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1 INTRODUCTION 
IN distributed systems, the load balancing 

mechanism is the key factor to achieve improved 
processing speed and optimum utilization of 
distributed resources. The application of fuzzy logic in 
designing load balancing algorithms is an attractive 
research approach in the presence of uncertainties. In 
distributed systems, fuzzy logic based load balancing 
approaches are used to balance overall workload in 
order to avoid generation of overloaded and under-
loaded nodes (Rajani et al., 2015; John et al., 2003). In 
general, fuzzy logic is composed of fuzzy sets and 
fuzzy rule-base to model and make decisions under 
uncertainties (Sabahi et al., 2016; Fu et al., 2009).  
The load balancing algorithmic outputs have a high 
level of uncertainties which can be benefitted from 
applications of fuzzy logical reasoning (Emami et al., 
1998). Fuzzy inference is a decision making process, 
which formulates mapping from a given input set to an 
output set by using fuzzy membership function (Seth 
et al., 2012). Membership functions are used in the 
fuzzification and defuzzification steps of a fuzzy logic 

based system to map crisp input values to fuzzy 
linguistic terms and vice versa. In fuzzy logic different 
types of membership functions are proposed by the 
researchers such as, triangular, trapezoidal, Gaussian, 
bell sigmoidal and polynomial functions (Garibaldi et 
al., 2003). However, most of the functions specified 
are non-smooth in nature and, in general are not 

∞C class. The non-smooth functions have sharp
boundaries which restrict the function from collecting 
fine grained information on continuous basis, because 
such functions are not differentiable everywhere. 
Therefore, loss of information affects the overall 
performance of a system.  

In order to overcome this problem, we have 
proposed a smooth and composite membership 
function in ∞C class, which is able to extract fine-
grained information providing flexible and robust 
analysis. A hybrid architecture for distributed load 
monitoring and balancing is proposed employing 
fuzzy logic and autonomous mobile agents. 
Furthermore, we have presented a comparative 
analysis of different load balancing algorithms to 
enable users to gain insight into applications of 

ABSTRACT 
Due to the rapid advancements and developments in wide area networks and 
powerful computational resources, the load balancing mechanisms in distributed 
systems have gained pervasive applications covering wired as well as mobile 
distributed systems. In large-scale distributed systems, sharing of distributed 
resources is required for enhancing overall resource utilization. This paper 
presents a comprehensive study and detailed comparative analysis of different 
load balancing algorithms employing fuzzy logic and mobile agents. We have 
proposed a hybrid architecture for integrated load balancing and monitoring in 
distributed computing systems employing fuzzy logic and autonomous mobile 
agents. Furthermore, we have proposed a smooth and composite fuzzy 
membership function in order to model fine grained load information in a 
system. The simulation study and a detailed qualitative as well as quantitative 
analysis of algorithmic performances are presented. Lastly, a deployment 
environment is described. 
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different algorithms under different computing 
environments.  

1.1 Motivation 
In large scale distributed systems, load balancing is 

the key factor for efficient utilization of resources and 
enhancing overall system performance. In the 
literature, a number of different load balancing 
approaches are employed, however, fuzzy logic based 
load balancing approaches have outnumbered the 
other approaches. The attractions of fuzzy logic based 
load balancing approaches are their inherent abilities 
to formulate nonlinear functions of arbitrary 
complexities (Seth et al., 2012). The researchers have 
proposed a two level fuzzy based approach for 
dynamic load balancing to characterize uncertainty in 
distributed systems (Ivanisenko et al., 2015). In this 
approach processor speed and the queue length of 
nodes are used to balance the load of nodes in cluster 
level. The computing capacity and average queue 
length of clusters are used to balance load of a cluster 
in cloud level by using fuzzy logical approach (Ali et 
al., 2016). This approach have achieved improved 
average response time and throughput. However, this 
approach causes high intercommunication cost 
between cloud load manager and cluster load manager 
in a system. In another approach, the researchers have 
proposed a fuzzy grouping technique which utilizes a 
membership graph representing the current status of 
CPU time and memory space for inferring service 
priority and load distribution (Ahn et al., 2007). This 
approach has achieved improved overall response time 
and throughput. However, this approach causes high 
overhead intercommunication, which is created by 
transmitting load information to load-collector 
frequently. 

