Javaid, Liu, Rehman et
al. (2017); Ahmad (2017, 2018)].
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2 Degree-based indices and their polynomials

Let G be a graph with the vertex set V(G) and the edge set E(G). The degree d,, of a
vertex v € V(G) is the number of neighbours of v. The most general indices based on
degrees are the general Randic’ index of a graph G,

Ra(9) = Xover(g) (dydy)” €]
the general sum-connectivity index

Xa(G) = Xover(g) (dy +dy)" )
and the generalized Zagreb index

GZap(G) = Tuver(g) d5dy +dfd) 3)
Note that the third redefined Zagreb index is defined as

ReZ(G) = Yyver(g) dvdv(dy + dy) “)
the harmonic index is defined as

H(G) = Lver©) 7ra (5)
the third Zagreb index

M3(9) = Ywver) (dy — dy) (6)
the fourth Zagreb index

M4 () = Xwverg) dv(dy +dy) (7
and the fifth Zagreb index

M5(G) = Xuver(g) dv(dy +dy) ®)

Let us introduce a general invariant for polynomials of above mentioned topological
indices.

P(G,x) = ZquE(g) x ¢ (dv.dv) ©
where ¢ (d,, d,) is a function of d,, and d,, such that ¢(d,, d,) = ¢(d,, d,).

« If o(dy, d,) = (dyd,)%, where a is a positive integer, then P(G,x) is the general
Randic’ polynomial of G. Moreover, P (G, x) is the second Zagreb polynomial if @ = 1.

« If (dy, d,) = (dy + d,)*, where a is a positive integer, then P(G, x) is the general
sum-connectivity polynomial of G. Furthermore, P(G, x) is the first Zagreb polynomial
for @ = 1 and the hyper-Zagreb polynomial for a = 2.

* If p(dy,d,) = d{j‘df + d{fdg , wWhere a is a positive integer and £ is a non-negative
integer, then P(G, x) is the generalized Zagreb polynomial of G. Moreover, P(G, x) is the
forgotten polynomial if ¢ = 2 and § = 0.

» If p(dy,d,) = dyd, (dy, + d,), then P(G, x) is the third redefined Zagreb polynomial
of G.

* If p(dy,d,) =d, +d, — 1, then P(G,x) is one half of the harmonic polynomial
H(G,x) of G. Note that the harmonic polynomial is defined differently from the other
polynomials.

*If p(d,, d,) = |d, — d,|, then P(G, x) is the third Zagreb polynomial of G.
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*If p(d,, d,) = dy,(d, + d,), then P(G, x) is the fourth Zagreb polynomial of G.
*Ifp(d, d,) =d,(d, + d,), then P(G, x) is the fifth Zagreb polynomial of G.
So the general Randic’ polynomial of any graph G is defined as

Ra(G, %) = Zuver(e) x @™ (10)
the general sum-connectivity polynomial is
Xa(G,x) = ZvveE(g) x (ot (11)
the generalized Zagreb polynomial of any graph G,
a B qaqB

GZa,B(g: x) = Z‘UVEE(Q) xTodytdydy (12)
the third redefined Zagreb polynomial is defined as
ReZ(G,x) = Yyvep(c) xvdv(dvtdy) 13

@
the harmonic polynomial is
H(G,x) =2 ZUVEE(Q) xdvtdv=i (14)
the third Zagreb polynomial
M3(G) = ZUVEE(Q) x|do=dv| (15)
the fourth Zagreb polynomial
M,(§) = ZUVEE(Q) xho(dvtdy) (16)
and the fifth Zagreb polynomial
Ms(G) = ZvaE(g) xBv(dotdy) (17)

3 Main results

A three dimensional mesh I, ; - is defined as the cartesian product B, X P; X B.. In a

three dimensional mesh there are pqr number of vertices and (2pq —p — q)r + (r —
p)pq number of edges. A representation of sodium chloride (NaCl) is same as the
Cartesian product of three paths of length exactly like a mesh network. The three
dimensional mesh network Il 5 3 is shown in Fig. 1.

