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1 INTRODUCTION 
OPTIMIZATION problems can be found in 

numerous fields. To solve them, a large number of 

optimization approaches have been proposed. 

Especially, the meta-heuristic algorithms, such as 

Genetic Algorithm (Holland, 1975) (GA), Artificial 

Bee Colony (Karaboga, 2005) (ABC), Particle Swarm 

Optimization (Kenndy & Eberhart, 1995) (PSO), 

Differential Evolution (Storn & Price, 1995) (DE), and 

Teaching Learning Based Optimization (TLBO) ( Rao 

et al., 2011), have gained more and more attentions in 

the past decades. Until now, a lot of works (Cuevas et 

al., 2016; Fan et al., 2017; Fan & Yan, 2016; 

Hermosilla et al., 2017; Wang et al., 2015) have been 

reported as meta-heuristic algorithms. Among these 

methods, TLBO is a recently proposed population-

based algorithm. In this algorithm, the teacher and 

learner phases are two main operators. TLBO has some 

attractive features, such as free from the algorithm 

specific parameters, ease in programming, high 

efficiency etc. (Satapathy & Naik, 2014). Therefore, it 

has become a popular tool for solving different 

optimization problems. However, the performance of 

TLBO needs to be further improved since it is directly 

influenced by the parameter settings and the operators 

in the teacher and learner phases. 

To enhance the search efficiency of TLBO, a large 

number of works have been reported. For example, Rao 

and Patel (2012) introduced an elitist TLBO to solve 

constrained optimization problems wherein an elitism 

concept is used. Zhou et al. (2014) proposed an 

improved TLBO with dynamic group strategy, in which 

the mean of the class is replaced by the mean of the 

corresponding group. The results show that the 

proposed algorithm is effective. In Ref. (Ghasemi et al., 

2015), an improved TLBO algorithm was proposed. In 

this algorithm, a Gaussian distribution function and a 

mutation strategy used in DE is employed to produce 

new individuals. Ghasemi et al. (2015) employed a levy 

mutation strategy to improve TLBO performance. 

Wang et al. (2016) proposed a novel TLBO variant with 

experience information and differential mutation (EI-

TLBO), which are used to improve the global search 

capability. In Ref. (Li et al., 2016), an improved TLBO 

with group learning (GTLBO) was proposed to 

alleviate the population convergence problem. 

Sleesongsom and Burreerat (2017) introduced a self-

adaptive population size TLBO (SAP-TLBO). In SAP-

TLBO, the number of individuals may be different in 

the teacher and learner phases. In the literature (Tang et 

al., 2017), a hybrid TLBO (HTLBO) algorithm was 
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proposed. In HTLBO, a variable neighborhood search 

is used to improve the local search capability. Farahani 

and Rashidi (2017) proposed a modified TLBO 

algorithm, in which a new teacher phase is used and a 

mutation strategy used in DE is employed to balance 

between the local and global search capabilities. The 

experimental results indicate that the performance of 

the proposed algorithm is better than that of the other 

compared algorithms. Zamli et al. (2017) utilized the 

mamdani fuzzy inference system to automatically 

select a suitable search operator in TLBO. The results 

present that the proposed algorithm exhibits better 

search capability when compared with the other 

competitors. Additionally, TLBO and its variants are 

usually used to solve numerous real-world optimization 

problems (Banerjee et al., 2015; Chatterjee & 

Mukherjee, 2016; Lin, et al., 2015; Patel, Savsani et al., 

2017; Rao & Kalyankar, 2013).  

Like PSO (Kenndy & Eberhart, 1995), although a 

uniform random number used in TLBO can help to 

enhance its global search capability, it may influence 

the search efficiency of TLBO. Moreover, the best 

individual selected as a teacher may result in trapping 

into local optimal. To alleviate the above mentioned 

problems, an improved teaching learning based 

optimization (ITLBO) is proposed in this study. In the 

ITLBO, a normal random number is used and a 

weighted average position of the current population is 

selected as the other teacher to guide the population 

evolution in the teacher phase. ITLBO can improve the 

global exploration capability of the original TLBO 

since the new teacher can increase random 

perturbation. It should be noted that the generalized 

opposition-based learning used by Chen et al. (2016) is 

also employed in our proposal. The main reason is that 

the generalized opposition-based learning can assist 

TLBO to improve the global search capability. The 

performance of ITLBO is compared with that of five 

meta-heuristic algorithms on 25 30-dimensional IEEE 

CEC2005 (Suganthan, et al., 2005) test functions. The 

experimental results verify that the overall performance 

of the proposed algorithm is the best among all the 

competitors. ITLBO is also utilized to estimate 

parameters of the single diode and double diode 

models. The results show that ITLBO is a competitive 

optimization tool for dealing with actual application 

problems.  

The remainder of this paper is organized as follows. 

Sections 2 and 3 introduce the basic TLBO algorithm 

and ITLBO. In Section 4, the proposed algorithm is 

compared with five algorithms on a famous test suite. 

