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Abstract: Human activity recognition is commonly used in several Internet of Things 
applications to recognize different contexts and respond to them. Deep learning has 
gained momentum for identifying activities through sensors, smartphones or even 
surveillance cameras. However, it is often difficult to train deep learning models on 
constrained IoT devices. The focus of this paper is to propose an alternative model by 
constructing a Deep Learning-based Human Activity Recognition framework for edge 
computing, which we call DL-HAR. The goal of this framework is to exploit the 
capabilities of cloud computing to train a deep learning model and deploy it on less-
powerful edge devices for recognition. The idea is to conduct the training of the model in 
the Cloud and distribute it to the edge nodes. We demonstrate how the DL-HAR can 
perform human activity recognition at the edge while improving efficiency and accuracy. 
In order to evaluate the proposed framework, we conducted a comprehensive set of 
experiments to validate the applicability of DL-HAR. Experimental results on the 
benchmark dataset show a significant increase in performance compared with the state-
of-the-art models. 
 
Keywords: Human activity recognition, edge computing, deep neural network, recurrent 
neural network, Docker. 

1 Introduction 
The innovative Internet of Things (IoT) paradigm has already started to alter the 
environment, making it much smarter in recent years [Liu, Qiu, Zhang et al. (2020)]. 
Actuation, storage, computation, and sensing resources have seen a large growth in 
availability as IoT device numbers have increased [H De La Iglesia, Villarrubia González, 
Sales Mendes et al. (2019)]. We are also aided in this by the widespread availability of 
devices for general purpose that are more affordable, such as Raspberry Pi; this will help 
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to improve the ease of IoT’s adoption potential in a number of situations [Trihinas, Pallis 
and Dikaiakos (2018)]. In this regard, developers have also given lightweight 
virtualization technology more attention in recent years, which has led to developments 
such as Linux containers (LXC) and Docker containers [Merelli, Fornari, Tordini et al. 
(2019)]. As with the case of hypervisor-based virtualization technology, virtualized 
services have benefited from these new solutions, which bring increased efficiency and 
reduced costs. There have also been many examples of the investigation and use of 
containers in IoT devices that are resource-restricted [Morabito (2017)]. 
Recently, the use of the edge-computing framework in executing human activity 
recognition models at the edge of the network is still at its infancy stage [Greco, 
Ritrovato and Xhafa (2019)]. Research has shown that there is need to process sensor 
data generated from wearable sensors in a quick and efficient way [Sahinovic, Dzebo, 
Ustundag et al. (2018)]. Consequently, this affects how decisions can be reached based 
on the data analysis for application in various areas, such areas of data application 
include rehabilitation [Sahinovic, Dzebo, Ustundag et al. (2018)], healthcare [Al-
Rakhami, Gumaei, Alsahli et al. (2020); Li, Huang, Li et al. (2019)], human surveillance 
[Park, Min and Lee (2017)], education [Fernández-Caramés and Fraga-Lamas (2019)] 
and industrial sectors [Uzunovic, Golubovic, Tucakovic et al. (2018)], etc. Systems for 
edge computing have seen major improvements with deep learning and machine learning 
algorithms, offering intelligent solutions for IoT applications used in quasi-real-time and 
real-time ways [Li, Ota and Dong (2018)]. New applications for deep learning techniques 
have become increasingly possible due to a number of reasons, such as a better 
computing ability and higher volume of data [Jan, Farman, Khan et al. (2019)]. In a 
typical scenario, a deep learning model is made of an ensemble of layers, each with an 
ability to scale down data with the output of the model yielding the desired results. With 
that in mind, a deep learning model is more suited to edge computing environments, as 
some layers in the edge can be offloaded then the reduced intermediary data sent to a 
cloud server [Esteva, Robicquet, Ramsundar et al. (2019)]. The other advantage is that 
this type of computing approach is more secure when transferring intermediate data. 
Deep learning is also quite useful when time-series data is large enough. However, if the 
length of this data is very long, it cannot reflect past information well. Beyond a certain 
limit, the information will not be analyzed with great accuracy levels. To overcome this, 
an artificial recurrent neural network (RNN) known as long short-term memory (LSTM) 
is used, which has a cell, an input gate, an output gate and a forget gate. This network can 
be used to control the use of cell state information [Mishra, Tripathi, Gupta et al. (2019)]. 
The growing number of powerful and smart devices along with and the centralized nature 
of cloud computing approach present numerous challenges and problems such as timely 
services, bandwidth constraints, connectivity, and security issues. In fact, the need for 
different IoT applications to operate at several locations such as smart homes, hospitals, and 
schools is also emerged [Samarah, Zamil, Rawashdeh et al. (2018)]. This is the reason 
behind the extensive research interest in the area, as scientists work to find solutions for 
problems such as jitter effects and latency, the location and distance of servers, applications’ 
location awareness, the security of personal data and privacy, mobility support, etc. The 
main challenge is that this leans towards creating an inconsistency in the solution 
architecture, which has a repercussion in new markets such as in robotics, virtual reality, 
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modern e-health care, and automation [Hammerla, Halloran and Ploetz (2016); Ordóñez 
and Roggen (2016); Ravi, Wong, Lo et al. (2016); Ronao and Cho (2016)]. 
The models of application will create huge demand when it comes to dealing with high 
data transfer rates within a significantly short time [Al-Rakhami, Alsahli, Hassan et al. 
(2018)]. The emerging network architectures are thus faced with the challenge of 
adapting to these needs, with most of them unable to handle terabytes of information 
transfer churned from data sources in a few seconds. Obviously, data technologies are 
evolving quickly; thus, the data rates are bound to grow faster with time. Moreover, 
proper network designs can also help in improving the performance of emerging 
architectures [Yin, Zeng, Chen et al. (2016)]. 
This work looks into the possibilities of using edge computing coupled with artificial 
intelligence in vertical specific cases of basic human activity recognition. This work is 
particularly focused on developing a solution that uses an economical, light and efficient 
intelligent edge application to facilitate swift decision making and communication. 
The main contributions of this paper are as follows: 
• We propose a new deep learning-based human activity recognition framework for 

edge computing, called DL-HAR. The proposed framework aims to increase the 
speed of decision making. It uses a deep learning algorithm to reduce 
communication to the Cloud servers, thus reducing delays and round trips that may 
be unnecessary; 