In this paper, we have proposed a smooth and 
composite fuzzy membership function to collect fine 
grained information from the available nodes in a 
distributed system. We have also presented a hybrid 
architecture for load monitoring and balancing 
employing fuzzy logic as well as mobile agents. The 
main features of our proposed hybrid architecture are 
intelligent monitoring and decision making in a hybrid 
platform autonomously aiming high throughput and 
low response time in a system. 

The main contributions of this paper are as follows. 
• A detailed comparative study is presented

covering different fuzzy logic based load
balancing algorithms as well as applications
of mobile agents in load monitoring in
distributed systems.

• We have proposed a novel fuzzy
membership function for collecting fine-
grained information of nodes for decision
making and load monitoring in our
hybridized model.

• A hybrid architecture is designed to monitor,
estimate and distribute load in a large-scale

distributed system to achieve load-balancing 
with autonomy.  

• A detailed comparative analysis of various
algorithmic performances is presented by
considering fuzzy logic based as well as
traditional (non-fuzzy) algorithms.

Rest of the paper is organized as follows. Section 2 
illustrates load balancing algorithms and software 
agents. Section 3 presents load monitoring using 
agents. Section 4 represents fuzzy logic based load 
balancing architectures. Section 5 presents designing 
of smooth functions and hybrid architecture. A 
detailed comparative analysis of different load 
balancing algorithms is presented in section 6. Section 
7 presents implementation directions. Lastly, section 8 
concludes the paper. 

2 TAXONOMY OF LOAD BALANCING 
ALGORITHMS 

IN general, load balancing approaches are divided 
into two main categories such as, static load balancing 
and dynamic load balancing (Rajani er al., 2015; 
Ivanisenko et al., 2015). The taxonomy of load 
balancing approaches is illustrated in Figure 1. 

Static load balancing approaches use statistical 
information for decision making purposes. This 
approach works with fixed number of processes 
known at compile time. Furthermore, static load 
balancing algorithms are divided into two types such 
as, probabilistic and deterministic algorithms. In 
probabilistic approaches, attributes of the systems are 
used while in deterministic approaches the 
characteristics of processes and properties of nodes are 
used. In deterministic approaches optimization is 
difficult and costs are comparatively higher 
(Ivanisenko et al., 2015). 

On the other hand, in dynamic load balancing 
(DLB), decisions are based on the current state of the 
systems (i.e. system load) and the number of processes 
are not fixed (El-Abd, 2002; Khan et al., 2015). As 
illustrated in Figure 1, DLB is further divided into 
centralized and distributed load balancing algorithms. 
In centralized load balancing, all nodes share their 

Figure 1. Taxonomy of load balancing 
approaches in distributed systems 
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load information with one single node (master or 
coordinator) for making the load balancing decisions. 
In distributed load balancing, the load balancing 
algorithm is implemented by replicating it on all the 
nodes in a system (Naaz et al., 2010). From the 
functional point of view, the distributed load 
balancing is divided into local and global load 
balancing algorithms. In local load balancing 
algorithm, the decisions of load balancing are limited 
to a single group. However, in global load balancing 
algorithm, the scope of decision making is not limited 
to a certain group of network nodes. Furthermore, in 
terms of decision-making process, the global load 
balancing algorithm can be cooperative (each node in 
distributed systems cooperates with each other to 
make load balancing decisions) and non-cooperative 
(each node in distributed systems is autonomous and 
load balancing decisions are made independently).  