AT A
Lamraned
e

Figure 1: The three dimensional mesh network I13 3
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We find that the unit cell representation of sodium chloride NaCl is the same as the three
dimensional mesh network Il3 3 3. For more detail related to sodium chloride see [Al-
Kandari, Manuel and Rajasingh (2011); Ahmad (2020)]. Let the vertex set of II,, 4 - be
the set V(Il, 4,) = {v1v,v3:0<v; <1 —-10<v, <w—10<v3 <h-—1} and two
vertices v = v;v,v3 and v' = v'{v',v'5 are linked by an edge if Y3, |v; — v';| = 1.

We present results, which can be used to compute any degree-based topological
polynomials. Our results generalize known results in the area. We give exact values of
the most well-known degree-based polynomials for three dimensional mesh network
[y qr- Vetrik [Vetrik (2019)] introduced a new method to calculate the topological
indices and also in Ahmad et al. [Ahmad (2020)], we follow the same technique in this
paper. Let us give a formula, which can be used to obtain any polynomial of indices
based on degrees for three dimensional mesh network IT,, ; ..

Lemma 3.1: Let I, ,, be a three dimensional mesh network. Then P(Il, 4., x) =
3pqrx?©0) + 4{xP*4H + 2xP(*H5) — 5xP(55) — 2x#(50) 4 4x9 GOV (p + q + 1) +
{4x9 55 4 25950 — 796} (pq + qr + rp) + 12{2xPCH — 3xPUD — 45 (45 4
6x(p(5l5) + 2x(p(5l6) — 3x(p(6r6)}_

Proof. The graph II, ,, contains pgr vertices and 3pqr — pq — qr — rp edges. Each
vertex of Il ;- has degree 3,4,5 or 6, vertices of Il,, ;- can be partitioned according to
their degrees. Let

Vi={veV(l,g,,):dy, =i}

This means that the set V; contains the vertices of degree i. The set of vertices with
respect to their degrees is as follows:

Vs ={veVl,g):d, =3}

Voy={veV(lyg,):d, =4}

Vs ={veVl,q.,):d, =5}

Ve ={v €V(Ill,4,):dy, = 6}

Since, |V3| =8, V4| =4(p +q +71—-06), [Vs| =2(pqg +qr+1p) =8(p +q+7r—23)
and |Ve| = (p — 2)(q — 2)(r — 2). Let us divide the edges of I, ; ,- into partition sets
according to the degree of its end vertices. Let

33'4 = {UV € E(Hp‘q’r): dU = 3, dv = 4}

4a={wE€E(ll,q,):d, =4,d, =4}

45 ={vw € E(ll,4,):d, =4,d, =5}

5,5 = vv € E(Ily 4,):dy, =5,d, =5}

56 = v € E(Ily4,):d, =5,d, =6}

Ee6 =0V € E(Ily4,):dy = 6,d, = 6}

Note that E(Il, 4 ) = E34UE, 4UE, sUE5 sUE5 UEg 6. The number of edges incident to
one vertex of degree 3 and other vertex of degree 4 is 24, so |23 4| = 24. The number of
edges incident to two vertices of degree 4 is4(p+q+71—9),50 |E44| =4(p +q +

[11 [11 [1]

[1]
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r —9). The number of edges incident to one vertex of degree 5 and other vertex of

degree 4, 5 gnd 6 are 8(p+q+r—6), 4(pg+qr+rp)—20p+q+1r)+72,

&2(pq +qr+rp) —8(p+q+7r)+24 , respectively, so |Eg5|=8(p+q+r—

6) ., |Ess5|=4(q+qr+rp)—20Qp+q+r)+72 , |Es¢|=2(pq+qr+rp)—

8(p+q+r)+24.

Now, the remaining number of edges are those edges which are incident to two vertices

of degree 6,

E66 = |E(pqr)| — B34 —E44 — Ess — Ess — E56 = 3pqr — 7(pq + qr + rp) +

16(p +q + 1) — 36.

