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1 INTRODUCTION 
HYBRID electric vehicles (HEVs) enable more 

efficient operation of the engine and energy 

recuperation with an additional power source. Thus, 

fuel consumption and exhaust emissions can be 

reduced (Chen, et al., 2014). Among different types of 

HEVs, power split HEVs make it possible that engine 

operation is decoupled from the vehicle motion by 

planetary gear sets and contributes to better fuel 

efficiency (Bayindir, et al., 2011). Auto-makers and 

scholars have designed various power split HEVs with 

planetary gear sets. When brakes and/or clutches are 

added in the planetary gear sets, the HEV will have 

more abundant modes for better fuel economy 

(Wishart, et al., 2007; Kang, et al., 2012; Miller, 

2006). 

In order to utilize smart HEV configurations and 

achieve the best possible fuel efficiency, a practicable 

energy management strategy is the key for power 

distribution within the powertrain (Taghavipour, et al., 

2015). The rule-based strategy, easy to be 

implemented and meeting real-time requirements, has 

been widely used. The simple rules and maps are 

usually derived from engineering expertise, intuition 

and heuristics without a priori knowledge of the cycle 

(Chen, et al., 2015). Although rule-based strategy is 

independent of HEV model, the control parameters 

tuned for certain vehicles and situations may be not 

suitable for other situations. Another energy 

management strategy is model-based control scheme 

(Taghavipour, et al., 2015). On the basis of a control-

oriented model, model-based control strategies are 

capable of obtaining optimal solutions by means of 

systematic optimizations. Global optimal power 

distribution calculated by dynamic programming (DP) 

is usually applied off-line and just used as a 

benchmark because of its computation burden and 

demand for a priori knowledge of the cycle (Yun, et 

al., 2015). For online application, instantaneous 

optimization derived from Pontryagin’s minimum 

principle (PMP) is investigated. Another instantaneous 

optimization strategy is equivalent fuel consumption 

minimization strategy (ECMS), which is obtained.

 
ABSTRACT 
Model predictive control (MPC), owing to the capability of dealing with nonlinear 
and constrained problems, is quite promising for optimization. Different MPC 
strategies are investigated to optimize HEV nonlinear energy management for 
better fuel economy. Based on Bellman’s principle, dynamic programming is 
firstly used in the limited horizon to obtain optimal solutions. By considering 
MPC as a nonlinear programming problem, sequential quadratic programming 
(SQP) is used to obtain the descent directions of control variables and the 
current control input is further derived. To reduce computation and meet the 
requirements of real-time control, the nonlinear model of the system is 
approximated to be linear and linear time-varying (LTV) MPC strategy is 
studied. Simulation results demonstrate that the nonlinear MPC using SQP 
algorithm has best fuel economy, while the MPC using approximated linear 
model is superior in saving computation time. 
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NOMENCLATURE 

Af vehicle frontal area S distance of the cycle 

a1~a2, b1~ b4 fitting coefficients of engine fuel consumption SOC state of charge 

Bk approximation to the Hessian of Lagrangian 
function 

SOCini, SOCfin initial and final SOC 

Cd
 

air drag coefficient SOClo, SOChi Lower and upper limit of the battery SOC 
d search direction for SQP SOCref reference value of battery SOC 
f coefficient of rolling resistance tb battery temperature 
fobj(x)

 
cost function tmin time interval for mode switching 

g gravity acceleration Tbrk friction braking torque 
gi(x) inequality constraints TE torque of the engine 
hi(x) equality constraints TE,min, TE,max minimum and maximum torque of the engine 
Hlhv fuel low heating value TG output torque produced by MG1 
id ratio of the final drive TG,min, TG,max minimum and maximum torque of MG1 
IC1, IC2 lumped inertia of C1, C2 TM output torque produced by MG2 
IE

 
inertia of the engine TMlim torque limit of MG2 

Ifd inertia of the main reducer TM,min, TM,max minimum and maximum torque of MG2 
IG

 
inertia of MG1 Treq required torque at wheels 

IM inertia of MG2 vreghi speed used to disable regenerative braking 
IR1 lumped inertia of R1 vthresh thresh speed to start engine 
IS1, IS2 lumped inertia of S1, S2 Voc open-circuit voltage of the battery 
Iw inertia of the wheel Yref reference vector of outputs 