3 LOAD MONITORING USING AGENTS 
SOFTWARE agents are emerging technological 

entities capable of autonomously managing and 
maintaining distributed systems (Nwana, 1996). 
Software agents are goal oriented and act accordingly 
for achieving user’s goals (Long et al., 2011; Horvat et 
al., 2000). Functional classification of software agents 
is illustrated in Figure 2. It is shown that different 
agents have different inherent behavioral properties 
such as autonomy, learning and, cooperation as 
explained by (Franklin et al., 1996; Wooldridge et al., 
1995). 

 

Figure 2. Functional classification and properties of agents 

Agent-based load monitoring is employed in 
distributed systems for enhancing system efficiency 
and for better resources utilization. Researchers have 
proposed different approaches for load monitoring in 
distributed systems (Brandt et al., 2009; Jiang et al., 
2015). However, in this paper, we will be focusing 
only on agent-based monitoring systems. Following 
are the most relevant approaches we have considered 
specifically for this paper.  

3.1 Agent-based monitoring using fuzzy logic 
Funika W. et al. have proposed agent-based 

monitoring using fuzzy logic and rule base. In this 
approach, monitoring is done by Semantic-based 
Autonomous Monitoring and Management system 
(SAMM) (Funika et al., 2011). The administrators are 
provided a GUI interface for controlling and 
monitoring agents. In SAMM system, agents can 
exchange information with each other by 
intercommunication. In SAMM-CA system, there are 
five modes of operations with slightly different 
functional capabilities. Schematic diagram of SAMM-
CA design is illustrated in Figure 3 as proposed in 
(Funika et al., 2011). 

 

Figure 3. Schematic diagram of SAMM-CA 

3.2 Agent-based adaptive monitoring 
The agent based adaptive monitoring system is 

based on agents and multi-layered framework 
consisting of communication layer, interpreter layer 
and, management layer (Kwon et al., 2006). The 
function of communication layer is to manage 
protocol components (HTTP, Custom and Multicast); 
exchange of messages is performed by interpreter 
layer by using appropriate query components. The 
agent management layer is responsible for controlling 
the lifecycle of agents and the actual execution of 
tasks according to user’s requests. The schematic 
diagram of the multi-layered framework is illustrated 
in Figure 4 as proposed in (Kwon et al., 2006). 

4 FUZZY LOGIC BASED LOAD BALANCING 
ARCHITECTURES 

IN this section, we have studied different fuzzy 
logic based load balancing approaches by using 
distributed and centralized methods. 
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Figure 4. Schematic diagram of Multi-layered framework 

4.1 Fuzzy load balancing for homogeneous 
distributed systems 

Alakeel M. A. et al. have proposed a fuzzy 
dynamic load balancing approach for homogenous 
distributed systems. The usage of fuzzy logic is to deal 
with inaccurate load information while making the 
load distribution decisions and maintaining overall 
system stability (Alakeel, 2012). This approach 
specifies how, when and by whom (which node) load 
balancing mechanism is implemented. For obtaining 
the current load of the system, load balancer nodes 
broadcast request message to all the connected nodes 
for determining their current status. Load balancer 
assigns a fuzzy membership value to the load of 
individual node including itself in the interval of [0, 
1]. The fuzzy membership values are assigned 
according to the relative load of the node to the overall 
system load. The assignment of the fuzzy membership 
value is achieved by forming a fuzzy set defined as, 
LOADED = {light, normal, heavy} representing the 
respective load of a system. This mapping is 
performed by considering the probability of migrating 
a task from an overloaded node to an under-loaded 
node (Giarratano, 1989).  

4.2 Fuzzy load balancing for heterogeneous 
distributed systems 

Karimi A. et al. have proposed a dynamic load 
balancing algorithm based on fuzzy logic (Karimi et 
al., 2009). The algorithm considers distributed 
network consisting of n nodes where each node is a 
complex combination of multiple types of resources 
(memory, CPUs, disks and switches etc.). All the 
nodes in the distributed network are heterogeneous in 
configuration settings such that, configurations of the 
resources at one node are different from the 
configurations of the physical resources of the other 
nodes. The proposed system model is consisting of 
routing table, load index, cost table and a fuzzy 
controller as illustrated in Figure 5 (Karimi et al., 
2009). 