Hence,

P(Hp,q,r: x) = ZUVEE(Hp’q'r) x(p(dv'dV) = ZUVEE“ x(p(3,4) + ZUVEE‘M x(p(4,4) +

ZUVEE45 x(p(4,5) + ZUVEEss x(p(5’5) + ZUVEEsG x(p(5,6) + ZUVEEGG x(p(6’6) = 24x(p(3,4) +

4(p+q+1—9x?ED 1 8(p+q+71—6)x?*D + {4(pq+qr +rp) —20(p + q +

r) 4+ 72}x?G3) + 2(pq + qr +p) — 8(p + q + 1) + 24}x%G0) + (3pgr — 7(pq +

qr+1p) + 16(p + q + 1) — 36}x¥(©0),

After simplification, we get

P(Iy 47, x) = 3pqrx®©®) + 4{x P44 4 2xP(45) — 5x¢(55) — 259 (56) 4 4x¢ (66} (p
+q+71)+ {4x?GD 4 25950 — 7596 (pg + qr + rp)
+12(2xP6H) — 3P4 _ 43 P45) 4 6xP(55) 4 2x0(56) — 33 P(66)).

Now we present polynomials of the best-known degree based polynomials of three
dimensional mesh network in the following theorem.

Theorem 3.2 For the three dimensional mesh network Il q,, we have the general

Randic’ polynomial of IT, ; ..

Ra(y gy ) = 3pqraBO® 4 4{x(16% 4 23207 — 5@ _ 2xBO 1 4G (p
+q+7) + {4x@ 4 2xC0" — 7xBONY(pq + qr + rp) + 12{2x1D°
—3x10% — 4507 4 £x(25) 4 2xBOT _ 3x(B6)%Y

the second Zagreb polynomial of T1,, ;

Ry (I, 4, %) = 3pqrx36 + 4{x'6 + 2x20 — 5x25 — 2x30 + 4x3¢}(p + g + 1) + {4x?®
+ 2x3% — 7x3%}(pq + qr + rp) + 12{2x1? — 3x1® — 4x20 4 6x2°
+ 2x30 — 3x36}.

Proof. For R, (I1,, 5, x) which is the general Randic’ polynomial of I1,, ; - we have

o(dy, d,) = (d,d,)%, therefore ¢(3,4) = (12)%, ¢p(4,4) = (16)%,¢(4,5) =

(20)%,¢(5,5) = (25)%,¢(5,6) = (30)* and ¢(6,6) = (36)“.

Thus by Lemma 3.1,

Ra(y g x) = 3pqraBO® 4 4{x(16% 4 2307 — 5@ _ 2xBO 1 43BN (p
+q+71) + (4x@D% 4+ 2xCO _ 7xCGOY(pg + qr + rp) + 12{2x(1D°
— 3x(160% _ 450 1 6x (25 4 2xBOT _ 3x(36),

For a = 1, the second Zagreb polynomial is
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Ry (I 4, %) = 3pqrx36 + 4{x' + 2x20 — 5x25 — 2x30 + 4x3¢}(p + g + 1) + {4x?®
+ 2x3% — 7x3%}(pq + qr + rp) + 12{2x1? — 3x1® — 4x20 4 6x2°
+ 2x30 — 3x36},
In the next theorem, we determined general sum-connectivity polynomial, first Zagreb
polynomial and hyper-Zagreb polynomial of the three dimensional mesh network I,
Theorem 3.3 For the three dimensional mesh network Il, ; » we have

the general sum-connectivity polynomial of I1,, ; -

Xa (g X) = 3pqrat?™ 4+ 4{x8" + 26" — 5x1°" — 2x1° + 4x 2y p+ q + 1) +

{4x1°° + 2x1Y° — 7x12%Y(pq + qr + rp) + 12{2x7" — 3x8" — 4x°° + 6x10% +

2x11% — 3x12a}the first Zagreb polynomial of I1,, , .-,

X1y g, %) = 3pgrat? + 4{x® + 2x° — 5x10 — 2x + 4x2}(p + q + 1) + {4x*°
+ 2x11 — 7x¥2Y(pq + qr + rp) + 12{2x7 — 3x8 — 4x° + 6x10 + 2x11
— 3x12}.