• We also conduct a comprehensive exploration and examination of the potential of 
edge computing distributed framework utilization as a lightweight and effective 
virtualization for the recognition of human activity; 

• To evaluate the potential of the proposed framework, we examine the accuracy, F1-
score, and recognition time performance measures during the experiment and 
compare them with shallow learning and the state-of-the-art models. 

Our paper is organized as follows: Section 2 covers the related work from three 
perspectives, which are the pervasive sensing systems for HAR, algorithms for the 
recognition of activity from machine learning, and the edge computing approach. Section 
3 introduces the DL-HAR framework and describe its components. Section 4 provides 
more testbed implementation details and a report of the experimental results. Section 5 
covers conclusions and future work. 

2 Related work 
In this section, we cover three varied perspectives of work completed on edge computing 
and the recognition of human activity over recent years. The perspectives include the 
recognition of human activity via pervasive sensor systems, algorithms for the 
recognition of activity from machine learning, and approaches used in edge computing. 

2.1 Pervasive sensing systems for human activity recognition 
The annotation or labeling of activity, the recognition of activity, and the collection of 
data are three of the main functions of systems for smart sensing. In Tapia et al. [Tapia, 
Intille and Larson (2004)], a ubiquitous system for sensing in order to achieve human 
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activity recognition was suggested by the researchers. In a residential setting, the 
researchers placed devices with the purpose of monitoring an object’s state. When 
considering the functions of the sensing system, there were a number of components 
included within the test, including the recognition of activities through supervised 
classification algorithms, the manual labeling of activities in the home via the context-
aware experience sampling (EMS) tool, and the collection of data in its raw binary form. 
Uddin [Uddin (2019)] proposed a wearable sensor-based system that relies on RNN on an 
edge device to predict activity. In this case, the input fed into the system is obtained from 
a variety of wearable healthcare sensors, such as a magnetometer, accelerometer, 
gyroscope, electrocardiograph (ECG), etc. The authors in this work used LSTM to model 
human activities which were represented by time-series based changes from the sensor. 
Park et al. [Park, Kim, An et al. (2018)] proposed a system known as LiRed. The work 
reviewed a number of industrial robot manipulation algorithms, and it was found that the 
LSTM-based fault detection model was far more efficient in finding faults than the other 
six models analyzed. 
Ferdowsi et al. [Ferdowsi, Challita and Saad (2019)], a convolutional neural network 
(CNN) together with LSTM is proposed in self-driving vehicles. The work proposes a 
deep learning approach in mobile edge analytics in the realm of intelligent transport 
systems (ITSs). The CNN algorithm is leveraged to find objects given an input image. 
The extracted features are then fed to an LSTM network which is employed in the next 
phase of processing. 
Van Kasteren et al. [Van Kasteren, Noulas, Englebienne et al. (2008)] conducted in a 
residential setting, the researchers used a combination of wearable and ambient sensors. 
RFM DM 1810 kits allowed for the creation of a new wireless network; this enabled the 
simple introduction and installation of additional sensors in the existing system. The use 
of particular speech commands then assisted with performing the annotations. 
Conditional random fields (CRF) and the hidden Markov model (HMM) were two of the 
probabilistic models for activity recognition that the research adopted. 
The activity recognition with ambient sensing (ARAS) dataset for human activity was the 
focus of another study [Alemdar, Ertan, Incel et al. (2013)]. The dataset included data on 
two residents of a property; the connection of seven types of sensor, with 20 sensors in 
total, to a house’s ZigBee protocol enabled the generation of this dataset. Overall, the 
sensors detected a total of 27 activities during the study, which involved simultaneous 
collection. There were some good results from the study, after the application of a simple 
HMM algorithm to the sequential event data from the sensors. A further study conducted 
by Cook [Cook (2010)] involved the construction of a number of smart house testbeds; 
there was variation in the environment and type of property within the testbeds. The test 
gathered and passed on information by linking middleware and a network of sensors to a 
protocol similar to Jabber. The number of sensors used in the study was in the double 
figures; this allowed for the detection of movement from many residents and pets. Once 
data collection was complete, the researchers were able to use three different models, 
CRF, HMM, and the naive Bayes classifier (NBC), with the datasets. 
Our focus, therefore, is to determine how a particular kind of deep learning method can 
be leveraged in increasing the accuracy of diverse human activity recognition. The study 
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explores how DRNN recognition can be developed, besides attempting to understand 
how it can be implemented on the edge computing devices. 