Moreover, the impact of a parameter (Sigma) and the 

effectiveness of the proposed teacher phase are 

investigated. The application of ITLBO in parameter 

estimation for two solar cell models is given in Section 

5. Finally, Section 6 concludes this study. 

2 TEACHING LEARNING BASED 
OPTIMIZATION 

A minimization problem can be expressed as 

follows: 

 1

( ) min ( ) , ,
i

D

i i j j

j

f f L U




     
x
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where f denotes an objective function; 

,1 ,( , , )i i i Dx xx  is a D-dimensional vector; 
x  is 

the global optimum solution, DR ; 
jL  and 

jU  (

1, ,j D  ) are the lower and upper bounds of the jth 

variable of 
ix , respectively; S is the search space. 

TLBO is an effective and efficient population-based 

optimization approach. Teacher and learner phases are 

two main operators in TLBO. old, old, ,1 old, ,( , , )i i i Dx x  x

and new, new, ,1 new, ,( , , )i i i Dx x  x  denote the old and the 

new positions of the ith solution (or the ith target 

vector) in the population, respectively. The population 

at the Gth generation is denoted as 
1{ , , },G G G

NPP x x

which contains NP individuals. Two main operators of 

the original TLBO are described as follows. 

2.1 Teacher phase 
In the teacher phase, the best individual in the 

current population is selected as the teacher and is used 

to guide the mean position of the population. The 

teaching process can be described as follows: 

 , , Teacher Mean( )new i old i rand TF    x X Xx , (2)
  

where TeacherX  and 
MeanX  are the teacher position and 

the mean position of the current population, 

respectively; rand is a uniform random number within 

[0,1]; TF is a teaching factor, and its value can be either 

1 or 2. If the fitness function value of ,new ix  is better 

than that of ,old ix , ,new ix  will be accepted. 

2.2 Learner phase 
After the teaching operation, the new learner can be 

updated as follows:  

 

,

, , , , ,

, , ,

( ), if ( ) ( ),

( ), otherwise

new i

old i old i old h old i old h

old i old h old i

rand f f
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

   


  

x x x x x

x x x
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  (3) 

where ,old hx  ( i h ) is randomly chosen from the 

current population; ,new ix  will survive if a better fitness 

function value is given. 
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3 IMPROVED TLBO 
ALTHOUGH the original TLBO is simple and 

efficient, its average performance is greatly impacted 

by the teacher and learner phases. To further enhance 

its performance, an improved TLBO (ITLBO) is 

proposed in the current study. In ITLBO, a normal 

random number and a weighted average position of the 

current population are used to balance the global and 

local search capabilities. Moreover, the generalized 

opposition-based learning is utilized to enhance the 

exploration capability of TLBO. 

3.1 Improved teaching process 
Generally, a uniform random number can provide 

good exploration capability, whereas a normal random 

number can speed up the convergence. Moreover, if 

only the best individual is used to guide the population 

evolution in the teacher phase; it may lead to premature 

convergence. Therefore, a normal random number and 

a weighted average position of the current population 

are utilized in the teacher phase. The main objective is 

to balance the global and local search capabilities of 

TLBO.  

Based on the above introductions, a novel teaching 

process can be formulated as follows: 

 

, , Teacher 1,

2,

( , ) ( )

( , ) ( )

new i old i r i

W r i

N
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 

 
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x
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where N is the normal distribution function; 
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denotes the weighted average position of the current 

population; 
 
and   denote the mean and standard 

deviation values of the normal distribution function, 

respectively; r1 and r2 are  integers randomly selected 

within the range [1, NP].  

From Eq. (4), it can be seen that the advantages of 

the novel teaching process are twofold: 

 The normal random number can provide steadier 

perturbation when compared with the uniform 

random number. It signifies that the search 

efficiency of the proposed teaching strategy may 

be better than that of the original teaching process. 

It should be noted that, the normal distribution 

function has been used in other studies (Ghasemi, 

Taghizadeh, et al., 2015; Zhao, 2015; Zou et al., 

2014), but it is employed to generate new 

individuals. In the current work, the normal 

distribution function is only utilized to produce the 

scale factor.  

 
2,( )W r iX x  can increase a random perturbation 

towards ,old ix  , thus it is helpful for TBO  to 

improve the global exploration capability.  

Additionally, 0.5 
 
is chosen in the proposed 

algorithm. This is because the scale factor produced by 

the normal distribution function with the mean value 

0.5 can balance the convergence speed and population 

diversity of TLBO in a certain extent. Moreover, the 

setting of   is analyzed in Subsection 4.2. 

3.2 Implementation of ITLBO 
1) Initialization operation 

Determine the population size NP and the maximum 

number of function evaluations maxFEs. The initial 

population 
0P  is generated through randomly and 

uniformly sampling from S.  

2) Teacher phase 

In the teacher process, the new individual ,new ix  can 

be generated by Eq. (4). If ,new ix  is better than ,old ix , it 

replaces 
,old ix . 