the hyper-Zagreb polynomial of I1, ; -

X2y gy %) = 3pqrat** + 4{x6* + 2x8 — 5x100 — 2121 4 45} (p + q + 1)

+ {4x100 + 2x121 — 7x1 Y (pq + qr + rp) + 12{2x*° — 3x 6% — 4xB1
4 6x100 4 2x121 _ 3y laay

Proof. For (1, 4, x) which is the general sum-connectivity polynomial of IT,, ; - we

have ¢(d,, d,) = (d, + d,)%, therefore ¢ (3,4) = (7)%, ¢(4,4) = (8)%, ¢(4,5) =

(9% ¢(55) = (10)%,¢(5,6) = (11)* and ¢(6,6) = (12)%. Thus by Lemma 3.1,

Xy g X) = 3pqrat?” + 4{x8" + 26" — 5x1" — 2x1° + 4x2Yp + q + 1)
+ {4x10% 4 211 — 7x12%Y(pq 4 qr + p) + 12{2x7% — 3x8" — 4x%"
+ 6x10% 4 2x11% — 3129},

For a = 1, the first Zagreb polynomial is

X1y g, %) = 3pgrat? + 4{x® + 2x° — 5x10 — 2x + 4x2}(p + q + 1) + {4x*°
+ 2x1 — 7x2Y(pq + qr + rp) + 12{2x7 — 3x® — 4x° + 6x10 4 2x11
— 3x12}.

For a = 2, the hyper-Zagreb polynomial is

X2y g X) = 3pgrat? + 4{x8" + 2x9° —5x10° — 2% 4 4x12}(p+q + 1)
+ {4x19" 4 2x1 — 7x12%Y(pq + qr + rp) + 12{2x7° — 3x8° — 4x%"
+6x10% + 2x11° — 3x12%)

= 3pqrxt** + 4{x®* + 2x81 — 5x100 — 2x121 4 4x 14 (p + q + 1) + {42100 + 24121
— 7xMY(pq + qr + rp) + 12{2x*° — 3x5% — 4x81 + 6x100 + 2x121
— 3x144),

In the following theorem, we determined generalized Zagreb polynomial and forgotten

polynomial of the three dimensional mesh network I, ..
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Theorem 3.4 For the three dimensional mesh network Il, ;. we have the generalized
Zagreb polynomial of IT,, ; -

GZa,B (l'[p,q,r, X)
= 3pqrx
— 256 +esh | 4x2(6“+ﬁ)}(p +qg+r)+ {4x2(5a+ﬁ) + 2x 576 +6esF

- 7x2(6a+ﬁ)}(pq +qr+rp) + 12{2x3a4ﬁ+4a3ﬁ _ gy 22rehn
_ 4x4“5ﬁ+5“4ﬁ + 6x2(5a+,3) + 2x5a6,3+6d53 _ 3x2(6a+ﬁ)}’

2065+8) 4{x22“+23+1 4 2x4%5P+5%P _ o 2(574F)

the forgotten polynomial of I, ;
GZyo(11 x) = 3pqrx’? + 4{x3? + 2x*1 — 5x°0 — 2x%1 + 4x"2}(p + q + 1)
+ {4x°0 + 2x51 — 7x"2}(pq + qr + rp) + 12{2x2?> — 3x32 — 4x**
+ 6x50 4 2x61 — 3x72},
Proof. For GZ, g (11, 4 », x) which is the generalized Zagreb polynomial of I, -, we
have (d,, dy) = d%d? + d%d”, therefore ¢(3,4) = 394F + 4738, (4,4) = 494F +
494F = 220+2B%1, (4,5) = 495F + 5945, ¢(5,5) = 5%5F + 575F =
2(5%8), 0(5,6) = 5%6F + 6%5F and ¢ (6,6) = 6%6F + 6%6F = 2(6%*F). Thus by
Lemma 3.1,
GZg (T g0 X)
= 3pqrx
— 2y 5%6PresP 4x2(6a+ﬁ)}(p +q+71)+ {4x2(5a+ﬁ) + 2x5%6F+65F