2.2 Machine learning for activity recognition 
Deep learning is an approach that has shown a great deal of promise regarding mining 
IoT data in noisy and complex scenarios [Hassan, Gumaei, Aloi et al. (2019); Gumaei, 
Hassan, Alelaiwi et al. (2019)]. It has, in fact, found many applications in the world of 
IoT [Mohammadi, Al-Fuqaha, Sorour et al. (2018)]. For instance, it can be used to 
predict future energy consumption trends on the basis of data collected from devices such 
as smart sensors. Based on such trends, proper planning can be done on the smart grid 
and even for an entire power supply system. This kind of efficiency means that deep 
learning is bound to play a massive role in the future of IoT-based systems. To address 
issues with classification and recognition, both deep learning and machine learning are 
very useful. Using ML algorithms in activity recognition could also be of potential 
benefit, as recent research has shown. Activity recognition has also seen the use of a 
number of exceptional algorithms, including the convolutional neural network (CNN) 
and support vector machine (SVM). 
SVM is designed for binary classification [Noble (2006)]; it implements a nonlinear 
mapping (performed by an internal kernel product) of input data into a characteristic 
high-dimensional space, in which an optimal hyperplane is constructed to separate the 
data linearly into binary classification. However, for multiclass classification, SVM takes 
much more time as it applies a multiple binary classification tasks via one-versus-one. 
This means that, if we have N classes, it requires 𝑁𝑁(𝑁𝑁−1)

2
 models. 

The use of machine learning techniques in many research projects has also provided 
fairly good results. Alemdar et al. [Alemdar, Ertan, Incel et al. (2013)] analyzed event 
data from sequential sensors, the researchers adopted an HMM model. The study took 
place in two residential properties, each with varying environments, with the accuracy of 
activity recognition being 76.2% and 61.5%. Further researchers [Cook (2010)] have 
performed studies, including one study where the test used three models, CRF, NBC, and 
HMM, and took place in 11 environments. In the study, the researchers attempted to use a 
decision-tree-style classifier and three further classifiers to take the form of a hierarchical 
classifier. The test results demonstrated that the recognition accuracy of many datasets 
was higher with an ensemble classifier. 

2.3 Edge computing approach 
One of the most recently adopted distributed computing models is edge computing [Liu, 
Qiu, Zhang et al. (2020)]. The goal of edge computing is to take computing power away 
from the Cloud, a remote data center, and instead move it to the network edge; this meets 
the requirements of conserving energy, data privacy, and the location-aware processing 
of data needed for IoT applications that are time-restricted [Li, Ota and Dong (2018)]. 
There is a significant difference between edge device types, from powerful desktop 
computers to computers with comparatively low power. In recent years, systems for edge 
computing have seen major improvement, with deep learning and machine learning 
algorithms offering intelligent solutions for IoT applications used in quasi-real-time and 



 
 
 
1038                                                                        CMC, vol.65, no.2, pp.1033-1057, 2020 

real-time ways.  
Fog computing uses a centralized system that interacts with industrial gate away and 
embedded computer systems on a local area network [Bonomi, Milito, Zhu et al. (2012)]. 
On the other hand, edge computing performs much of the processing on embedded 
computing platforms directly interfacing with sensors and controllers. In essence, fog and 
edge technology link data to the world of the IoT. Progressive environments that involve 
rapid creation, placement, and use of diverse resources, require more developed 
techniques [Kratzke and Quint (2017); Pahl, El Ioini, Helmer et al. (2019)]. In a research 
conducted by Kratzke [Kratzke (2018)], two fundamental developments in cloud-native 
technology have been recognized and analyzed. The first trend points to the dynamic 
evolution of cloud computing technology architecture, which has optimized resource 
utilization within the cloud computing technology infrastructure. The second trend which 
has been evident is that the optimization of resource utilization has contributed to the 
emergence of diverse ways of how cloud application is used. 
In some instances, the use of deep learning algorithms has enabled edge IoT applications 
to perform video recognition [Li, Ota and Dong (2018)]. First, it is essential to divide the 
neural model used into multiple layers; upper layers deploy from the Cloud, and lower 
layers deploy from the edge. This method is also able to provide a solution to the issue of 
scheduling that is the result of distributing the layers, and attempts to provide a guarantee 
of minimal communication and processing time cost amongst the various deep learning 
duties by splitting the layers up between the Cloud and the edge. This is not the only 
work that has considered the possible strategies for where the deep learning model’s 
layers should be placed. Teerapittayanon et al. [Teerapittayanon, McDanel and Kung 
(2017)] looked at the automation of layers of the DNN, sending them to Cloud servers, 
sensors, and edge devices. As a result of this, there is a proposal of a training and 
collection scheme for different DNN applications used in combination to improve data 
privacy, enhance the fault tolerance of the system, and boost sensor fusion. 
Even though deep learning techniques have been considered too heavy for application on 
the edge devices, DL-HAR framework proposed here-as far as we know-is the first of its 
kind that applied DRNN on edge devices for human activity recognition in a lightweight 
and non-expensive way. The closest academic work in this respect is Agarwal et al. 
[Agarwal and Alam (2020)], which propounded a lightweight model based on Shallow 
Recurrent Neutral Network, in combination with the LSTM algorithm of deep learning. 
Our model has outperformed the Agarwal and Alam’s to score a higher accuracy. 