*

NpJ  cost-to-go function for the Npth step αk update coefficient for current searching value 
*

kJ  cost-to-go function for the kth step θ road slope 
K1

 
characteristic parameter of PG1 ρ penalty weight of the relaxation factor 

K2 characteristic parameter of PG2 ρair air density 
LC cost of the battery SOC error Ρfuel fuel density 

LE cost of the fuel consumption ηeng average efficiency of the engine  

La(x,μ,λ) Lagrangian function ηele average efficiency of the electric machine 
fm  engine fuel consumption rate ηG efficiency of MG1 

mfuel

 
total engine fuel consumption ηM efficiency of MG2 

M
 

total mass ψ map for the engine fuel flow rate 
Np prediction horizon ωout output speed of the power coupling device 
Pbat battery power ωE speed of the engine 
Qe weighing matrix for fuel consumption and SOC ωE,min, ωE,max minimum and maximum speed of the engine 
Qbat battery internal capacity ωG speed of MG1 
Qequ equivalent fuel consumption of HEV ωG,min, ωG,max minimum and maximum speed of MG1 
rf weighting factor for fuel consumption ωM speed of MG2 
rSOC weighting factor for the battery SOC ωM,min, ωM,max minimum and maximum speed of MG2 
Rw wheel radius ε* relaxation factor 
Re weighing matrix of control increment ∆t time step 
Rint battery internal resistance ΔU* optimal sequence of the control increment 

 

from heuristic by establishing the relations between 

electrical energy and engine fuel (Kim, et al., 2011) 

Nevertheless, the adaptation of predefined control 

parameters to other driving situations is almost 

impossible (Kermani, et al., 2012). 

The vehicle fuel economy can be significantly 

improved when future driving behavior and road 

conditions are acquired. Especially with the 

development of intelligent Global Positioning/ 

Information System, predictable road information can 

contribute to better power distribution (Gong, et al., 

2008; Homchaudhuri, et al., 2016). Model predictive 

control (MPC) is a compromise solution between 

global and instantaneous optimization. It is developed 

by incorporating future prediction information into the 

control-oriented model and demonstrates superior 

performance in dealing with nonlinear and constrained 

optimal problems within the limited horizon (Yang, et 

al., 2015; Zeng and Wang, 2015; Hiskens and Gong, 

2006). The receding horizon control of MPC is to 

obtain the solution that minimizes the cost function 

which is usually described by the weighted sum of 

different control targets, such as fuel consumption and 

charge sustainability of the battery. 

The optimization of HEV energy management is 

strongly nonlinear and constrained. Two real-time 
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strategies were compared in (Beck, et al., 2007), 

where the nonlinear system dynamics was linearized 

and, then, the mixed integer quadratically constrained 

linear programming was used to reduce the 

computation. The continuous/GMRES algorithm was 

designed to realize nonlinear energy management that 

concerns the dynamics of battery SOC and vehicle 

velocity (Zhang and Shen, 2007). Yu, et al., (2015) 

also studied the application of continuous/GMRES 

algorithm. Borhan, et al. (2007) constructed two 

different cost functions for MPC strategy. Aiming at 

these cost functions, standard MPC method for linear 

system and optimal algorithm based on Hamilton-

Jacobi-Bellman equation are utilized. 

This paper investigates the application of MPC 

strategy in a novel power split powertrain, whose 

configuration is depicted in Figure 1. A buffer and 

locking mechanism is used to connect the engine and 

the carrier gear C1 of the first planetary gear set PG1, 

which can lock/unlock C1 and ease the rotational 

vibration from the engine. The electric machine MG1 

is connected to S1 of PG1, while another electric 

machine MG2 is connected to S2 of PG2. The ring 

gear R2 is fixed. The carrier gear C2 is connected to 

the ring gear R1, and transmits the output power from 

different sources to the driving axle. Compound 

electric driving with MG1 and MG2 can be realized 

when the mechanism is locked. Otherwise, the power 

split device acts as an electric continuous variable 

transmission (ECVT). 

