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1 INTRODUCTION 
ARTIFICIAL Intelligence has as its main thrust the 

exploration of the harmonious working of different 

creatures in our ecosystem to sustain their kind 

(Shepard, 2011). Nature remains the main motivating 

factor behind scientific and technological 

breakthroughs experienced since the 20th century. At 

the centre of the activities of man and animals is the 

nervous system. Needless to say that without the 

activities of the nervous systems, there cannot, in the 

real sense, be a living thing. In other words, the 

strength of any living thing is the capacity for and 

actual performance of the brain (Luria, 2012). 

Neuroscience is that branch of biology that is 

concerned with the structure and function of the 

nervous system in man and animals. As a field of 

science, of late, neuroscience has become 

multidisciplinary in nature comprising anatomy, 

molecular biology and the pharmacology of the central 

and peripheral nervous systems (Muldoon et al., 

2013). On its own, neuroscience can be divided into 

three major sub-disciplines: cognitive, behavioural 

and computational neurosciences. Computational 

neuroscience, which is our focus in this paper, is the 

branch of neuroscience concerned with the 

functioning of the brain of man and animals as an 

information processing component of the nervous 

system. Computational neuroscience describes in 

details the physiology, information-processing 

functioning and brain cells’ communication dynamics 

etc. (Byrne, Heidelberger, & Waxham, 2014) 

In the last two decades, neuroscience has achieved 

a wider scope incorporating other scientific fields such 

as linguistics, genetics and chemistry as well as 

computer sciences. It may be important to add that it is 

not uncommon to hear of sub-disciplines of 

neurosciences such as neuro-law, neuro-psychology, 

neuro-education and neuro-mathematics. Some 

researchers rather prefer to use the term neurobiology 

rather than neuroscience (Cuthbert, 2014). For the 

purpose of this paper, the authors are rather more 

comfortable with the term neuroscience to refer to the 

broad field rather than neurobiology that tend to 

describe the biological components of the nervous 

system. In any case, a breakdown in any section of the 

nervous system results in disastrous consequences 

such as hearing-impairment, vision-impairment, total 

paralysis etc.(Kakooza-Mwesige & Dhossche, 2015; 

Kritzinger, Van der Linde, & Mosca, 2015), 

necessitating the need for active research efforts 

towards helping to ameliorate the problems of 
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breakdown in any section of the nervous system 

(Figley & Kiser, 2013). 

Of the three major sub-disciplines of neuroscience, 

computational neuroscience has attracted the attention 

of several researchers in the last two decades, possibly 

due to the advancement of computer technology 

(Bower, 2012; De Schutter, 2008; Trappenberg, 

2009). Following this trend, this paper is primarily 

concerned with the application of the concept of the 

travelling salesman’s problem using a recently-

developed computer optimization technique, the 

African Buffalo Optimization, to simulate collision-

avoidance among electric fishes. The effective 

simulation of the collision avoidance in electric fish 

finds practical application in collision-avoidance 

software for the visually-impaired using the Electronic 

White Cane fitted with Wi-Fi sensors. 

Electronic White Canes are devices that are 

specifically designed to have a number of ultra sound 

or infrared sensors that obtain data around the user in 

addition to extracting important information about the 

environment of the user (Pallejà, Tresanchez, Teixidó, 

& Palacin, 2010).  

In some instances, magnetic parts are installed on 

the ground of some large areas that are visited by the 

visually impaired in such a way that the magnetic 

sensors on the Electronic White Cane is able to 

interact with Magnetic parts on the ground to serve as 

a guide to the visually-impaired (Hu, Lou, Song, Gao, 

& Li, 2009). The problem with these methods is that 

they are very expensive and almost impossible to 

deploy on a large scale. In the real sense, most 

existing methods are only used for experimental 

purposes. This underscores the need for more research 

investigations, hence this study. 

The rest of this paper is organised this way: section 

two discusses the African Buffalo Optimization and 

the travelling salesman’s problem; section three deals 

with collision avoidance in electric fishes; section four 

examines the experimental setting, experimental 

parameters and discussion of results; section five 

draws conclusions on the study. 