3) Learner phase 

In the learner phase, Eq. (3) is used to produce the 

new individual 
,new ix . If 

,new ix  is better than 
,old ix , 

it will survive in the next generation. 

4) Generalized opposition-based generation 

Based on the generalized opposition learning, the 

new individual 
,new ix  can be generated as follows:  

, ,( )new i old irand L U  +x x
.     (5) 

If the fitness function value of 
,new ix  is better than 

that of 
,old ix , 

,new ix  will be accepted. 

5) Stop until the number of function evaluations is 

equal to maxFEs; otherwise, repeat from Step 2. 

4 EXPERIMENTAL RESULTS 
IN this section, 25 30-dimensional IEEE CEC2005 

test functions are used to evaluate the search capability 

of the proposed algorithm. The performance of ITLBO 

is compared with that of five meta-heuristic algorithms, 

which are CMA-ES (Hansen & Ostermeier, 2001), 

CLPSO (Liang et al., 2006), TLBO (Rao, et al., 2011), 

OTLBO (Roy et al., 2014), and GOTLBO (Chen, et al., 

2016). All compared algorithms are implemented in 

Matlab (Matlab R2012a) and executed on Windows 7 

operating system (64 bit). maxFEs is set to be 300,000 

in all experiments. Moreover, Wilcoxon’s rank sum test 

(Wilcoxon, 1945), Iman-Davenport test (García et al., 

2009) and Friedman’s test (Friedman, 1937) with a 

significant level of 0.05 are utilized to detect the 

differences between ITLBO and the other competitors. 

Because each algorithm has its own suitable NP, the 

settings of NP recommended in the literatures are used 

in the current study. Additionally, the population size 

of ITLBO is the same as that of the other TLBO 

variants, i.e., NP = 50. 
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4.1 Comparing ITLBO with five algorithms on 
30-dimensional CEC2005 functions 

In this part, ITLBO is compared with five selected 

algorithms on 25 30-dimensional test functions, which 

are introduced in IEEE CEC2005 and can be classified 

into four groups: (1) unimodal functions F1~F5; (2) 

basic multimodal functions F6~F12; (3) expanded 

multimodal functions F13 and F14; (4) hybrid 

composition functions F15~F20. For each test function, 

all experimental results shown in Table 1 are achieved 

by 30 independent runs and the best result is 

highlighted in bold. The statistical analysis results 

obtained by Wilcoxon’s rank sum test are also 

presented in Table 1. According to the results shown in 

Table 1, the following conclusions can be given: 

 For unimodal test functions F1~F5, from Table 1, 

it can be clearly seen that CMA-ES performs the 

best among all compared algorithms. This is 

because CMA-ES has good local exploitation 

capability. However, CBPS , TBO , and  TBO  

perform better than ITBO  on only one test 

function. Moreover, G TBO  cannot perform 

better than ITBO  on any unimodal functions. The 

main reason may be that, ITBO  uses the weighted 

average position of the current population and the 

normal random number to improve the search 

efficiency.  

 For basic multimodal test functions F6~F12, Table 

1 shows that the average performance of ITBO  is 

similar to that of CMA-ES. The overall 

performance of ITBO  is significantly superior to 

and inferior to that of CBPS  on four and two test 

functions, respectively. However, TBO ,  TBO , 

and G TBO  cannot perform better than our 

proposal on any basic multimodal functions. It can 

be found that the novel teacher process is helpful 

in finding a promising region and the generalized 

opposition-based learning can improve the global 

search capability of TBO .  

 For expanded multimodal functions F13 and F14, 

it can be seen from Table 1 that the performances 

of G TBO  and ITBO  are similar. CMA-ES, 

TBO , and  TBO  cannot outperform the 

proposed algorithm on any test functions. 

Compared with CBPS , the performance of 

ITBO  is significantly inferior to that of CBPS  

on function F13. The main reason may be that PS  

can be regarded as a distributed model (DM), and 

TBO  can be regarded as the combination of a 

distributed model and a centralized model (CM) 

(Bi, et al., 2015). In general, CM cannot perform 

well on multimodal test functions in most cases. 

 For hybrid composition functions F15 and F25, 

they are difficult to solve and are more likely to 

verify the optimization performance of algorithms. 

It can be observed from Table 1 that the overall 

performance of ITBO  is better than that of TBO , 

 TBO , and G TBO . Compared with CBPS , 

ITBO  can outperform CBPS  on six test 

functions and is inferior to CBPS  on three 

functions. Table 1 also indicates that CAM-ES 

provides significantly better results than ITBO  

on three functions and is significantly surpassed by 

our proposal on five test functions. Oased on the 

above comparisons, ITBO  can achieve the best 

average performance among all selected 

algorithms. It is because ITBO  not only uses the 

generalized opposition-based learning strategy and 

the weighted average position of the current 

population to improve the exploration capability, 

but also employs the normal random number to 

speed up the convergence. Therefore, ITBO  can 

achieve a good balance between the exploration 

and exploitation capabilities.  
The statistical analysis results presented in Table 1 

indicate that the average performance of ITLBO is 

significantly better than that of TLBO and its variants. 