 
The routing table is used to store the information 

about communication links between the nodes in the 
system. The load values of the nodes are indicated by 
the load index. In order to deal with load imbalances, 
the researchers have proposed four policies governing 
the actions of load balancing which are, information 
policy, transfer policy, location policy and selection 
policy (Karimi et al., 2009). In order to determine the 
node status such as, receiver, sender or neutral, a 
fuzzy rule-based controller is proposed. The cost table 
is used to provide information regarding 
communication costs and the number of heavily 
loaded nodes. Load index and routing table are used to 
compute the cost table and, the heavily loaded nodes 
are extracted from the obtained cost table. The 
threshold value of load index is classified into five 
categories, which are mapped between 0 to w and 
threshold is fixed at s (where w is the maximum value 
of load index and s is the threshold value) (Karimi et 
al., 2009). Authors have considered five different 
fuzzy levels to describe the fuzzy load index values 
represented as, very lightly loaded, lightly loaded, 
moderately loaded, heavily loaded and very heavy 
loaded. The proposed dynamic load balancing 
algorithm employing fuzzy logic shows significantly 
better response time than the round robin and 
randomized algorithms (Karimi et al., 2009). 

4.3 Fuzzy load balancing for centralized system 
Researchers have proposed hierarchical 

architecture and centralized method for load balancing 
using fuzzy logic (Moosavi et al., 2011). In centralized 
load balancing method, communication overload from 
data collection is considerably decreased. In the 
proposed architecture, load balancing task is divided 
into two levels: (1) group level global manager and, 
(2) local manager at the node level, as illustrated in 
Figure 6 (Moosavi et al., 2011). 

 

Figure 5. Schematic diagram of dynamic system model 
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Figure 6. Schematic diagram of hierarchical architecture 

The node, acting as local manager functions as a 
designated representative of its own group, performs 
load balancing tasks and communicates with other 
local managers. Nodes in each group only interact 
with its own group managers. Global managers will 
communicate with designated representatives 
(managers) of each group. In the proposed algorithm, 
weight assignment is done on two levels such as, 
global level and local manager levels. First, the global 
manager will send tasks to local managers and then 
local managers will send tasks to nodes in the 
respective groups based on weight assignments. The 
fuzzy controller is responsible for weight assignment. 
The criteria for assigning the weights are based on two 
variables i.e. current load and waiting time of the last 
processed task. The load balancing process is handled 
in three stages such as, (1) Data Collection Stage, (2) 
Weight Assignment Stage and, (3) Distribution Stage 
(Moosavi et al., 2011). In the proposed model, current 
load and the waiting time information about last 
processed task in each node are considered as input to 
fuzzy controller. The result of the proposed algorithm 
shows that it has improved performance as compared 
to static and dynamic algorithms in terms of Drop 
Rate, Throughput and Response Time (RT). 

4.4 Fuzzy load balancing for multi-level 
centralized architecture 

Barazandeh I. et al. have proposed a fuzzy logic 
based control approach to reflect global state of 
uncertainty in load distribution decisions (Barazandeh 
et al., 2009). The proposed model is hierarchical in 
structure and centralized in type. The input variables 
to fuzzy controller are current load and waiting time of 
last completed task. The fuzzy controller infers 
specific weights called bias as output (Barazandeh et 
al., 2009). The migration of loads is based on the 
computed biases. In their design structure, load 
balancing is done into two levels such as, (1) Group 
level by Global Load Balancer (GLB), and, (2) Node 
level by Local Load Balancer (LLB), as illustrated in 
Figure 7 (Barazandeh et al., 2009).  The multi-level 
model is significantly better in load management and 
it reduces the communication overhead. In the 
proposed model, every group contains one node which 