MG1 MG2

1
4 73

2

5
6

PG1 PG2

 

Figure 1. Topology of power split configuration. 1-buffer and 
locking mechanism, 2-sun gear S1, 3-carrier gear C1, 4-ring 
gear R1, 5-sun gear S2, 6-carrier gear C2, 7-ring gear R2, PG1- 
the first planetary gear set, PG2- the second planetary gear set 

When the MPC strategy is implemented, the 

information access to road conditions is necessary. 

There are three different levels of information access 

to the driven route (Johannesson, et al., 2007). In this 

study, the highest information level, future power 

(torque and speed) demand, is used. Inspired by the 

Bellman optimal principle, DP is performed in the 

short horizon to obtain the optimal control sequence. 

Aiming at the nonlinear programming (NLP) in the 

receding horizon, the sequential quadratic 

programming (SQP) is also studied. Considering the 

two afore-mentioned numerical solutions are 

computationally demanding, the nonlinear control-

oriented model is linearized for quadratic 

programming to increase the feasibility of real-time 

control. 

Specifically, the rest of the paper is organized as 

follows. In Section 2, the system model is built. Based 

on hybrid automaton theory, the control frame is 

constructed in Section 3. Section 4 explains different 

algorithms for the MPC strategy, followed by 

simulation study in Section 5. Ultimately, Section 6 

draws the conclusions. 

2 SYSTEM MODELING 
ACCORDING to our previous efforts (Shi, et al., 

2016), the dynamic matrix equations of the system are 

derived by neglecting the damping and compliance. 

When the locking mechanism is engaged, the engine is 

fixed and its rotational speed is zero. The dynamic 

equation is 
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For the other case, the mathematical model is 

written as 
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 (4) 

In the above equations, ωE and ωout are the speed of 

the engine and the output speed of the power coupling 

device; K1 is the characteristic parameter of PG1, 

while K2 is that of PG2, the characteristic parameter is 

defined by the ratio between the number of teeth of 

the ring gear and the sun gear; TG and TM are the 

output torques produced by MG1 and MG2; TE is the 

torque of the engine; Tbrk is the friction braking torque; 
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id is the ratio of the final drive; g is the gravity 

acceleration; θ is the road slope; f is the coefficient of 

rolling resistance; M is the total mass; Rw is the wheel 

radius; ρair is the air density; Af is the vehicle frontal 

area; Cd is the air drag coefficient; IS1, IC1 and IR1 are 

lumped inertias corresponding to S1, C1 and R1 

respectively. Similar definitions are also applicable for 

PG2. IE, IG and IM denote the inertias of different 

power source. Ifd is the inertia of the main reducer, and 

Iw is the wheel inertia. 

The dynamics of the battery SOC are modeled as 

     

   

2

oc b oc b bat int b

bat b int b

, , 4 , ,
=

2 , ,

V t SOC V t SOC P R t SOC
SOC

Q t R t SOC





 
  

  (5) 

where Voc is the battery open-circuit voltage, which is 

affected by the battery temperature tb and SOC; Rint 

and Qbat are the battery internal resistance and capacity 

respectively; Pbat is the battery power consumed by 

MG1 and MG2; λ denotes the following meaning 

 
1 charging

=
1 discharging






 (6) 

 
bat M M M G G GP =T T      (7) 

where ηM and ηG are efficiencies of the motor and 

generator that are related to the speed and torque. 

Since the variation of the battery SOC and 

temperature in the prediction horizon is small, 

constant values of the battery open-circuit voltage, the 

battery resistance and capacity are used in each 

prediction horizon for the simplification of controller 

design. 

The engine fuel consumption rate is obtained 

according to the quasi-static model (Sun, et al., 2015). 