ITLBO can outperform CLPSO on the majority of test 

functions. Note that, the searching capability of ITLBO 

is worse than that of CMA-ES on some basic test 

functions which include unimodal and multimodal 

functions. However, ITLBO can outperform CMA-ES 

on the majority of complex optimization problems. 

Based on the above analysis and introduction, we can 

find that the normal random number, the weighted 

average position of the current population, and the 

generalized opposition-based learning strategy used in 

TLBO can effectively improve the search efficiency. 

4.2 Impact of sigma 
In this experiment, 25 30-dimensional test functions 

are utilized to investigate the performance of ITLBO 

under different Sigma values, which are chosen from 

the set {0.1, 0.15, 0.2, 0.25, 0.3}. The times of 

independent runs for each function are set to be 30. The 

statistical analysis results achieved by Friedman and 

Iman-Davenport tests are presented in Table 2. As 

shown in Table 2, we can observe that the performance 

of ITLBO is not significantly impacted by the Sigma 

value. Therefore, it is convenient for users to set the 

Sigma value within our recommended range. 

Additionally, the rankings achieved by Friedman’s test 

are plotted in the Appendix (Figure A1). It can be 

observed that the overall performance of ITLBO is the 

best when Sigma = 0.25. Therefore, Sigma = 0.25 is 

chosen to provide the best performance in the proposed 

algorithm. We can also conclude that a small or large 

Sigma value is not beneficial for the optimization 

performance of ITLBO, thus the Sigma value within the 

range of [0.15, 0.25] is suggested. 
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Table 1. Results of all compared algorithms on 25 30-dimensional CEC2005 test functions 

Function 
CLPSO 

Mean(Std) 
CMA-ES 

Mean(Std) 
TLBO 

Mean(Std) 
OTLBO 

Mean(Std) 
GOLBO 

Mean(Std) 
ITLBO 

Mean(Std) 