3 Proposed DL-HAR framework 
In this section, we describe the DL-HAR framework in detail. This framework consists of 
a network of accelerometer-based wearable body sensors and an edge layer that receives 
their data and classifies them, as can be seen in Fig. 1. The scenario is to make the patient 
wear the sensors, which will load the data towards the edge’s Raspberry Pi devices to 
lower the server’s demand on resources. The edge device is located in-house near to the 
patient. In each edge layer, Docker containers are utilized as a lightweight virtualization 
tool; more details about Docker technology and its role in our framework can be found in 
Section 3.1. Section 3.2 also describes how the deep recurrent neural network is used to 
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classify human activity data in the proposed framework. As a communication protocol, 
we used The Message Queuing Telemetry Transport (MQTT) which achieved varied use 
in the IoT [Katsikeas, Fysarakis, Miaoudakis et al. (2017)]. MQTT comes with its 
advantages, it is characterized by smaller sized, reduced data packets, and also a 
relatively reduced power consumption. This is besides real-time data transfer and the fact 
that is relatively easy to implement. Hence, it meets the needs of our framework. It takes 
advantage of the subscribing operations for data exchange between clients and the servers. 
Outputs will be dispatched to the remote side (e.g., the hospital) where healthcare givers, 
relatives or emergency are notified in case of hazard activity. Software for patient remote 
monitoring can be developed as a mobile application to ensure fast reaction by caregivers 
and relative persons. Each cluster of sensors is combined with its dedicated Raspberry Pi, 
which serves as a bridge between the sensors and central server. The server receives the 
final analyzed data and can push the latest Docker image of the trained classifier. In the 
following subsections, we describe the used technologies in more detail. 

3.1 Docker containers 
The edge computing applications focus on lightweight virtualized resources as opposed 
to the bigger data center clouds, hence bringing services to the user [Pahl and Lee (2015)]. 
To carry out the human activity recognition in our framework, we used Docker containers 
that are application-oriented throughout the methods described in this paper. The base of 
Docker functionalities is a Docker engine, or container engine. This container technology 
is lightweight, and the components of the software are container-management focused 
[Morabito, Petrolo, Loscri et al. (2018)]. The technology also offers functional 
application programming interface (API), constructing, managing, and removing 
virtualized applications is simple. The use of containers that are application-oriented 
improves the ability to handle the demands of micro-service design; micro-service use is 
a great development towards the future deployment of IoT services. Easier management 
and deployment when using multiple hosts (virtual or physical) and more than one 
containerized application is in part achieved by container provisioning and orchestration; 
this is particularly true when using a data center setting. 

3.2 Deep recurrent neural network (DRNN) architecture 
RNN is a type of artificial neural network that is suitable for processing time-series data, 
generated from body sensors or smartphone devices. The algorithm can encode 
dependencies between inputs, but it is only limited to shorter data sequences. In the case 
of long data sequences, the algorithm will create a vanishing state in relation to its 
gradient. Therefore, LSTM units are used in DRNN architecture to overcome the 
challenges of traditional RNN units. The former is made of gates with the input layer 
having an input gate and the output layer a forget gate and an output gate. The schematic 
diagram in Fig. 1 shows a proposal of a DL-HAR system. The system is capable of end-
to-end direct mapping using sensor inputs in unrefined multi-modal form to classify 
activity labels. In a set window of time, the system can classify labels for performed 
activities. Samples spaced evenly, to form a discrete structured sequence, such 
as  (𝑥𝑥1,𝑥𝑥2,𝑥𝑥𝑇𝑇), are the input; separate samples indicate time t observations from the 
sensors, where the vector is a data point 𝑥𝑥𝑡𝑡.  
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To become maximum time (T) index windows, the samples become separated; then, they 
are moved into a deep recurrent neural network (DRNN) model based on stacked LSTM 
cells on top of each other. 

 
Figure 1: DL-HAR conceptual framework 

 

Then, the model begins outputting predictions for activity labels, in the form of a score 
sequence. Every time step, i.e., (𝓎𝓎1𝐿𝐿 ,𝓎𝓎2

𝐿𝐿 , …,𝓎𝓎𝑇𝑇
𝐿𝐿 ), receives a prediction; the symbol ℓ 

represents the number of activity classes, and the vector of scores is 𝓎𝓎1𝐿𝐿 ∈ 𝑅𝑅ℓ, which 
represents individual predictions for input samples, 𝑥𝑥𝑡𝑡. The provision of a prediction of 
activity type that will occur at time t is in the form of a score given at every time step. 
Creating one prediction, by combining all the separate scores, will provide a prediction 
that will apply to the whole T window. In order to create probabilities from the score, 
over 𝒴𝒴 we added a softmax function in the output layer. The probabilities we created, as 
in Eq. (1): 

𝒴𝒴 =
1
𝑇𝑇
�𝓎𝓎𝑡𝑡

𝐿𝐿
𝑇𝑇

𝑡𝑡=1

    (1) 

LSTM is selected to avoid the vanishing/exploding problem of gradient in a recurrent 
neural network [Pascanu, Mikolov and Bengio (2013)]. In a multi-layer network, 
gradients for layers in the deep architecture are computed as outputs of many activation 
functions. If these values are small, then they will vanish, contrary to values bigger than 1, 
which will probably explode. Thus, it is difficult to compute and update these values.  
Accordingly, LSTM is used to learn long-range dependencies among a multi-layer 
network no matter how deep the network architecture is, or how long the input sequence 
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is [Bayer (2015)]. In Fig. 2, the inputs take the form of raw signals that come from multi-
modal sensors, split into length T windows before entering into N hidden layers of the 
DRNN model that is based on LSTM. Scores for class predictions from every time step 
are the output of the model which combines the scores and then, to conclude the 
probability of class membership, feeds them to the softmax function in the output layer. 