2 AFRICAN BUFFALO OPTIMIZATION 
THE African Buffalo Optimization (ABO) is a 

newly-designed optimization search algorithm 

designed with inspiration drawn from buffalo herd 

management using principally two sounds: the /waaa/ 

call that asks the animals to move on to better grazing 

fields (exploration) since where the buffalos are have 

been over-grazed or is insecure. The next sound is the 

/maaa/ indicating the opposite (exploitation) (Odili & 

Mohmad Kahar, 2015). So far, the application areas of 

the ABO have been the travelling salesman’s 

problems, proportional, integral derivative tuning of 

an automatic voltage regulator (Odili, Kahar, & 

Noraziah, 2017) and benchmark global optimization 

test functions (Odili, Kahar, & Noraziah, 2016; Odili, 

Kahar, & Anwar, 2015) etc. The algorithm is 

presented in Figure 1 

2.1 The flow of the ABO 
The ABO algorithm begins by initializing the 

population of buffalos. It does this by assigning 

locations randomly to each buffalo within the solution 

space.  After this, it updates each buffalo’s 

exploitation (/maaa/ values) thus, ascertaining the 

herd’s best animal (𝑏𝑔) and each buffalo’s best 

locations (𝑏𝑝. k ) using Equation 1: 

mk
′ = mk  +  lp1(𝑏𝑔 – wk) +  lp2(𝑏𝑝. k  −  wk )  (1) 

In Equation 1,  mk
′  represents a new maaa 

(exploitation) location; mk , the immediate past /maaa/ 

(exploitation) location, lp1 and lp2 are learning 

parameters that help to bias the search; 𝑏𝑔, the best 

location so far found by the herd; wk represents the 

present exploration location and 𝑏𝑝. k the best location 

of a particular buffalo 𝑘. 

In each step, the buffalos keep a memory of their 

coordinates. If the present fitness values are better 

than the individual’s best fitness (𝑏𝑝. k), the ABO 

saves the location vector for the particular buffalo as 

its best. Moreover, if the present fitness is better than 

the herd’s overall best fitness, ABO saves it as the 

herd’s maximum (𝑏𝑔). Furthermore, the algorithm 

updates the location of the entire herd of buffalos 

using: 

    wk
′ =

(wk+ mk)

𝑟𝑎𝑛𝑑
 (2)  

Here, wk
′  represents a /waaa/ (exploration) call to a 

new location and 𝑟𝑎𝑛𝑑 is a random number (0,1) 

Next, the algorithm confirms the improvement or 

otherwise of the herd’s best buffalo (𝑏𝑔). If there is no 

improvement in the status of the best buffalo (𝑏𝑔) in a 

number of iterations, the algorithm re-initializes the 

entire herd (that is, a return to Step 1). Otherwise, if 

the best buffalo is improving its location, ABO checks 

to see if the stopping criteria is reached and it 

terminates the run and outputs the location vector of 

the present 𝑏𝑔 as the solution to the given problem. 

Else, the algorithm returns to Step 2 (See Figure 1). 

2.2 The Travelling Salesman’s Problems  
The history of the Travelling Salesman’s Problem 

(TSP), which is one of the most studied combinatorial 

problems dates back to 1930 (Tüű-Szabó, Földesi, & 

Kóczy, 2016). Basically, the Travelling Salesman’s 

Problem is a minimization problem which involves an 

anonymous salesman that has to visit his customers in 

different geographical locations within a large city or 

in a number of cities. His goal is to visit each of their 

locations, using the shortest/cheapest possible route 

and then returns to the starting city/location. This 

problem utilizes a graph as its data structure. The 

complete weighted graph G= N, E. Here N is a set of n 

nodes/locations and E represents the fully 
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Step1. Initialization: randomly place buffalos to nodes at the solution space;  

Step2. Update the buffalos’ exploitation using equation: 

  

mk
′ = mk  +  lp1(bg – wk) +  lp2(bp. k  − wk ) 

where mk and wk represents the exploitation and exploration moves respectively of the kth buffalo 

(k=1, 2………...N); lp1 and lp2 are learning factors;   

bg  is the herd’s best fitness and bp. k, the individual buffalo’s best location. 

Step3. Update the location of buffalos using: 

wk
′ =

(wk +  mk)

rand
 

Step4. Is bgmax updating? Yes, go to 6. If No, go to 1 

Step5. If the stopping criteria is not met, go back to algorithm step 2, else go to 6 

Step6. Output best solution. 