F1 0.00E+00(0.00E+00)− 1.78E-25(4.51E-26)+ 1.85E-27(1.92E-27)+ 2.88E-27(3.37E-27)+ 1.16E-27(9.23E-28)+ 5.77E-29(8.84E-29) 
F2 8.28E+02(1.60E+02)+ 6.30E-25(2.19E-25)− 5.05E-12(1.63E-11)+ 4.70E-14(8.28E-14)+ 1.86E-07(4.69E-07)+ 5.48E-17(8.83E-17) 
F3 1.55E+07(4.08E+06)+ 4.98E-21(1.51E-21)− 4.86E+05(2.28E+05)− 3.76E+05(1.94E+05)− 7.96E+05(4.58E+05)≈ 7.09E+05(3.53E+05) 
F4 6.30E+03(1.23E+03)+ 6.63E+05(2.27E+06)+ 1.67E+02(4.86E+02)+ 2.10E+01(2.99E+01)+ 3.46E+02(4.79E+02)+ 7.47E-04(1.96E-03) 
F5 3.83E+03(3.56E+03)+ 3.33E-10(9.59E-11)− 3.07E+03(8.63E+02)+ 2.29E+03(6.64E+02)≈ 3.37E+03(9.40E+02)+ 2.02E+03(6.90E+02) 
F6 4.62E+00(5.34E+00)+ 1.33E-01(7.28E-01)− 2.18E+01(3.41E+01)+ 2.86E+01(3.19E+01)+ 3.78E+01(3.96E+01)+ 1.00E+01(2.78E+01) 
F7 1.24E+04(5.97E+02)+ 1.31E-03(4.23E-03)− 2.24E-02(2.38E-02)≈ 2.83E-02(3.52E-02)≈ 2.75E-02(3.54E-02)≈ 2.32E-02(1.86E-02) 
F8 2.09E+01(5.81E-02)≈ 2.02E+01(4.81E-01)− 2.10E+01(4.17E-02)≈ 2.10E+01(5.52E-02)≈ 2.10E+01(5.08E-02)≈ 2.09E+01(5.67E-02) 
F9 0.00E+00(0.00E+00)− 4.43E+02(1.38E+02)+ 8.77E+01(1.71E+01)+ 8.06E+01(1.23E+01)+ 9.10E+01(1.62E+01)+ 5.43E+01(1.64E+01) 
F10 9.64E+01(1.76E+01)+ 4.80E+01(1.36E+01)≈ 1.11E+02(3.22E+01)+ 1.02E+02(2.59E+01)+ 9.69E+01(2.70E+01)+ 5.39E+01(2.27E+01) 
F11 2.59E+01(1.44E+00)− 6.37E+01(1.86E+00)+ 3.10E+01(2.67E+00)+ 2.98E+01(3.31E+00)≈ 2.89E+01(4.23E+00)≈ 2.83E+01(4.37E+00) 
F12 1.72E+04(5.07E+03)+ 1.15E+04(1.13E+04)+ 1.00E+04(8.42E+03)+ 1.08E+04(1.25E+04)+ 5.56E+03(6.41E+03)≈ 3.28E+03(3.40E+03) 
F13 2.10E+00(2.46E-00)− 3.55E+00(7.87E-01)+ 4.04E+00(9.72E-01)+ 3.59E+00(6.74E-01)+ 3.41E+00(9.85E-01)≈ 3.00E+00(5.62E-01) 
F14 1.27E+01(2.51E-01)≈ 1.47E+01(1.85E-01)+ 1.25E+01(3.88E-01)≈ 1.29E+01(2.12E-01)+ 1.28E+01(3.31E-01)≈ 1.27E+01(3.56E-01) 
F15 6.86E+01(6.17E+01)− 4.33E+02(2.61E+02)≈ 4.49E+02(7.83E+01)+ 4.29E+02(7.64E+01)+ 4.45E+02(6.73E+01)+ 3.97E+02(8.92E+01) 
F16 1.68E+02(2.87E+01)≈ 3.66E+02(2.58E+02)+ 2.53E+02(1.59E+02)+ 1.53E+02(1.16E+02)≈ 2.17E+02(1.44E+02)+ 1.93E+02(1.63E+02) 
F17 2.47E+02(3.48E+01)+ 4.10E+02(3.11E+02)+ 2.16E+02(1.47E+02)+ 2.14E+02(1.38E+02)+ 1.96E+02(1.44E+02)≈ 1.70E+02(1.35E+02) 
F18 9.10E+02(1.90E+01)+ 9.04E+02(1.85E-01)+ 9.38E+02(2.40E+01)+ 9.29E+02(3.83E+01)+ 9.00E+02(0.00E+00)+ 8.86E+02(3.45E+01) 
F19 9.14E+02(1.44E+00)+ 9.04E+02(3.01E-01)+ 9.35E+02(3.45E+01)+ 9.33E+02(1.95E+01)+ 8.97E+02(1.83E+01)≈ 8.94E+02(2.56E+01) 
F20 9.14E+02(1.44E+01) 9.04E+02(2.23E-01)+ 9.33E+02(3.21E+01)+ 9.27E+02(3.12E+01)+ 9.00E+02(0.00E+00)≈ 9.00E+02(3.40E+00) 
F21 5.00E+02(2.61E-13)− 5.00E+02(2.50E-12)≈ 9.54E+02(3.33E+02)+ 9.07E+02(3.46E+02)+ 9.51E+02(3.32E+02)+ 7.96E+02(3.29E+02) 
F22 9.70E+02(1.71E+01)+ 8.32E+02(2.32E+01)− 9.31E+02(2.64E+01)+ 9.27E+02(2.43E+01)+ 9.31E+02(2.77E+01)+ 9.04E+02(2.00E+01) 
F23 5.34E+02(7.92E-05)− 5.37E+02(3.54E+00)− 1.11E+03(1.65E+02)+ 9.37E+02(2.72E+02)+ 1.03E+03(2.00E+02)+ 7.13E+02(2.30E+02) 
F24 2.00E+02(1.50E-12)≈ 2.00E+02(7.90E-14)≈ 2.00E+02(1.31E-01)+ 2.00E+02(5.78E-04)+ 2.80E+02(2.72E+02)+ 2.00E+02(1.02E-12) 
F25 1.99E+03(3.88E+01)+ 2.06E+02(5.78E+00)− 3.64E+02(3.66E+02)+ 3.15E+02(3.05E+02)+ 2.17E+02(2.34E+01)+ 2.12E+02(2.58E+00) 

+ 14 12 21 19 15 
− 7 9 1 1 0 
≈ 4 4 3 5 10 

(“−”, “+”, and “≈” marks denote that the performance of ITLBO is significantly worse than, better than, and similar to that of the 
corresponding algorithm, respectively.)  

Table 2. Results of Friedman and Iman-Davenport tests with different Sigma values 

Friedman value 2 value p-value Iman-Davenport value FF value p-value 

3.488 9.488 0.4797 0.8673 2.4665 0.4865 

 

4.3 Effectiveness of the proposed teaching 
process 

In this experiment, 25 30-dimensional test functions 

and two ITLBO variants are utilized to investigate the 

effectiveness of the proposed teaching process. For 

each test function, the run times are set as 30. Two 

different teaching processes are given as follows: 

 , , Teacher 1,(0.5,0.25) ( )new i old i r iN   x X xx
, (6) 

 
, , Teacher 1,

2,

(0.5,0.25) ( )

(0.5,0.25) ( )

new i old i r i

Mean r i

N

N X

   

  

x X x

x

x
. (7) 

According to the above introductions, two ITLBO 

variants using Eqs. (6) and (7) are called as ITLBO1 

and ITLBO2, respectively. From Eq. (6), we can find 

that the perturbation is generated by the difference 

between the individual and the best position of the 

current population. It can be also observed from Eq. (7) 

that the perturbation towards ,old ix  is produced by two 

differences, which are Teacher 1,( )r iX x  and 

2,( )Mean r iX  x . The main targets of Eqs. (6) and (7) are 

to test the effectiveness of the 2,( )Mean r iX  x  and the 

weighted average position WX , respectively.  