- 7x2(6a+ﬁ)}(pq +qr+rp) + 12{2x3a4ﬁ+4“3ﬁ _ gy 2PerEh
— 4x4a5B+5a4B + 6x2(5a+,8) + 2x5¢16.8+6¢15.8 _ 3x2(6d+,8)}.

b.qr’

2(6a+[3) + 4{x22a+2[3+1 + 2x4a5,[5’+5a4ﬁ _ 5x2(5a+ﬁ)

For a = 2,8 = 0, the forgotten polynomial is
GZyo(My g x) = 3pqra?®™) 4 4{x2" 4 2x¥*+5% — 5x2(5%) _ 2x5"+6" 4 4x2(69}(p
+q+7) + {4x26C7) 4 2x5°+6° _ 75206 (pq + qr + 1p)
+12{2x3° % — 3x2° — 4x¥ 5 4 6x2(5%) 4 257 H6” _ 3x2(6)y
= 3pqrx’? + 4{x3? + 2x*1 — 5x°0 — 2x51 + 4x"%}(p + q + 1) + {4x50 + 2x©?
—7x"}(pq + qr + rp) + 12{2x%5 — 3x3? — 4x*1 + 6x50 + 2x61
— 3x72}.
In the following theorem, we determined third redefined Zagreb polynomial and
harmonic polynomial of the three dimensional mesh network I1,, ; ;..
Theorem 3.5 For the three dimensional mesh network L, ., we have

the third redefined Zagreb polynomial of TI,,

,q,7°

ReZ(Iy 4y %) = 3pqrx*3? + 4{x1%8 + 2x180 — 55250 — 25330 4 4xB2Y(p+ g+ 1) +
{4x250 + 2x330 — 7x432}(pq + qr + rp) + 12{2x8% — 3x128 — 4x180 4 64250 ¢
25330 _ 3432},

and the harmonic polynomial of I, 47
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H(Il, 4, x) = 6pqrx™t + 8{x7 4+ 2x® — 5x° — 2x0 + 4x'1}(p + q + 1) + 2{4x°
+ 2x10 — 7xY(pq + qr + rp) + 24{2x° — 3x7 — 4x8 + 6x° + 2x1°
— 3x11}.
Proof. For ReZ(Il, 4 r, x) which is the third redefined Zagreb polynomial of I, ;  we
have ¢(d,, d,) = d,d,(d, + d,),
therefore
©(3,4) =12(7) = 84,¢p(4,4) = 16(8) = 128,¢p(4,5) = 20(9) = 180,¢(5,5) =
25(10) = 250,¢(5,6) = 30(11) = 330 and ¢(6,6) = 36(12) = 432.
Thus by Lemma 3.1,
ReZ(Iy 4, x) = 3pqrx*3? + 4{x1%8 + 2x180 — 55250 — 25330 4+ 4x®32}(p + q + 1)
+ {4x250 + 2330 — 7x*32}(pq + qr + rp) + 12{2x8* — 3x128
— 4x180 4 63250 4 2330 _ 3,432}
For H(Il, 4 r, x) which is the harmonic polynomial of I, ; -, we have ¢(d,, d,) = d,, +
d,—1,
therefore
©34) =6,0(44)=7,¢(45) =8,¢(55) =9,¢(56) =10 and ¢(6,6) = 11.
Thus by Lemma 3.1,
H(Il, g x) = 6pqratt + 8{x” 4+ 2x® — 5x° — 2x10 + 4x™}(p + q + 1) + 2{4x°
+ 2x19 — 7xY(pq + qr + p) + 24{2x° — 3x7 — 4x8 + 6x° + 2x1°
—3x11}.
In the following theorem, we determined third Zagreb polynomial, fourth Zagreb
polynomial and fifth Zagreb polynomial of the three dimensional mesh network I1,, ; .