The nonlinear relations are described as 

  E E,fm T   (8) 

where ψ is the empirical map of the engine fuel flow 

rate. This empirical map is difficult for controller 

design. Therefore, theoretical expression of the fuel 

flow rate with respect to the engine speed and torque 

is depicted by polynomial equation. 

    3 2

1 E 2 E 1 E 2 E 3 E 4fm a a T b b b b          

  (9) 

The coefficients of the polynomial function are 

obtained by fitting the map data. Figure 2 indicates the 

quality of the approximation. It is apparent that the 

explicit polynomial function can be used to calculate 

the fuel consumption. Meanwhile, the relation 

between the fuel consumption rate and the engine 

torque for a certain engine speed is almost linear. The 

coefficient of this linear function depends on the 

engine speed. 

 

Figure 2. Approximation of the engine fuel map. 

3 CONTROL SCHEME 

3.1 Operation Mode 
THE power split HEV can enable eight operation 

modes, as detailed in Table 1. The compound braking 

mode, where both regenerative braking and 

mechanical braking are applied, is included in the 

regenerative braking mode.  

 
Table 1.Operation modes 

Mode 
Locking 

mechanism 
Engine MG1 MG2 

MG2 driving 1/0 0 1 0/1 

MG1 and MG2  
driving 

1 0 1 1 

Hybrid driving 0 1 1 1 

Engine start 0 1 1/0 1 

Stop 0 0 0 0 

Charging while 
standstill 

0 1 1 0 

Regenerative 
braking 

1/0 0 1 0/1 

Mechanical braking 1/0 0 0 0/1 

1 represents the engine or the electric machines is on, or the 
mechanism is engaged, whereas 0 has the opposite meaning 

 

Since the power of MG1 is very small when 

regulating the engine speed, the locking mechanism is 

only engaged when two electric machines cooperate to 

drive the HEV. It is beneficial to the controller design. 

As for other operation modes that the locking 

mechanism is disengaged, a unified control-oriented 

model can be selected. 

3.2 Structure of the Controller 
On the basis of the hybrid control scheme, the 

system control structure is built (Antsaklis, et al., 

1993; Torrisi and Bemporad, 2004), as shown in 

Figure 3. The structure mainly consists of three levels, 

the plant level (powertrain), interface and supervisory 

controller. The supervisory controller describes mode 

transitions that are driven by a set of events obtained 
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in the event generator. The multi-mode controller, 

where MPC strategy is applied to optimally distribute 

the power, chooses proper sub-controller according to 

the selected operation mode. 

Supervisory

cotroller

Powertrain

Event 

generator

Multi-mode

controller

Driver

Interface

 

Figure 3. Control structure. 

A finite state machine is used to model the event-

driven dynamics and mode transitions in the 

supervisory controller. Since a unified control-

oriented model is used, the operation modes are 

optimized and reclassified. Mode transitions in the 

supervisory controller are shown in Figure 4, where 

mA denotes the set of modes when the required driving 

torque at the wheels is not smaller than zero, while mB 

is the set of braking modes. Specifically, mA1 consists 

of MG2 driving mode, hybrid driving mode, stop 

mode, charging while standstill mode and engine start 

mode. mA2 represents the MG1 and MG2 compound 

driving mode. For braking situations, mB1 is 

regenerative braking mode and mB2 denotes the 

mechanical braking mode. 

mA

mA1

mA2

mB

mB1

mB2

ABTr

BATr B12Tr
B21TrA21Tr A12Tr

 

Figure 4. Mode transitions. 

Tr means the transition between different modes. 

Trigger conditions of the transition are as follows: 

1) TrAB and TrBA describe transitions between mA 

and mB. When the required torque Treq is smaller than 

zero, the braking mode is activated. Otherwise, the 

vehicle operates in mode mA. 