Figure 1: ABO algorithm. 

interconnected edges (routes) to the different nodes in 

the graph G.  To help clarify the problem, each edge is 

weighted by a given weight, 𝑑𝑗𝑘, which is the 

cost/distance between nodes ‘𝑗’ and ‘𝑘.’ An example 

of a weighted graph is presented in Figure 2 

In this graph, it can be seen that the weight of route 

AB is 5, BD is 6, CD is 7, AC is 8 etc. Also, the 

longitude and latitude of each node, location or city is 

attached. For instance, city A is located at longitude 5, 

latitude 5, while city B is at longitude 4, latitude 5 etc. 

It is important to observe that the routes/paths taken 

by the Travelling Salesman could be symmetric (in 

which case the distances between locations ‘𝑗’ to ‘𝑘’ is 

the same as that between ‘𝑘’and ‘𝑗’). In other 

instances, the paths/routes could be asymmetric where 

distances/cost between city ‘𝑗’ to ‘𝑘’ may not be same 

as city,‘𝑘’ to ‘𝑗’ in at least one edge in the travelling 

graph. Asymmetric cases could result from one-way 

traffic routes, differences in transportation costs, 

differences in road tolls, blockage of roads or other 

civil engineering, commercial or administrative 

considerations (Kefi, Rokbani, & Alimi, 2016).  

Mathematically, since the TSP is a minimization 

problem, the minimization equation could be 

formulated thus: given 𝑘 cities and their 

𝑥, 𝑦 coordinates, find an integer permutation: 

  𝜋 =  (𝑑1 𝑑2 𝑑1 𝑑3 … … 𝑑𝑘) (3) 

where 𝑑𝑘 represents location/city ‘𝑘’, with the 

minimization function: 

 𝑓(𝜋) = ∑ 𝑑(𝑑1, 𝑑1 + 1)𝑘−1
𝑖=1 +  𝑐(𝑑𝑘 , 𝑑1)  (4) 

Here   𝑑1,𝑑1 + 1 represents the transition between 

location, 𝑑1, and 𝑑1 + 1, whereas  c(𝑑𝑘 , , 𝑑1) 

represents the cost/distance of city ‘k’ and city ‘1’.  

The TSP is about the most studied optimization 

problem and a number of metaheuristics have been 

applied to solving the TSP. Some of the algorithms 

that have successfully solved the TSP are the Artificial 

Bee Colony (ABC) (Nozohour-leilabady & 

Fazelabdolabadi, 2015), Particle Swarm Optimization 

(PSO) (Kefi, Rokbani, Krömer, & Alimi, 2015), 

Genetic Algorithm (GA) (Chang, 2015) etc. 

3 COLLISION AVOIDANCE IN ELECTRIC FISH 
ELECTRIC fish refers to a kind of fish that are 

able to generate electric currents as well as detect 

electric currents in the water (MacIver, Fontaine, & 

Burdick, 2004). They are common in fresh and ocean 

waters of Africa and Latin America. It is important to 

emphasize that the mere capacity to detect electric 

currents in water does not qualify a fish to be 

described as an electric fish. Fishes like ray, shark and 

catfishes which can detect electric currents, therefore, 

do not qualify to be categorized as electric fishes 

(Nelson, Grande, & Wilson, 2016). An electric fish 

must be able to both generate and detects 

electromagnetic fields. A good example of an electric 

fish is the electric eel which generates up to 900 volts 

of electricity at a time  (Sun, Fu, Xie, Jiang, & Peng, 

2016). There have been recorded instances of electric 

fishes killing other electric fishes, crocodiles and even 

humans (Arnegard & Carlson, 2005) 

The electric fish navigates the waterways through 

careful use of the electromagnetic (EM) field that a 

particular component of its tail called the Electric 

Organ generates (Feulner, Plath, Engelmann, 

Kirschbaum, & Tiedemann, 2008; Heiligenberg, 

2012). Using the electroreceptors situated all over the 

electric fish’s outer skin to trap the electromagnetic 

field, the fish is able to distinguish between objects as 

it navigates the waterways (Hollmann, Engelmann, & 

Von Der Emde, 2008). Sometimes, however, some 

objects, including electromagnetic fields from other 

electric fishes could act as noise elements to the fish’s 
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Figure 2: A five-node TSP instance. 

 

Figure 3: Major navigational tools of an electric fish (Von der Emde, 1999). 

electric flow thereby confusing the electric fish 

(Heiligenberg, 2012; von der Emde, 2006). To handle 

this noisy situation, the particular electric fish may 

need to generate discharge signals (DS) to avoid 

collision (Feulner et al., 2008). An electric fish with 

its major navigational components are presented in 

Figure 3. 