Theorem 3.6 For the three dimensional mesh network I1 we have

p.q,7

the third Zagreb polynomial of I, ; .,

M3 (11, 4+, x) = 3pqr + (2x — 3)(pq + qr + ).
the fourth Zagreb polynomial of I1,, ; .,
M,(T, oy X) = 3pqrx”? 4+ 4{x3? + 2x36 — 5x50 — 2x°5 + 4x"2}(p + q + 1) + {4x°°
+ 2x%% — 7x72}(pq + qr + rp) + 12{2x?t — 3x3% — 4x36 + 6x°°
+ 2x5% — 3x72},
the fifth Zagreb polynomial of I1,, ; .,
Ms(Ty g, %) = 3pqrx”® + 4{x32 + 2x*° — 5x°0 — 2x%¢ + 4x72}(p + q + 1) + {4x>°
+ 2x%6 — 7x72}(pq + qr + rp) + 12{2x28 — 3x32 — 4x*> + 6x°°
+ 2x%6 — 3x72},
Proof. For M3(Il, -, x) which is the third Zagreb polynomial of I, ,,, we have
o(dy, d,) =|dy, —dy|, therefore ©(34)=1,¢0(44) =0,¢0(45) =1,¢9(5,5) =
0,9(5,6) =1and ¢(6,6) = 0.
Thus by Lemma 3.1,

p.q,r’
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M3(I, 5, x) = 3pgrx® + 4{x® + 2x* — 5x° — 2x* + 4x°}(p + g + 1) + {4x® + 2x!
—7x%%(pq + qr + rp) + 12{2x* — 3x° — 4x* + 6x° + 2x1 — 3x0}
= 3pqr + (2x — 3)(pq + qr + rp).
For M4 (I, 4, x) which is the fourth Zagreb polynomial of Il,, ; ., we have ¢(d,, d,) =
d,(d, + d,), therefore ¢(3,4) = 21,¢9(4,4) = 32,9(4,5) = 36,¢9(5,5) = 50,9(5,6) =
55 and ¢(6,6) = 72.
Thus by Lemma 3.1,

My(Ty gy %) = 3pqrx”® + 4{x32 + 2x3¢ — 5x°0 — 2x°5 + 4x72}(p + q + 1) + {4x>°
+ 2x%% — 7x72}(pq + qr + rp) + 12{2x?t — 3x3% — 4x36 + 6x°°
+ 2x°% — 3x72},

For M5 (I, 4 r, x) which is the fifth Zagreb polynomial of Il,, ; ., we have ¢(d,,d,) =

d,(d, + d,), therefore p(3,4) = 28, 0(4,4) = 32, (4,5) = 45,0(5,5) = 50, 0(5,6) =
66 and ¢(6,6) = 72. Thus by Lemma 3.1,
Ms(Il, o, X) = 3pqrx”? 4+ 4{x3? + 2x*> — 5x50 — 2x%6 + 4x"2}(p + q + 1) + {4x>°
+ 2x%6 — 7x72}(pq + qr + rp) + 12{2x?® — 3x3% — 4x*> + 6x°°
+ 2x6 — 3x72},

b.qr’

4 Conclusion

Topological indices are often studied with the help of their polynomials. Formulae for
these topological polynomials for three dimensional mesh network can lead future
research to design some incipient architectures or networks in different fields of
chemistry and computer science. This structural invariant has revolutionized the field of
chemistry to identify molecular indices of chemical compounds. These indices are
extensively used for establishing relationships between the structure of nanotubes and
their physico-chemical properties. They can likewise be useful in creating productive
physical structure in mechanics as well as for different computer network problems.
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