2) TrA12 and TrA21 are transitions in mode mA. If 

SOC >SOClo && v> vthresh && Treq >TMlim && t>tmin, 

the vehicle operates in mode mA2. Otherwise, the 

vehicle is in mode mA1 when Treq ≥0. vthresh is the 

vehicle speed used to decide whether the engine 

should be started. SOClo is the lower limit of the 

battery SOC and TMlim is the torque limit of MG2. The 

time interval tmin is defined to avoid frequent start/stop 

of the engine. 

3) TrB12 and TrB21 denote transitions between 

regenerative braking mode and mechanical braking 

mode. When the SOC is higher than the upper 

boundary SOChi or the vehicle speed is larger than 

vreghi which is defined to disable regenerative braking, 

the mechanical braking mode is activated. Otherwise, 

the vehicle operates in the regenerative braking mode. 

In the multi-mode controller, control variables are 

set to be the engine torque and speed. The torque 

distribution is calculated according to the static 

relations within the power split device. The engine 

speed is regulated by MG1 through a PI controller. 

Details are stated in our previous study (Shi, et al., 

2016).  

4 ENERGY OPTIMIZATION MANAGEMENT 
THE objective of the optimal energy management 

strategy in the study is to maximize the fuel economy 

with certain constraints. To maintain the battery 

charge sustainability, the battery SOC should also be 

controlled to fluctuate along the reference value. MPC 

strategy is explored and used in mode mA1 to solve the 

optimal power split. For mode mA2, two electric 

machines are controlled to realize the minimum loss 

of electric power. In the braking mode, under the 

premise of safety, MG2 harvests the braking energy as 

much as possible. 

4.1 MPC Based On Dynamic Programming 
Dynamic programming (DP) can be implemented 

in the prediction horizon for MPC. When DP is 

applied off-line for a certain cycle, the initial and final 

battery SOC should be the same (Pisu and Rizzoni, 

2007). This condition is difficult and irrational to be 

realized in the prediction horizon. Consequently, the 

final SOC at the end of the prediction horizon is 

controlled to be within a certain range by introducing 

the deviation between the actual SOC and the 

reference value into the cost function. The cost 

function is written as 

 

    

       

       

1

0
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2

min ,

,

,

Np

k

C E

C f f

E SOC

J L k k

L L L

L k k r m k t

L k k r SOC k SOC









  

  

  



ref

x u

x u

x u

 

  (10) 

where Np is the prediction horizon; L is the cost at 

stage k; LC and LE are the cost of the battery SOC error 

and fuel consumption respectively; rSOC and rf are 

weighting factors for the battery SOC and fuel 



32 WANG ET AL 

 

consumption; SOCref is the reference value; ∆t is time 

step. Meanwhile, the following constraints should be 

enforced. 

 

M,min M M,max M,min M M,max

G,min G G,max G,min G G,max

E,min E E,max E,min E E,max

T T T

T T T

T T T

  

  

  

    


   


   

，

，

，

(11) 

where ωM,min and ωM,max denote the minimum and 

maximum speed of MG2, while TM,min and TM,max are 

the minimum and maximum torque of MG2. Similar 

definitions are also applicable to MG1 and the engine. 

The range of the battery SOC are automatically 

decided when the SOC is discretized. The global 

optimization problem is converted to a series of staged 

optimization problems. Then, the optimal solution is 

obtained through reverse recursive approach. 

For the Npth step, the optimal cost-to-go function 
*

NpJ
 
is  

   * 0NpJ Np x  (12) 

For the kth step (0≤k≤Np-1), the optimal cost-to-go 

function *

kJ
 
is written as 

  
 

       * *

1min , 1k k
u k

J k L k k J k
    x x u x

 
  (13) 

The state variable is chosen to be the battery SOC, 

and the state transition equation is rewritten as  

    
2

oc oc bat int

bat int

4
1 =

2

V V P R
SOC k SOC k t

Q R

 
   (14) 

The computation quantity of DP is closely related 

to the number of discrete grids. By searching along the 

engine optimal operation line (OOL), the number of 

discrete grids is greatly reduced. The OOL is shown in 

Figure 5. 