 
Figure 2: Proposed DRNN architecture 

4 Experiment and discussion 
In our experiment, we used the WISDM dataset [Kwapisz, Weiss and Moore (2011)], 
which is collected by the Wireless Sensor Data Mining Laboratory. In detail, this dataset is 
used as a case study to evaluate the proposed framework. During the experiment, a set of 
evaluation terms such as accuracy, precision, recall, and F1-score, as well as recognition 
time were used to show the effectiveness of the proposed DRNN model. The following 
subsections describe the dataset used and the experimental results with more detail. 

4.1 Datasets 
4.1.1 WISDM dataset 
WISDM is a challenging dataset which contains 1,098,207 instances of 36 subjects 
collected by smart phone mobiles placed in the front leg pocket at 20 Hz of sampling 
frequency (20 data points per second). Each instance in the dataset contains a set of 
information including the user id, activity class, timestamp, x-axis acceleration value, y-
axis acceleration value, and z-axis acceleration value. The activity class has six types of 
categorical names which are standing, sitting, downstairs, upstairs, jogging, and walking. 
Fig. 3 shows the number of instances in each activity class. 
There is another version of the WISDM dataset consisting of a feature space extracted 
from the original input space of the acceleration time-series. In this feature space, the 
input acceleration time-series for every 10 s of each activity, containing 200 points of 
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continuous samples, is converted into 43 eigenvalues to form a 1×43 feature vector. 
Accordingly, a matrix of 5418×43 features is produced from 1,098, 209×3 features of the 
dataset. To reduce the time of feature extraction, our framework deals with the original 
acceleration time-series directly without degrading the accuracy of the activity 
recognition task. In Kolosnjaji et al. [Kolosnjaji and Eckert (2015); Almaslukh, Al 
Muhtadi, Artoli (2018)], the authors divided this dataset into a training set and testing set 
using the leave-one-subject-out method to enable the researchers able to evaluate the 
performance of their proposed models.  
Our experiment follows the same procedure, in which the dataset is divided into two sets: 
the training set, that contains the activities of subjects from 1 to 26, and the testing set, 
which has the activities of the other 10 subjects. A window of 6.4 s (a segment size of 
128) is used for each activity to generate 7367 instances in the training set and 3026 
instances in the testing set. The distribution of activities in the training set and testing set 
are shown in Tab. 1. 

Table 1: Number of instances in training and testing sets of WISDM dataset 

Activity Name Training set. Testing set. 
Downstairs 557 277 
Jogging 2450 890 
Sitting 376 190 
Standing 286 165 
Upstairs 742 306 
Walking 2956 1198 
Total 7367 3026 

 

 
Figure 3: Distribution of instances in each activity of the Wireless Sensor Data Mining 
(WISDM) dataset 
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4.1.2 PUC-Rio dataset 
This dataset has published by Pontifical Catholic University of Rio de Janeiro (PUC-Rio). 
It contains 165,633 continuous data points of four accelerometers in three axes: x, y, and z. 
It is collected for eight hours of five activities (sitting, sitting-down, standing, standing-
up, and walking) from four subjects wearing four wearable accelerometer sensors placed 
on their left thigh, right ankle, right arm, and waist to generate a dataset in three axes: x, y, 
and z. The continuous data of each activity was recorded in one-second windows with 
150 ms overlap. The number of instances in each activity is shown in Fig. 4. 
 

 
Figure 4: Distribution of instances in each activity of the Pontifical Catholic University 
of Rio de Janeiro (PUC-Rio) dataset 
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described in Tab. 2. 

Table 2: Number of instances in training and testing sets of PUC-Rio dataset 

Activity Name Training set Testing set 

Sitting 7114 3012 
Sitting down 1680 686 
Standing 6611 2863 
Standing up 1734 749 
Walking 6049 2628 

Total 23188 9938 
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4.2 Evaluation measures 
To evaluate the efficiency of the DRNN model for the proposed framework, we 
calculated the recognition time spent on the Raspberry Pi edge device for recognizing the 
activities through a number of requests. In addition to that, we also used four of the most 
common validation measures to evaluate the performance of the model. These validation 
measures are accuracy, precision, recall, and F1-score, computed as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
 (2) 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
 (3) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
 (4) 

F1-score = 2 ×
(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)
(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)

 (5) 

where TP and FP are the true and false positive rates; and TN and FN are the true and 
false negative rates. 

4.3 Experimental setup 
The configuration of our experiment consists of one Raspberry Pi3 as an edge device for 
recognizing the requested activity, one laptop as a sensor to send the activity time-series data, 
and one server as a Cloud for training the DRNN model and distribute it to the Raspberry 
Pi3. The Raspberry Pi3 used in the experiment is a third-generation model with a 1.2 GHz 
64-bit quad-core CPU and 1 GB RAM. Also, the laptop is a Core i7 with a 2.60 GHz CPU 
and 16.0 GB RAM, operating Windows 10. The server is a workstation with a 2.2 GHz Intel 
Xeon processor, 13.75 MB cache, 10 cores, 32 GB DDR4-2666, and ECC SDRAM (2×16 
GB), operating Windows 10. Keras with TensorFlow libraries in the Python programming 
language are used to implement the experiment of this research work. 
After setting up the configuration, the DRNN model is trained on the training set at the 
server side and pushed as a trained Docker image to the Raspberry Pi3 via the TCP 
protocol. During the training phase, the model is trained with different parameter values 
using a grid search technique to select the best possible values. Grid search is an 
optimization technique which can use a specific range of different values to find the best 
combination of hyper-parameters [Goliatt, Capriles and Duarte (2018)]. We chose this 
technique as it allowed us to enter some good probable values for the model parameters 
based on our experience in the deep learning field. For example, the number of hidden 
layers parameter is initialized with a small range of integer values (2, 3, and 4). From this 
range, we found that the model performed best when the number of hidden layers was 
three. Tab. 3 gives the hyper-parameters of the proposed DRNN model with their 
corresponding best values. Moreover, Figs. 5 and 6 display the accuracy and training loss 
of the DRNN model on the datasets used over 200 iterations (epochs). 
 