All results are presented in Table A1 in the 

Appendix. From Table A1, the statistical analysis 

results present that ITLBO performs better than 

ITLBO1 and ITLBO2 on eight and nine test functions, 

respectively. However, the two variants outperform 

ITLBO on only one test function. Therefore, the 

proposed teaching process can provide the best overall 

performance for TLBO. The main reason is that the 

weighted average position can provide more useful 

evolution information to guide the evolution of each 

individual and increase random perturbation to improve 

the global search capability. However, Table A1 also 

indicates that ITLBO outperforms the two variants on 

the majority of basic test functions. For complex 
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problems, the performance of ITLBO is slightly better 

than that of two algorithms. This is because these test 

functions are difficult to be solved by some other 

famous meta-heuristic algorithms. Additionally, the 

rankings obtained by Friedman’s test are shown in 

Figure A2 in the Appendix. It is clearly that ITLBO 

achieves the best ranking among all the TLBO variants. 

5 PARAMETER ESTIMATION OF SOLAR CELL 
MODELS USING ITLBO 

RECENTLY, in order to improve the quality of the 

atmospheric environment, the traditional coal-fired 

power is transformed and reduced gradually. At the 

same time, the use of renewable and clean energy 

power is encouraged and supported. The PV 

(photovoltaic) system, due to its environment-friendly 

features, has drawn intense attention from academia 

and industry, see for examples (Askarzadeh & 

Rezazadeh, 2013; Easwarakhanthan, Bottin, 

Bouhouch, & Boutrit, 1986; Jiang, Maskell, & Patra, 

2013; Oliva, Cuevas, & Pajares, 2014). For the PV 

system, it is a crucial problem to choose a suitable 

model which can describe the characteristics of PV 

cells appropriately. Normally, two main equivalent 

circuit models have been widely used in practical 

applications to describe the current-voltage (I-V) 

relationship in the PV cells, which are single diode 

model and double diode model. However, both models 

require the knowledge of all unknown parameters 

(Gong & Cai, 2013). Thus, parameter accuracy turns to 

be a significant problem as the parameters extracted 

from the I-V curves of the PV cell can be used in many 

applications (Jiang, et al., 2013). 

5.1 Modelling of single and double diode 
Since the single and the double diode models are 

two commonly used models among different types of 

solar cell models, we introduce the two models in the 

following parts. 

5.1.1 Single diode model 
The single diode model is commonly utilized to 

describe the I-V characteristics of solar cells because it 

is simple and accurate (Gow & Manning, 1999). Its 

output current can be calculated as follows:  

 L ph d shI I I I  
, (8) 

where IL denotes the output current of the solar cell; Iph 

and Id denote the photo-induced current and diode 

current, respectively.  

In Eq. (8), the diode current Id based on the Shockley 

equation can be formulated as follows: 

 

1L L s
d sd

t

V I R
I I exp

a V

   
       , (9) 

where Isd and VL indicate the saturation current of the 

diode and the output voltage of the solar cell, 

respectively; a is the diode ideality constant; Rs is the 

series resistance. The junction thermal voltage Vt can 

be formulated as follows: 

 
t

kT
V

q


, (10) 

where k and q denote the Boltzmann constant 

(1.3806503E-23 J/K) and the electron charge 

(1.60217646E-19 C), respectively; T (K) indicates the 

temperature of the solar cell.  

In Eq. (8), the shunt resistor current Ish can be 

calculated as follows: 

 

L L s
sh

sh

V I R
I

R

 


, (11) 

where Rsh denotes the shunt resistance.  

In the single diode model, five parameters (i.e., Isd, 

Iph, Rs, Rsh, and a) are needed to be estimated. The 

objective function of the single diode model can be 

defined as follows: 

   

 
2

, ,

1

1
min

m

L k L k

k

RMSE I I
m 

 
, (12) 

where RMSE denotes the root mean square error; m 

denotes the number of experimental data; ,L kI  denotes 

the experimental output current in the solar cell; ,L kI  is 

the calculated output current from Eq. (8). 

5.1.2 Double diode model 
The impact of recombination current loss is not 

considered in the single diode model, while it is 

considered in the double diode model. Therefore, the 

single diode model can be regarded as a simplified 

version of the double diode model.  

The output current of the double diode model can be 

calculated as follows:  

 

1 2

1

1

2

2

exp 1

exp 1 ,

L ph d d sh

L L s
ph sd

t

L L s L L s
sd

t sh

I I I I I

V I R
I I

a V

V I R V I R
I

a V R

   

   
       

     
       

  
  

(13) 

where Id1 and Id2 denote the first and second currents, 

respectively; Isd1 and Isd2 indicate the diffusion and the 

saturation currents, respectively; a1 denotes the 

diffusion diode ideality constant, and a2 denotes the 

recombination diode ideality factor.  