 

Figure 5. Engine fuel consumption map. 

4.2 MPC Based On Sequential Quadratic 
Programming 

To calculate the optimal control sequence, the 

nonlinear MPC can be viewed as NLP problem in the 

limit horizon. The generic form of the NLP problem is 

written as 
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s.t. 0, 1,...,

0, 1,...,

obj

i

i

J f

h i E m

g i I l



  

  

x

x
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where fobj(x) is the cost function; hi(x) and gi(x) are 

equality and inequality constraints. In this section, the 

variable x indicates the control sequence in the 

prediction horizon, where the control variables are the 

engine torque and speed. As for the HEV energy 

management, the cost function is still denoted by 

equation (10). SQP, developed from Newton-iterative 

method, is used to solve this NLP problem (Walther 

and Biegler, 2016). The values used to update the 

current iterative point are computed by solving the 

following quadratic programming problem at each 

iterative step. 

 

 

     

     

1
min

2

s.t. 0, 1,...,

0, 1,...,

TT

k obj k

T

i k i k

T

i k i k

J f

h h i E m

g g i I l

 

   

   

d B d x d

x x d

x x d

 

  (16) 

where d is the search direction; ▽f(xk), ▽hi(xk) and 

▽gi(xk) are the corresponding gradients; Bk is the 

approximation to the Hessian of the Lagrangian 

function (Shen, et al., 2015; Dang, et al., 2008). 
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where La(x,μ,λ) is the Lagrangian function and θ(k) is 

the coefficient. They are defined as 

        , , obj i i i i
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After calculating the descent direction with SQP, 

optimization variables are further updated according 

to the iterative equation. 

 
1k k k k  x x d  (20) 

where αk is the update coefficient for the current 

searching value.  

4.3 MPC Based On Linear Time Varying Model 
Nonlinear MPC improves the accuracy of the 

optimal solutions with numerical algorithms. 

However, it also increases the computation 

complexity, especially for the nonlinear system having 

high orders. When the control-oriented model is 

linear, the nonlinear MPC problem can be converted 

to linear MPC problem, thus the computational burden 

is greatly reduced.  

 
 

 

,

,

f

g






x x u

y x u
 (21) 

where x=[SOC] and u=[TE, ωE]T are the state variable 

and control input vector; y=[ fm , SOC]T is the output 

vector. In this section, f(x,u) denotes the state 

transition function. The nonlinear model is linearized 

around the current point (x0, u0) using Taylor series. 

By ignoring high order terms and discretizing the 

continuous linear model, the system model is finally 

approximated as 
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Ts is the discrete time interval; Ak,t and Bk,t are 

Jacobian matrixes of f(x,u) related to state and control 

variables around current values, while Ck,t and Dk,t are 

Jacobian matrixes of g(x,u). They are described as 
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Based on this linear model, the output vector in the 

prediction horizon is  

          t t t tt k t t t t    Y x u      

  (23) 

Detailed descriptions of the variables in equation 

(23) are illustrated in the reference contributed by 

Harati (2011). Since the cost function is quadratic, the 

optimal problem can be depicted by the standard MPC 

(Cairano, et al., 2014). By combing the prediction 

equation (23), the following standard quadratic 

programming (QP) form with linear constraints is 

obtained. 
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ΔU* and ε* are the optimal sequence of the control 

increment and the relaxation factor; Yref is the 

reference vector of outputs; Qe and Re are weighing 

matrix; ρ is the penalty weight of the relaxation factor. 

This QP calculates the optimal sequence of the control 

increment in the prediction horizon. Only the first 

increment is used to derive the optimal control input. 