is called Designated Representative (DR). This DR 
node is responsible for local load balancing and it 
communicates with Global Load Balancer (GLB). In 
each group, nodes will only connect and communicate 
to their own group’s DR. GLB is connected to the 
designated representative of each group. Mechanisms 
of load balancing are centralized at both levels. In the 
beginning of biasing, a set of new fuzzy rule-based 
biases are produced based on the collected information 
from both groups and nodes in the system. GLB 
distributes the arrived tasks in groups based on group 
biases. Once the tasks arrived at each DR of the group, 
they are distributed among all the nodes in that 
particular group according to biases of nodes. In the 
proposed model each DR maintains a control box 
which is used for fuzzy based biasing. It means that 
only DR nodes implement biasing in this model 
(Barazandeh et al., 2009). 

 

Figure 7. Schematic diagram of multi-level architecture 

5 DESIGNING SMOOTH FUNCTIONS AND 
HYBRID ARCHITECTURE 

5.1 Designing smooth composite function 
A fuzzy membership function maps a set of input 

values into an interval set, where the sets are crisp. 
The degree of membership values varies in between 
[0, 1], which is known as membership grade 
(Barazandeh et al., 2009). In the proposed model we 
have formulated a smooth composite fuzzy 
membership function in ∞C  class. A smooth function 

)(xf  is continuous at point a  if 

)()(lim afxf
ax

=
→

 and )(xf  is continuously 

differentiable on a set X  representing a ∞C  class. It 
means that, Xa∈∀  the Taylor expansion of 

)( axf =  exists and, ),(|)( +∞−∞∈=ax
n xfD , 

where }0{∪∈ +Zn . The proposed membership 
function is designed to solve the problem of load 
balancing in distributed systems by equalizing load 
among all the nodes. In order to distribute load, our 
composite membership function collects fine grained 
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information from all the nodes and, maps into unit 
intervals following smooth composite function. The 
proposed composite membership function is given 
below.  

Let a real-valued function be represented as, 
}0{)(: ∪→⊂ +RRAf  where, 

 
}30:{

|,sin|)(
π≤≤=

=∈
xxA

xAxf   (1) 

Let a second real-valued function be given by,  

 

}2/52/:{
|,cos|)(

},0{)(:

ππ ≤≤=
=∈

∪→⊂ +

xxB
xBxg
RABg

  (2) 

The smooth and composite fuzzy membership 
function is generated as, 

 
)()()(

],1,0[:
BgAfA

A
∪=

→
µ
µ  (3) 

The composite profile of fuzzy membership function 
is given in Figure 8. In the proposed membership 
function there are overlapping regions. The 
importance of these overlapping regions is to give 
robustness to the controller to fire at least one rule for 
each possible input. In addition, overlapping regions 
are important for completeness. The completeness of a 
fuzzy set is represented by total overlap 0>ω  
describing the characteristics of a reference set. When 
the  ω  value is decreased, the partition of the 
universe of discourse of fuzziness is also decreased. 
The decrease in completeness level causes inefficient 
control because greater region of universe of discourse 
will be prone to larger set of activated rules. The 
cross-over points between two overlapping smooth 
functions are computed as given below,  

  
}0{\))()((

),(
BgAfE

AE
∩=

⊂ µ  (4) 

The entire overlapping area can be computed as, 
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5.2 Creating rule-base  
The fuzzy rule-base (FRB) system creates a set of 

rules in the form of (if-then) statements for generating 
control outputs. In fuzzy rule-base, if part is known as 
antecedent, and then part is called consequent (Jeong 
et al., 2004). In our rule-base system we have two 
antecedent covering resources such as, CPU and 
RAM. However, the linguistic terms in our rule base 
system are: very_lightly_loaded, lightly_loaded, 
moderately_loaded, highly_loaded and 
very_highly_loaded. The corresponding consequent 
linguistic terms are: no_migrate, calculate_again and, 
migrate_load. Fuzzy reasoning (if-then) rules have 
two basic features. In our proposed model the first rule 
will partially match input data to make an inference. 
In the second step, fuzzy inference system will 
combine all the conclusions of the employed rules to 
form a final outcome. A set of inference rules of our 
proposed model is defined in Table 1. 