Studies have shown that when two electric fishes 

release discharge DS that are on the same frequency, 

the situation results in signal distortion (SD) that could 

endanger the two electric fishes concerned (Mendes-

Junior, Sá-Oliveira, & Ferrari, 2016; Zakon, Zwickl, 

Lu, & Hillis, 2008). To ensure efficient and effective 

navigation, therefore, it is required that the fishes 

generate EMs and SDs that are on different 

frequencies (Leblanc, 2005). This situation is akin to 

the exploration /waaa/ and exploitation /maaa/ 

coefficients of the African Buffalo Optimization 

algorithm. So appropriate simulation of the ABO’s 

exploration and exploitation parameters could bring 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  45 

about effective collision avoidance mechanism in 

electric fishes. 

The collision avoidance scenario in electric fish is 

akin to the concept of the travelling salesman’s 

problem in computer science where a particular 

salesman is required to visit all his customers in 

different locations across a given geographical area in 

such a manner that he should avoid visiting any 

location more than once before returning to his initial 

starting city/location. This is the motivation for the 

choice of electric fish in this study. For the purpose of 

illustration, see the movement of the fishes presented 

in Figure 4. Each fish swims in a position parallel to 

the other in order to avoid electromagnetic fields 

collision.  

Similarly, in a TSP problem, the salesman moves 

in a way to avoid an already visited in order to not to 

violate the TSP constraint of visiting a node/city only 

once. For instance, the movement of the salesman in 

Figure 5 where he has to visit 60 cities/nodes 

illustrates deliberate attempt to avoid already-visited 

cities/nodes, just like the electric fish does to other 

electric fishes with electromagnetic fields that are on 

the same frequency. 

4 EXPERIMENTAL SETTING 
THE experiments were done on a desktop 

computer running windows 7 Intel Duo Core TM i7-

3770 CPU, 3.40 GHz with 4GB RAM.  It was 

necessary to investigate the performance of the ABO 

with other heuristics in solving the ATSP. To do this,  

experiments were carried out on 15 out of the 19 

benchmark optimization problems available on 

TSPLIB95 (Reinelt, 1991). The choice of the datasets 

is informed by their complexity and popularity in 

literature. The results obtained from this exercise were 

compared with those obtained from three other 

heuristic algorithms available in Tsp-solve (Hurwitz & 

Craig) . The comparative algorithms are Addition 

heuristics, Assign heuristics, Loss and Patching 

heuristics (Rocha, Fernandes, & Soares, 2004). The 

Addition Heuristics employs the construction method 

in its search and tour development; the Loss  

Heuristics uses a technique described in (Van der 

Cruyssen & Rijckaert, 1978) and the Patching 

Heuristics engages in solving an assignment problem 

and later integrates the sub-tours into one tour using 

the patching technique (Karp & Steele, 1985). 

 

Figure 4: Movement of fishes to avoid electromagnetic field collision (Freud, 2013). 
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Figure 5: 60-node TSP instance. 

This comparison is relevant because there are three 

basic methods of solving  Travelling Salesman’s 

Problem (whether symmetric or asymmetric) in 

literature and these are the Constructive method, the 

Improvement method and the Composite method that 

uses a combination of the first  two (Helsgaun, 2000). 

The ABO solves the Travelling Salesman’s Problems 

using the composite method. It starts by using the 

constructive method, especially for problems 

involving less than 100 nodes but turns to improve 

upon the construction as the number of nodes 

increases. This coupled with the ABO’s use of very 

few parameters enables the ABO to arrive at solutions 

faster than many other methods. Basically, tour 

construction method builds a tour by simply adding a 

new node that has not been added or visited at each 

step/iteration. When the tour has been constructed, the 

buffalos return to the starting node, avoiding any 

already visited. An example of a method that uses 

strict Construction technique is the nearest 

neighbourhood algorithm (Sarwar, Karypis, Konstan, 

& Riedl, 2002). Meanwhile, the tour improvement 

method gets a tour improved through making 

improvements/exchanges on the already existing 

tours. Examples are the 2-opt algorithm and the Lin-

Kernighan algorithm (Helsgaun, 2000). The composite 

method, on the hand, as in ABO, starts solving the 

problem by constructing a tour through the addition of 

unvisited nodes and then performs improvement 

exchanges depending on the location of the best 

buffalo. This helps the algorithm to arrive at better 

solutions. The simulation results obtained from this 

study are presented in Table 1 and Figure 6. 