      *1k t k t k t  u u u  (25) 

5 SIMULATION AND ANALYSIS 
SIMULATIONS, tested in the New European 

Driving Cycle (NEDC), are conducted to explore the 

control effects of different strategies. The velocity 

profile of NEDC is shown in Figure 6, which consists 

of four repeated Urban Driving Cycles (UDC) ECE-15 

and one Extra-Urban Driving Cycle (EUDC). DP-

MPC, SQP-MPC and LTV-MPC are used to represent 

the MPC strategies based on DP, nonlinear 
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programming with SQP and the approximated linear 

time-varying (LTV) model with QP. Table 2 lists the 

vehicle parameters. The initial SOC and reference 

value are all set to be 0.55. For DP-MPC and LTV-

MPC, weighing factors of the engine fuel 

consumption and battery SOC are 1 and 5000, while 

those of DP-MPC are 1 and 1000. The sampling 

period in the prediction horizon is 1 second. 

 

 

Figure 6. Velocity profile of the NEDC. 

Table 2.Parameters of the HEV 

Parameter Value 

Coefficient of rolling resistance f 0.008 

Wheel radius Rw 0.287 m 

Vehicle frontal area Af 1.746 

Air drag coefficient Cd 0.3 

Air density ρair 1.23 

Ratio of PG1 and PG2 2.11/2.11 

Final drive ratio id 3.93 

Engine inertia IE 0.072 kg·m2 

Engine maximum speed ωE_max 4700 rpm 

Engine maximum power PE_max 54 kw 

MG1 inertia IG 0.022 kg·m2 

MG1 maximum speed ωG_max 8000 rpm 

MG1 maximum power PE_max 15 kw 

MG2 inertia IM 0.030 kg·m2 

MG2 maximum speed ωM_max 15000 rpm 

MG2 maximum power PE_max 30 kw 

 

As can be seen from Figures 7-9, powers of 

different power sources are all within their limits in 

the whole time history. The engine consumes fuel and 

provides energy to drive the vehicle, while the two 

electric machines either consume electrical energy or 

generate energy. When the vehicle speed is not high, 

take the UDC for example, MG2 consumes electrical 

energy and drives the vehicle. However, when the 

driving cycle is EUDC, MG2 generates electricity 

while MG1 consumes electrical energy. It is because 

that the torque of MG1 is opposite to the engine 

torque. When the vehicle speed is high, the speed of 

MG1 is also opposite to the engine speed. 

Consequently, MG1 consumes energy when driving 

the vehicle, and MG2 generates electrical energy. As 

shown by the power figures of MG1, the power used 

to adjust the engine speed is nearly zero. It is 

reasonable to reclassify the operation modes for the 

application of optimal control strategies. 

 

(a) 

 

(b)  

 

(c) 

Figure 7. Simulation results with DP-MPC for NEDC: (a) power 
of the engine; (b) power of MG1; (c) power of MG2.  
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(b) 

 

(c) 

Figure 8. Simulation results with DP-MPC for NEDC: (a) power 
of the engine; (b) power of MG1; (c) power of MG2.  

 

(a)

 (b) 

 

(c) 

Figure 9. Simulation results with DP-MPC for NEDC: (a) power 
of the engine; (b) power of MG1; (c) power of MG2.  

Figure 10 describes the variation of battery SOC 

for NEDC. It can be seen that DP-MPC and SQP-

MPC strategies maintain the battery charge 

sustainability well. At the beginning of the first UDC, 

the engine operation time with LTV-MPC strategy is 

longer. As a result, the decline of battery SOC is not 

apparent. As for DP-MPC and SQP-MPC, more 

electrical energy at the beginning of the cycle is 

consumed, leading to obvious drop of battery SOC. 

Since the engine outputs constant larger power from 

840s~900s with LTV-MPC, much of the power is 

used to charge the battery, resulting in the obvious 

increase of the battery SOC in this time region. From 

the point of the whole NEDC driving cycle, the 

battery is charged. 

 

Figure 10. The battery SOC for NEDC scenario. 

Figures 11 and 12 describe the engine fuel 

consumption and the change of the final battery SOC 

compared with the initial value. Fuel consumption is 

described by L/100km. Positive values for the 

variation of SOC mean that the battery is charged. 