 
 



 
 
 
DL-HAR: Deep Learning-Based Human Activity Recognition Framework                   1045 

Table 3: Hyper parameter values of the DRNN model 

Hyper Parameter Value 
Number of hidden layers 3 
Number of epochs 200 
L2_LOSS 0.0015 
Learning rate 0.0025 
Number of hidden neurons 50 
Batch size 32 
Optimizer AdamOptimizer 

4.4 Experimental results and comparisons 
In this section, the results of the proposed DRNN model are demonstrated and compared. 
The comparisons are performed with one of the most popular shallow learning models, 
namely the support vector machine (SVM) model with radial base function (RBF), as 
well as some comparisons with the state-of-the art models applied on the same datasets.  

 
Figure 5: Training progress of the DRNN model on WISDM dataset over 200 epochs 
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Figure 6: Training progress of the DRNN model on PUC-Rio dataset over 200 epochs 

An RBF kernel is used with SVM as a mapping function to map the data from low-
dimensional to high-dimensional spaces. Even though RBF allows SVM to work better 
for higher-dimensional feature vectors, it becomes computationally very expensive. Figs.  
7-10 demonstrate the normalized confusion matrices of the DRNN and SVM models. 
From these matrices, we found that the DRNN model achieves 97.03% accuracy 
compared to the SVM which achieves 82.98% accuracy on the WISDM dataset. 
Additionally, we found that the proposed DRNN model attains 99.024% accuracy 
compared to the SVM model that attains 95.775% accuracy on the PUC-Rio dataset. 
 

Downstairs 0.88 0.01 0.00 0.00 0.10 0.01 
Jogging 0.01 0.99 0.00 0.00 0.00 0.00 
Sitting 0.01 0.00 0.95 0.01 0.00 0.00 

Standing 0.02 0.00 0.01 0.97 0.00 0.00 
Upstairs 0.05 0.01 0.00 0.00 0.92 0.01 
Walking 0.00 0.00 0.00 0.00 0.00 0.99 

 Downstairs Jogging Sitting Standing Upstairs Walking 

Figure 7: Normalized confusion matrix of the DRNN model on the WISDM dataset 
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Downstairs 0.11 0.02 0.00 0.02 0.26 0.58 
Jogging 0.00 0.97 0.00 0.00 0.00 0.02 
Sitting 0.00 0.00 0.96 0.04 0.00 000 

Standing 0.00 0.00 0.00 0.97 0.03 0.01 
Upstairs 0.05 0.10 0.00 0.01 0.38 0.46 
Walking 0.00 0.01 0.00 0.00 0.00 0.99 

 Downstairs Jogging Sitting Standing Upstairs Walking 

Figure 8: Normalized confusion matrix of the SVM model on the WISDM dataset 

Sitting  1.00 0.00 0.00 0.00 0.00 
Sitting down 0.01 0.96 0.00 0.03 0.01 

Standing 0.00 0.00 1.00 0.00 0.00 
Standing up 0.01 0.02 0.02 0.95 0.00 

Walking 0.00 0.00 0.00 0.00 0.99 
 Sitting Sitting down Standing Standing up Walking 

Figure 9: Normalized confusion matrix of the DRNN model on the PUC-Rio dataset 

 
 

Sitting  0.99 0.00 0.00 0.01 0.00 
Sitting down 0.00 0.89 0.03 0.03 0.05 

Standing 0.00 0.00 0.97 0.00 0.03 
Standing up 0.00 0.05 0.11 0.68 0.16 

Walking 0.00 0.00 0.00 0.00 1.00 
 Sitting Sitting down Standing Standing up Walking 

Figure 10: Normalized confusion matrix of the SVM model on the PUC-Rio dataset 

Moreover, Tabs. 4-7 show the validation measures of the DRNN and SVM models, while 
Tabs. 8 and 9 list the F1-scores of the proposed DRNN model against the-state-of-the-art 
models on both datasets. Because the results of previous works on the datasets were 
conducted on different test modes and it is hard to compare them, the result of these 
works are reproduced with our test mode for a fair comparison. In this comparison, F1-
score is used because it provides more realistic estimates of real-world classification 
problems when the class distribution is imbalanced as in the activity recognition problem. 

Table 4: Validation measures of the DRNN model on the WISDM dataset 

Activity Name Precision (%) Recall (%) F1-Score (%) 

Downstairs 89 88 88 
Jogging 99 99 99 
Sitting 99 98 98 
Standing 99 97 98 
Upstairs 89 92 90 
Walking 99 99 99 

Weighted avg. 97 97 97 
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Table 5: Validation measures of the SVM model on the WISDM dataset 

Activity Name Precision (%) Recall (%) F1-Score (%) 

Downstairs 63 11 19 
Jogging 95 97 96 
Sitting 98 96 97 
Standing 90 97 93 
Upstairs 58 38 46 
Walking 77 99 87 

Weighted avg. 81 83 80 

Table 6: Validation measures of the DRNN model on the PUC-Rio dataset 

Activity Name Precision (%) Recall (%) F1-Score (%) 