The fuzzy inference rules and membership 
functions are the processes to carry out the 
fuzzification and defuzzification. The inference rules 
illustrated in Table 1 show a decision process that is 
generated based on both antecedents.  

5.3 Hybrid architecture  
The proposed system architecture following 

hybridization of mobile agents and fuzzy logic based 
load balancing framework is illustrated in Figure 9. 
The proposed model is distributed in nature, such that 
it employs load distribution in a distributed manner by 
replicating the control algorithm on each and every 
node. The replication will remove the bottleneck and a 
single point of failure. All nodes in the distributed 
systems will monitor and balance their local workload 
accordingly. Moreover, the combination of fuzzy logic 

 

 

Figure 8. Composite fuzzy membership function 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  7 

 

Table 1. Fuzzy inference rules 

 CPU 

RAM VH H M L VL 
VH NM NM NM NM CA 
H NM NM NM CA ML 
M NM NM CA ML ML 
L NM CA ML ML ML 

VL CA ML ML ML ML 
Legends: VH: very_highly_loaded, H: highly_loaded, M: 
moderately_loaded, L: lightly_loaded, VL: very_lightly_loaded, 
ML: migrate_load, CA: calculate_again, NM: no_migrate. 
 

 
 
and mobile agents forms a hybrid model. In the hybrid 
model, the fuzzy logic will make decisions and mobile 
agents will collect systems load information in 
distributed environment. The key components of our 
proposed model are: Mobile agents, Fuzzy logic 
controller (FLC) and Load distribution module. The 
mobile agent is used to collect the current load, 
searching and discovering of resources, to update 
status information about connecting network links 
and, to perform monitoring for potential nodes 
entering or leaving the system autonomously. 

On the basis of status information collected from 
mobile agents, the fuzzy controller module will take 
intelligent decisions for load balancing. The load 
distribution module is used to migrate the load to 
under-loaded nodes. Load distribution module is 
acting accordingly on the decision made by the fuzzy 
controller for transferring the load. In our proposed 
model, if at any instant a node gets overloaded, then 
the mobile agent will autonomously execute to collect 
the current status of all the nodes for making load 
distribution decisions. The key characteristics of our 
proposed architecture are intelligent monitoring and 
decision making in a hybrid platform autonomously 
aiming high throughput and low response time in a 
system. The proposed architecture aims to yield high 
throughput and low response time based on the 
following design parameters: (a) mobile agents are 
used to determining the current status (load 
monitoring) of the available nodes, (b) load balancing 
decisions are made by a fuzzy logic controller which 
gives the precise result according to the status of the 
nodes and, (c) the proposed model is based on 

distributed approach i.e. each node will make their 
own decision regarding load balancing reducing 
response time and increasing throughput. 

5.4 Deployment model of mobile agents  
The proposed deployment model for mobile agent 

based monitoring system is illustrated in Figure 10. In 
our deployment model, we have one monitoring node 
and four client nodes. The monitoring node 
communicates with client nodes to monitor their 
current load status. Mobile agents collect the current 
status information and send a response message to 
monitoring node. After sending the status information 
the mobile agent will migrate to the next node 
autonomously.  
 

 

The mobile agents migrate to the next node 
depending on node availability. If a node is added or 
removed their updated status information are 
maintained in a database. Unlike traditional load 
monitoring approaches, our proposed agent based 
monitoring system enable mobile agents to efficiently 
collect status information of a node and send this 
information immediately to monitoring node. The goal 
of our proposed approach is to reduce the 
computational time as well as waiting time to improve 
the overall system performance.   