For the double diode model, Iph, Isd1, Isd2, Rs, Rsh, a1, 

and a2 are seven optimized parameters. The objective 
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function of the double diode model can be described as 

follows: 

 

 
2

, ,

1

1
min

m

L k L k

k

RMSE I I
m 

 
, (14) 

where ,L kI  is the calculated output current in the solar 

cell from Eq. (13). 

5.2 Comparison with five meta-heuristic 
algorithms 

In this experiment, ITLBO is utilized to estimate the 

parameters of two solar cell models, i.e., the single and 

the double diode models. The I-V characteristic of the 

two cell models is 57 mm diameter commercial (R.T.C. 

France) silicon solar cell at 33℃. The experimental 

data is directly taken from Ref. (Easwarakhanthan, et 

al., 1986). Moreover, the lower and upper boundaries 

of parameters of the two models (Askarzadeh & 

Rezazadeh, 2013; Chen et al., 2016; Gong & Cai, 2013) 

are presented in Table A2 in the Appendix. For all 

compared algorithms, the population size is set to be 20 

except for CMA-ES. The maximum numbers of 

function evaluations are set to be 10000 and 20000 for 

the single diode model (five optimized parameters) and 

the double (seven optimized parameters) diode model, 

respectively. Moreover, all compared algorithms are 

executed for 30 independent runs to obtain the results, 

which are shown in Tables 3 and 4. The best results are 

highlighted in bold. Note that the results of four 

algorithms (i.e., CLPSO, TLBO, OTLBO, and 

GOTLBO) are directly taken from the literature (Chen, 

et al., 2016), and the results of CMA-ES are achieved 

through our own simulation experiment. Because the 

overall performance of GOTLBO is the best when the 

value of the jumping rate is equal to 1 on the benchmark 

test functions, the results of GOTLBOJr=1.0 are adopted 

in the current study. As shown in Table 3, the minimal 

RMSE value is achieved by OTLBO. ITLBO can 

obtain the second best result among all compared 

algorithms on the single diode model. Overall, the 

minimal RMSE value of ITLBO (9.86242E-04) is very 

close to that of OTLBO (9.86026E-04) on the single 

diode model. Table 3 indicates that the maximal RMSE 

value of ITLBO is the smallest among all compared 

algorithms. It means that the overall performance of the 

proposed algorithm is excellent. For the double diode 

model, it can be observed from Table 4 that ITLBO can 

achieve the best result (9.83263E-04) when compared 

with the other competitors. Moreover, the maximal 

RMSE value of ITLBO (1.58900E-03) is the smallest 

among all the maximal RMSE values. Additionally, the 

proposed algorithm can get the best mean value of 

RMSE among all the selected algorithms. Overall, 

ITLBO exhibits the best average performance on the 

parameter estimation of the double diode model when 

compared with the other algorithms.  

Based on the above comparisons and analyses, we 

can find that ITLBO is a competitive optimization tool 

to deal with the actual application problems. 

Furthermore, the prediction results of the single and 

double diode models obtained by ITLBO are plotted in 

Figure 1 and 2, respectively. 

 
Table 3. Results of all compared algorithms for the single diode model 

 Min value Max value Mean 

CLPSO 1.05672E-03 3.03829E-03 1.68858E-03 
CMA-ES 2. 32757E-03 2.26969E-02 6.14180E-03 

TLBO 9.87010E-04 1.78338E-03 1.29346E-03 
OTLBO 9.86026E-04 1.86989E-03 1.14239E-03 

GOTLBOJr=1.0 1.00684E-03 2.14982E-03 1.50696E-03 
ITLBO 9.86242E-04 1. 54205E-03 1.20547E-03 

 

Table 4. Results of all compared algorithms for the double diode model 

 Min value Max value Mean 

CLPSO 1.00720E-03 2.07598E-03 1.37731E-03 
CMA-ES 1. 41367E-03 8.26330E-03 3.89138E-03 

TLBO 9.96598E-04 2.31028E-03 1.35292E-03 
OTLBO 9.84070E-04 1.78645E-03 1.23906E-03 

GOTLBOJr=1.0 
9.94041E-04 2.68617E-03 1.45316E-03 

ITLBO 9. 83263E-04 1. 58900E-03 1.17138E-03 



8 FAN, ZHANG, and WANG 

 

 

 

Figure 1. Prediction results of the single diode model 

 

Figure 2. Prediction results of the double diode model 

6 CONCLUSION 
IN the current study, an improved teaching learning 

based optimization (ITLBO) is introduced. In ITLBO, 

the normal random number is used to enhance the 

search efficiency; the weighted average position of the 

current population is utilized to guide the evolution of 

each individual and enhance the global search 

capability. The main purpose of this study is to balance 

the convergence speed and population diversity during 

the evolutionary process. The performance of ITLBO 

is compared with that of the five algorithms on 25 30-

dimensional IEEE CEC2005 test functions. The 

simulation and statistical analysis results indicate that 

ITLBO can perform better than the other algorithms, 

especially when compared with the original TLBO and 

its variants. The local search capability of ITLBO is 

slightly worse than that of CMA-ES on some unimodal 

test functions. However, ITLBO outperforms CMA-ES 

on some complex optimization problems. In addition, 

the Sigma and improved teaching operator are studied 

in Subsections 5.2 and 5.3, respectively. The results 

show that the parameter sensibility is low and the 

proposed teaching process is effective.   