Sitting 100 100 100 
Sitting down 97 96 96 
Standing 99 100 99 
Standing up 95 95 95 
Walking 100 99 100 

Weighted avg. 99 99 99 

Table 7: Validation measures of the SVM model on the PUC-Rio dataset 

Activity Name Precision (%) Recall (%) F1-Score (%) 

Sitting 100 99 100 
Sitting down 94 89 92 
Standing 96 97 97 
Standing up 93 68 79 
Walking 92 100 96 

Weighted avg. 96 96 96 

Table 8: Comparison results of F1-score for the proposed DRNN model against the state-
of-the art models on the WISDM dataset. CNN: convolutional neural network 

Model F1-Score (%) 
Basic features and random forest [Ignatov (2018)] 82.66 
PCA and random forest [Ignatov (2018)] 75.28 
Handcrafted features and dropout [Kolosnjaji and Eckert (2015)] 85.36 
Statistical features and shallow CNN [Ignatov (2018)] 93.32 
Statistical features and deep CNN [Almaslukh, Al Muhtadi, Artoli (2018)] 95.13 
Proposed DRNN model 97.00 

 
 
 



 
 
 
DL-HAR: Deep Learning-Based Human Activity Recognition Framework                   1049 

Table 9: Comparison results of F1-score for the proposed DRNN model against the 
state-of-the art models on the PUC-Rio dataset. SVM-RBF: support vector machine 
with radial base function 

Model F1-Score (%) 
Adaboost [Ugulino, Cardador, Tucakovic et al. (2012)] 84 
SVM-RBF [Cheng, Guan, Zhu et al. (2017)] 96 
Proposed DRNN model 99 

As we see from the previous tables and figures, the DRNN model has the highest results 
and outperforms the SVM model and the state-of-the-art models with regards to all 
validation measures, which are highlighted in bold font. The reason that our model 
achieves high accuracy is the deep architecture of the model and the best values of its 
hyper parameters, enabling it to learn the feature representation of the time-series data of 
activities in the best way and recognize them accurately. 
To evaluate the efficiency of the DRNN model, the recognition time taken to recognize 
100 instances from the testing set of the WISDM dataset is computed and compared with 
the SVM model, as shown in Fig. 11. Furthermore, the total recognition time taken to 
recognize all activities in the testing set is also computed and shown in Fig. 12. 

 
Figure 11: Recognition time of DRNN and SVM models to recognize one activity per 
request for 100 requests 
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Figure 12: Recognition time of DRNN and SVM models to recognize all activities in the 
testing set of the WISDM dataset 

From Fig. 11, we notice that the recognition time of the DRNN model is lower than the 
SVM model. In addition to that, Fig. 12 shows that the recognition time of the DRNN 
model on the testing set of the WISDM dataset is almost 36% of the recognition time 
taken by the SVM model. Even though the training time of the DRNN model is higher 
than the training time of SVM, the recognition time of the DRNN model is lower than the 
recognition time of SVM. This situation can be exploited to train the RDNN model in 
off-line mode and deploy it for recognition in on-line mode, utilizing this efficiency for 
real-time activity recognition. The last step in the experiment is conducted to prove the 
effectiveness of the proposed model as a lightweight model in terms of CPU utilization 
and memory utilization. To support this, we executed the model on an edge device, which 
was a third-generation Raspberry Pi3 with a 1.2 GHz 64-bit quad-core CPU and 1 GB 
RAM at different numbers of hidden neurons. Fig. 13 demonstrates the CPU utilization 
and memory utilization of the model at different loads. 

 
Figure 13: The CPU utilization and memory utilization of executing the DRNN model 
on the edge device at different numbers of hidden neurons 
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During the computation of the CPU utilization and memory utilization, we noticed that 
they were 10% and 36%, respectively, because some tasks of the operating system were 
running. In general, from Fig. 13, we can see that the CPU utilization and memory 
utilization of the DRNN model are acceptable and are not significantly affected when the 
number of hidden neurons is in the range between 25 and 100. 
To conclude, our proposed deep learning-based human activity recognition framework 
based on edge computing aims to increase the speed of decision making. It uses a deep 
learning algorithm to reduce communication to the Cloud servers, thus reducing delays 
and round trips that may be unnecessary. Based on experimental study discussed in this 
section, the potentials of edge computing distributed framework utilization is effective 
and efficient. We examined the accuracy and recognition time performance measures 
during the experiment to show how it outperformed the state-of-the-art models. 

4.5 Statistical analysis of performance results 
Statistical analysis of performance results on different random test data samples is very 
important to show the effectiveness of the proposed DRNN model. To achieve this 
statistical analysis, we repeated the evaluation of the DRNN model twelve times on 
different random data samples from the two datasets. Then, for each dataset, we used a 
one-sample t test of the SPSS software to compare these F1-score results with the F1-
score result obtained in the previous experimental results. The one-sample t test is a 
parametric statistical analysis method used to compare the mean of a random sample to a 
hypothesized or known mean value and test for a deviation from that value, calculated 
using Eq. (6): 

t =
𝜇𝜇 − �̅�𝑥
�̅�𝑃

 (6) 

where �̅�𝑥 represents the hypothesized mean value, 𝜇𝜇 denotes the sample mean, and �̅�𝑃 is the 
estimated standard error, which is computed based on 𝑃𝑃, the sample standard deviation of 
the mean, and 𝑃𝑃, the sample size, using the Eq. (7): 

�̅�𝑃 =
𝑃𝑃
√𝑃𝑃

 (7) 

In our case, the one-sample t test is used to determine whether the mean of F1-score 
results for the proposed DRNN model evaluated on different random test data samples is 
statistically different from the F1-score result obtained in the comparisons of other works’ 
models or not. In other words, it is used here to see if there are statistically significant 
differences in the F1-score results of the DRNN model when it is tested on a different set 
of data samples.  
The hypotheses of the one-sample t test are expressed as follows: 
• Null hypothesis (𝐻𝐻0): 𝜇𝜇 = �̅�𝑥 (“the mean of the F1-score results for the twelve times 

of evaluation is equal to the hypothesized F1-score value, which is 97% on the 
WISDM dataset, and 99% on the PUC-Rio dataset”). 