5.5 Simulation study 
A simulation study of the designed fuzzy system is 

conducted to evaluate the response profiles. In this 
section, the experimental setup is described generating 
random load by two synthetic benchmarks (Heavy 
Load and CPU stress). The instantaneously available 
CPU and RAM resources are fed into fuzzyfication 
module to generate inference rule sequences according 
to rule-base. The simulation is evaluated for five 
different levels of quantization such that, VL: from 0 
up to 0.20, L: from 0.21 up to 0.40, M: from 0.41 up 
to 0.60, H: from 0.61 up to 0.80 and, VH: from 0.81 

Figure 9. Fuzzy logic and mobile agent based hybrid 
architecture 

Figure 10. Deployment model of mobile agent monitoring 
system 
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up to 1. The snapshot of rule firing sequences under 
random load generation events are illustrated in 
Figures 11, 12, 13, 14 and, 15, respectively. In the 
figures, Y-axis represents decision logic from rule-
base, where 1: ML, 2: CA and, 3: NM. The simulation 
is conducted in five sets. Each simulation experiment 
is conducted for 30 minutes to measure the rule firing 
sequences under synthetic benchmarks. 
 

 
 

 
 

 
 

 

 
 

 

5.6 Comparative analysis 
The performance of different algorithmic 

approaches such as, centralized, distributed and hybrid 
vary considerably. Therefore, it is important to 
analyze the factors which are affecting the efficiency 
and performance of the distributed load balancing 
algorithms (Cheung et al., 2001). Table 2 illustrates 
the comparative analysis of different fuzzy based load 
balancing approaches by considering different 
parameters, where the respective data are gathered, 
filtered and compared from (Alakeel, 2016; Cheung et 
al., 2001; Karimi et al., 2009; Ivanisenko et al., 2015; 
Ahn et al., 2007). In order to measure the efficiency of 
the fuzzy load balancing algorithms several different 
indicators/parameters are determined, which are 
explained below. 

5.7 Parametric discussions 

5.7.1 Overhead 
The overhead is used as parameter to measure the 

amount of computation done by any load balancing 
algorithm involving inter-process communication and 
task migration. In centralized load balancing 
approach, majority of algorithmic overhead is L 
(Low). This is because, the centralized approach uses 
single node or master node for load balancing, which 
reduces the communication overhead between nodes. 
In distributed load balancing approach, the ratio of 
overhead is 50% L (Low) and 50% H (High). The 
high overhead is due to inter-nodal communication to 
select appropriate node for load migration. In hybrid 
load balancing approach, majority of algorithmic 
overhead is M (Medium). This is because, in a hybrid 
approach, a distributed system is segmented into 
groups. The control within each group of nodes is 
centralized and, the load balancing is distributed 
globally in a system among the groups. The use of 
group-wise central node is the main reason for 
introducing overhead in hybrid load balancing 
approach. 

 

Figure 13. Variation of rule firing sequence (set 3) 

Figure 11. Variation of rule firing sequence (set 1) 

Figure 14. Variation of rule firing sequence (set 4) 

Figure 12. Variation of rule firing sequence (set 2) 

Figure 15. Variation of rule firing sequence (set 5) 
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Table 2. Comparative analysis of different fuzzy load balancing 
algorithms 

Comparative Analysis of Load Balancing Algorithms 

 

 