Besides the benchmark test functions, ITLBO is also 

utilized to estimate the parameters of two solar cell 

models. The results indicate that ITLBO performs 

better than, or at least comparably with, five meta-

heuristic algorithm. Therefore, ITLBO is an efficient 

and effective tool for solving real-world optimization 

problems.  

In the future work, more advanced machine learning 

methods would be used to improve the search 

efficiency of TLBO. Moreover, how to reduce useless 

computational cost in TLBO is also worth further study. 
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Appendix 
Table A1. Result of ITBLO and ITBLO variants 

Function 
ITLBO1 

Mean(Std) 

ITLBO2 

Mean(Std) 

ITLBO 

Mean(Std) 

F1 2.35E-29(6.32E-29)− 1.40E-27(1.47E-27)+ 5.77E-29(8.84E-29) 
F2 6.08E-16(1.96E-15)+ 2.00E-15(6.65E-15)+ 5.48E-17(8.83E-17) 

F3 6.42E+05(3.70E+05)≈ 8.76E+05(4.89E+05)≈ 7.09E+05(3.53E+05) 

F4 4.05E-02(9.46E-02)+ 2.75E-02(1.24E-01)+ 7.47E-04(1.96E-03) 

F5 1.99E+03(7.93E+02)≈ 2.09E+03(6.83E+02)≈ 2.02E+03(6.90E+02) 

F6 2.26E+01(3.13E+01)+ 1.66E+01(3.28E+01)+ 1.00E+01(2.78E+01) 

F7 2.05E-02(1.70E-02)≈ 2.36E-02(2.02E-02)≈ 2.32E-02(1.86E-02) 

F8 2.09E+01(3.91E-02)≈ 2.10E+01(3.39E-02)≈ 2.09E+01(5.67E-02) 

F9 7.55E+01(1.84E+01)+ 6.30E+01(1.66E+01)+ 5.43E+01(1.64E+01) 

F10 7.32E+01(2.48E+01)+ 6.58E+01(2.03E+01)+ 5.39E+01(2.27E+01) 

F11 2.71E+01(4.26E+00)≈ 2.82E+01(3.34E+00)≈ 2.83E+01(4.37E+00) 

F12 7.89E+03(8.55E+03)+ 2.88E+03(2.68E+03)≈ 3.28E+03(3.40E+03) 

F13 3.41E+00(9.05E-01)≈ 3.27E+00(9.19E-01)≈ 3.00E+00(5.62E-01) 

F14 1.27E+01(3.04E-01)≈ 1.29E+01(2.81E-01)≈ 1.27E+01(3.56E-01) 

F15 4.23E+02(7.83E+01)≈ 3.97E+02(8.09E+01)≈ 3.97E+02(8.92E+01) 

F16 1.96E+02(1.75E+02)≈ 2.02E+02(1.80E+02)≈ 1.93E+02(1.63E+02) 

F17 2.23E+02(1.34E+02)+ 2.44E+02(1.44E+02)+ 1.70E+02(1.35E+02) 

F18 8.93E+02(2.55E+01)≈ 8.80E+02(4.06E+01)≈ 8.86E+02(3.45E+01) 

F19 8.86E+02(3.45E+01)≈ 8.87E+02(3.45E+01)≈ 8.94E+02(2.56E+01) 

F20 8.97E+02(1.82E+01)≈ 8.83E+02(3.79E+01)− 9.00E+02(3.40E+00) 

F21 7.98E+02(3.21E+02)≈ 7.21E+02(2.93E+02)≈ 7.96E+02(3.29E+02) 

F22 9.12E+02(2.54E+01)≈ 9.10E+02(1.42E+01)≈ 9.04E+02(2.00E+01) 

F23 7.71E+02(2.70E+02)≈ 8.05E+03(2.99E+02)+ 7.13E+02(2.30E+02) 

F24 2.00E+02(1.75E-12)+ 2.00 E+02(1.81E-12)+ 2.00E+02(1.02E-12) 

F25 2.13E+02(4.66E+00)≈ 2.12E+02(2.60E+00)≈ 2.12E+02(2.58E+00) 

+ 8 9 
− 1 1 

≈ 16 15 

 

 

Table A2. Lower and upper boundaries of parameters in two solar cell models 

Parameter Lower bound Upper bound 
Iph(A) 

0 1.0 

Isd(µA) 
0 1.0 

Rs(Ω) 
0 0.5 

Rsh(Ω) 
0 100 

a 1.0 2.0 
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Figure A1. Rankings of ITLBO under different values of Sigma 

 

Figure A2. Rankings of ITLBO with different teaching process 

 