As can be seen in Table 1, the ABO outperformed 

the other methods in obtaining the optimal solutions. 

The ABO obtained optimal solution in three ATSP 

instances: Ftv38, Ft53 and Ftv64 in addition to 

obtaining over 99.5% accuracy in the remaining 

instances. Meanwhile the other methods were only 

able to obtain optimal result in one instance each and 

that is Br17. Their performances in other instances 

were rather not encouraging (see Fig.2). For instance, 

the cumulative relative error percentage of the ABO in 

all ATSP instances is 1.53% to Addition Heuristics 

102.52%; Loss Heuristics 59.43% and Patching 

Heuristics 67.68%.  From this analysis, it is obvious 

that the ABO outperformed other methods. The above 

results are further highlighted in Figure 2. 

In all, it took ABO a cumulative iteration of 1070 

to obtain best results to all the problems. This is less 

than the needed iterations required to solve a 

particular ATSP instance in the other competing 

algorithms. This clearly marks out ABO as being one 

of the fastest optimization algorithms in literature 

presently. 
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Table 1. ABO and some heuristics on ATSP 

TSP Opt ABO 
  

Addition Loss 
  

Patching 

Cases 
    

Heuristics Heuristics 
  

Heuristics 

  Best PDB.   

(%) 

Iter Best PDB                        

(%) 

Iter Best PDB          

(%) 

Iter Best PDB (%) Iter 

Br17 39 39.17 0.43 17 39 0 100 39 0 100 39 0 100 

Ry48p 14422 14440 0.12 186 14939 3.65 200 15254 5.77 100 14857 3.02 100 

Ftv33 1286 1287 0.08 79 1482 15.24 200 1372 6.69 600 1409 9.56 200 

Ftv35 1473 1474 0.07 107 1491 1.22 100 1508 2.38 300 1489 1.09 200 

Ftv38 1530 1530 0 126 1634 6.79 200 1547 1.11 700 1546 0.98 100 

Ftv44 1613 1614 0.06 58 1733 7.44 3400 1673 3.72 300 1699 5.33 100 

Ftv47 1776 1777 0.06 6 1793 0.96 700 1787 0.56 1600 1846 14.45 300 

Ftv55 1608 1610 0.12 117 1781 10.76 3400 1747 8.64 200 1657 3.05 100 

Ftv64 1839 1839 0 10 2054 11.69 500 1890 2.77 500 1871 1.74 900 

Ftv70 1950 1955 0.26 46 2168 10.9 400 2074 6.36 100 2004 2.77 600 

Kro124p 36230 36275 0.12 13 40524 11.85 200 41121 13.5 500 40106 10.7 100 

Ft53 6905 6905 0 126 8088 17.13 300 7383 6.92 500 7847 13.64 100 

Ft70 38673 38753 0.21 179 40566 4.89 500 39065 1.01 1900 39197 1.35 100 

      1.53%     102.52%                 59.43%     67.68%  
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Figure 6: ATSP and other Heuristics. 

5 CONCLUSION 
SCIENTISTS are still exploring the capacity of the 

spongy 1.36-kilogramme substance called the brain 

with the aim of fully understanding its working and 

then developing systems and models that can assist 

those who have some nervous breakdowns (Lee, 

2016). The continuous investigation by researchers 

and neuroscientists in particular into the workings of 

the brain and the entire nervous systems inspired this 

study which is aimed at developing collision-

avoidance models to assist those with visual 

impairments as well help in further enhancing the 

capabilities of the recently introduced driverless cars.   

Drawing inspiration from the travelling salesman’s 

problems in simulating collision-avoidance in electric 

fishes in number of experimental procedures, this 

study concludes that the ABO is a veritable tool 

developing models and systems to assist the visually-

impaired, mechanical robots and driverless cars in 

collision-avoidance. It is hoped that this study will 

open a new research direction towards exploring 

heuristics and metaheuristics in neuroscience research. 

Further studies in developing electronic white canes 

for the visually-impaired using a combination of the 
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visited-nodes avoidance mechanism of the TSP 

coupled the collision-avoidance strategy of the electric 

fish is recommended.   
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