Simulation results with the rule-based strategy are also 

given in the figures. The equivalent fuel consumption 

of the vehicle is given in Figure 13, where the use of 

electrical energy is converted to equivalent fuel 

consumption mbat. By ignoring the variation of the 

battery voltage and capacity, mbat is calculated by 

 
 ini fin oc bat

bat

lhv eng ele

SOC SOC V Q
m

H  


  (26) 

 
 fuel bat

equ

fuel

100 m m
Q

S


  (27) 

where SOCini and SOCfin are the initial and final value 

of the battery SOC, respectively; Hlhv is the fuel low 

heating value; ηeng and ηele are the average efficiencies 

of the engine and the electric machines; Qequ is the 

equivalent fuel consumption of the vehicle; mfuel is the 

total engine fuel consumption; S is the distance of the 

cycle; ρfuel is the fuel density. 

It can be observed from Figure 11 that the engine 

fuel consumption is greatly reduced under the Urban 

Dynamometer Driving Schedule (UDDS) with rule-

based strategy. However, compared with the initial 

value, the final SOC is reduced by 0.038, indicating 

that a large part of the battery electrical energy is used 
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to drive the HEV. In terms of equivalent fuel 

consumption, the control effects of rule-based strategy 

are worse than the other three strategies, as shown in 

Figure 13. 

The SQP-MPC strategy demonstrates best 

performance in maintaining the battery charge 

sustainability for both driving cycles. It also behaves 

well in reducing the equivalent fuel consumption. The 

DP-MPC strategy is superior in improving the HEV 

fuel economy for NEDC cycle. When the cycle 

changes, the DP-MPC strategy performs worse with 

the predefined control parameters. For the UDDS 

cycle, the DP-MPC strategy shows poor performance 

in maintaining the battery charge sustainability. The 

computation time of the DP-MPC strategy for each 

solving step is about 0.98s, while that of the SQP-

MPC strategy is about 0.37s. It is obvious that these 

two strategies are difficult to be used in practice 

because of the computation quantity. 

The reduction of engine fuel consumption with the 

LTV-MPC strategy is not obvious in comparison with 

the result of the rule-based strategy, especially for the 

UDDS cycle. It is because that the battery is charged 

with LTV-MPC and discharges with the rule-based 

strategy. In terms of equivalent fuel consumption, the 

reduction is apparent for NEDC. From Figure 12, it is 

obvious that LTV-MPC maintains the battery SOC 

worse than the other two MPC strategies. The reason 

is that the control effect is less sensitive to weighing 

factors due to the linearization of the control-oriented 

model. As for the computation, the time of LTV-MPC 

used to derive the optimal control sequence can be as 

little as 0.01s. If there are no convergent optimal 

values, the time for the solving process is about 0.04s. 

It can meet real-time requirements in practical 

applications. 

 

Figure 11. Engine fuel consumption. 

 

Figure 12. The change of the battery SOC. 

 

Figure 13. Equivalent fuel consumption of the vehicle. 

6 CONCLUSIONS 
IN the study, the MPC strategy is investigated and 

implemented in a dual-planetary power split HEV. 

Based on a hybrid control scheme, the operation 

modes are firstly decided according to a series of 

events obtained in the event generator and the MPC 

strategy is then applied in the multi-mode control level 

to split the power. In order to solve the nonlinear 

constrained problem of the HEV energy management, 

three different algorithms are investigated.  

The DP and SQP algorithms are firstly explored in 

the limited horizon to derive the optimal solutions. To 

reduce the computation time, the system model is 

approximated to be linear, and the standard MPC 

problem is constructed. Simulation results 

demonstrate that the MPC with SQP algorithm shows 

significant advantages in improving fuel economy and 

maintaining the battery charge sustainability. Its 

computation time is also less than that of the DP-based 

MPC strategy. However, it is still difficult to put into 

application. LTV-MPC using approximated linear 

model can achieve good equivalent fuel economy. 

Although the control effect of LTV-MPC is not such 

superior to that of SQP-MPC, it can enable the 

minimum computational complexity. Therefore, the 

LTV-MPC strategy is quite promising for practical 

applications. 
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