• Alternative hypothesis (𝐻𝐻1): 𝜇𝜇 ≠ �̅�𝑥 (“the mean of the F1-score results for the twelve 
times of evaluation is not equal to the hypothesized F1-score value, which is 97% on 
the WISDM dataset, and 99% on the PUC-Rio dataset”). 
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Tab. 10 shows the percentage values of F1-socres that are rounded to the nearest integer 
values for the twelve times of evaluation on the different random data samples of 
WISDM and PUC-Rio datasets. 

Table 10: F1-score results of the proposed DRNN model for the twelve times of 
evaluation on different random data samples of WISDM and PUC-Rio datasets 

Evaluation no.  
F1-Score (%) 

WISDM dataset PUC-Rio dataset 
1 97.00 99.00 
2 97.00 98.00 
3 97.00 99.00 
4 97.00 99.00 
5 98.00 99.00 
6 98.00 99.00 
7 97.00 99.00 
8 97.00 98.00 
9 97.00 99.00 
10 97.00 99.00 
11 98.00 98.00 
12 97.00 99.00 

 
After applying the, Tabs. 11 and 12 show the statistics and results of the one-sample t test 
for the different evaluations on the WISDM dataset. Tabs. 13 and 14 illustrate the results 
of the one-sample t test for the different evaluations on the PUC-Rio dataset. 

Table 11: One-sample t test statistics of the twelve F1-score results for the different 
random data samples of the WISDM dataset 

 N Mean Standard Deviation Standard Error Mean 

F1-Score 12 97.2500% 0.45227 0.13056 

Table 12: One-Sample t test results of the twelve F1-score results for the different 
random data samples of the WISDM dataset 

 Test Value=97% 

 t Degrees of 
freedom 

Significance (2-
tailed) 

Mean 
Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 

F1-Score 1.915 11 0.082 0.25000 -0.0374 0.5374 
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Table 13: One-sample t test statistics of the twelve F1-score results for the different 
random data samples of the PUC-Rio dataset 

 N Mean Standard Deviation Standard Error Mean 

F1-Score 12 98.7500% 0.45227 0.13056 

Table 14: One-Sample t test results of the twelve F1-score results for the different 
random data samples of the PUC-Rio dataset 

 Test Value=99% 

 t Degrees of 
freedom 

Significance  
(2-tailed) 

Mean 
Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 

F1-Score -1.915 11 0.082 -0.25000 -0.5374 0.0374 

As shown in Tab. 12, since the 𝑡𝑡 test value is equal to 1.915 and p-value>0.082 that is 
greater than the selected interval level of the difference (𝛼𝛼=0.05), we accept the null 
hypothesis (𝐻𝐻0). Similarly, from the results of Tab. 14, since the 𝑡𝑡 test value is equal to -
1.915 and p-value>0.082, which is greater than 0.05, we also accept the null hypothesis 
(𝐻𝐻0). Therefore, there are no statistically significant differences in the F1-score results of 
the DRNN model when it is tested twelve times on a different set of data samples. 

5 Conclusions 
The past few years have seen a rise in popularity of the use of mobile and wearable 
sensors in Human Activity Recognition (HAR). The application has been experienced in 
the fields of health, education, entertainment, and also human surveillance. Presently, 
edge computing has successful applications in minimizing communication latency and 
congestion in networks. In this research work, we proposed a new deep learning-based 
human activity recognition (DL-HAR) framework for edge computing. This work aimed 
to improve the primary care of patients in an uncritical stage but who are in need of 
continuous monitoring by a healthcare professional. The motivation behind this work is 
the fast evolution in sensor design which can allow one to collect information and 
transmit it in real time. Basically, we proposed a lightweight and effective DRNN 
architecture using LSMT cells which contain three hidden layers as well as the input and 
output layers. Each hidden layer consists of 50 neurons. The framework starts by training 
the DRNN model at the server side due its high capability and sends the image of the 
trained DRNN model to Docker containers on the Raspberry Pi3 edge devices to 
recognize the activity time-series data coming from sensors or smartphone devices. A 
WISDM dataset was used in our experiment to show the applicability of the proposed 
framework and evaluate its deep learning model based on a set of evaluation measures. 
The experimental results show the effectiveness and efficiency of the DRNN model. In 
summary, we can say that the proposed framework is a lightweight and effective solution 
for human activity recognition utilizing edge computing technology. Even though the 
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proposed framework is evaluated by the experiments on two real representative public 
datasets that are collected from accelerometer sensors, conducting the experiments on 
real-time live noisy data is one limitation of this study and needs to be investigated in 
future research. Another limitation of the study is related to the changes in the 
instruments of the framework that may lead to changes in the results. Therefore, the 
validity of the results using different instruments can be also verified in another future 
work. Moreover, in the future work, we will apply our framework to detect human 
activities from time-series data of online connected sensors. We also plan to use the 
proposed framework for solving the scalability issue in the edge computing environment. 
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