Parameters 

Centralized Distributed  Hybrid 

R
R
A-
IF
C 

R
A
-
I
F
C 

C
o
m
-
IF
G
S 

Si
m-
IF
G
S 

F
A
-
T
L
F
A
  

R
R
A
-
D
O
C 

R
A
-
D
O
C 

F
A
-
D
O
C 

F
E
S
A-
D
LB
A 

F
A
-
H
D
S 

S
A 

T
A 

R
A 

Overhead H H L L L H H L L M M L H 

Throughput L L H H H L L H H H M M L 

Process 
Migration 

H M M M M L H H H H M M H 

Response 
Time 

M L H M L L L H H L H H H 

Resource 
Utilization 

L L M M H L L H H H M L L 

Fault 
Tolerance 

L L L L L M L H H M M M L 

Waiting 
Time 

M H L L M L H L L L × L H 

Scalability M L L M L H × H H L × × × 

Performanc
e 

M L H M H M L H H H M H L 

Reliability  L L L L M M L H H H × M × 

 
Legends: H: High, L: Low, M: Medium, ×: not determined, 
RRA-DOC: Round Robin Algorithm in Distribute Object 
Computing, RA-DOC: Random Algorithm in Distribute Object 
Computing, RRA-IFC: Round Robin Algorithm Intelligent 
Fuzzy Controller, Com-IFGS: Complex Intelligent Fuzzy 
Grouping system, Sim-IFGS: Simple Intelligent Fuzzy Grouping 
System, FA-TLFA: Fuzzy Algorithm in Two Level Fuzzy 
Approach, RA-IFC: Random Algorithm in Intelligent Fuzzy 
Controller, FA-DOC: Fuzzy Algorithm in Distributed Object 
Computing, FESA-DLBA: Fuzzy Enhance Symmetric 
Algorithm in Dynamic Load Balancing Algorithm, FA: Fuzzy 
Algorithm in Hybrid Dynamic System, SA: Shortest Algorithm, 
TA: Threshold Algorithm, RA: Random Algorithm. 

5.7.2 Throughput 
Throughput parameter is used to compute the total 

number of tasks whose executions have been 
completed successfully. Therefore, higher throughput 
of an algorithm indicates higher performance of the 
overall system. In centralized load balancing 
approach, majority of algorithmic throughput is H 
(High). Because the master node contains prior 
information of current load status of all the nodes and 
their rapid distribution results in a high throughput of 
a system. In distributed load balancing approach, the 
ratio of throughput is 50% L (Low) and 50% H 
(High). In hybrid load balancing approach, the 
majority of algorithmic throughputs are M (Medium). 
This is because the reselection of the centralized node 

for load balancing affects the throughput of the 
system. 

5.7.3  Process Migration 
Process migration indicates transfer of a task from 

one node to another node on demand. Reduction in 
migration time enhances the system performance. In 
centralized load balancing approach, the majority of 
load balancing algorithms employ process migration 
in category M (Medium). This is because only the 
master node is responsible for load migration 
however, efficient load migration depends on the 
number of nodes in a distributed system. In distributed 
load balancing approach, majority of algorithms 
perform process migration in category H (High). This 
is because each node handles load balancing locally, 
which increases process migration frequency. In 
hybrid load balancing approach, the ratio of process 
migration is 50% H (High) and 50% M (Medium). 
Hence, it is observed that lesser the number of nodes 
in a group, higher the efficiency of process migration. 

5.7.4 Response Time 
Response time determines the time taken to 

complete a task by the load balancer. For better 
system performance, response time must be kept low. 
In centralized load balancing approach, the ratio of 
response time is 50% L (Low) and 50% M (Medium). 
The response time depends on scale of the overall 
system; if the number of nodes is high then the 
response time will be low. Thus, the overall response 
time will degrade, when the master node processes 
more requests in case of high number of nodes. In 
distributed load balancing approach, the ratio of 
response time is 50% H (High) and 50% L (Low). 
Selecting appropriate node for load transfer would 
consume computational time. In the hybrid approach, 
the majority of algorithmic response time is in 
category H (High).  

5.7.5 Resource Utilization 
In order to get the better performance from the 

overall system, the algorithm must ensure the 
appropriate use of all the system resources. In 
centralized load balancing approach, the ratio of 
resource utilization is 50% L (Low) and 50% M 
(Medium). The resource utilization efficiency depends 
on the number of nodes in a system and the 
corresponding network saturation. In distributed load 
balancing approach, the ratio of resource utilization is 
50% L (Low) and 50% H (High). The 50% L (Low) 
category indicates that some of the resources are 
wasted for searching receiver node. In hybrid load 
balancing approach, majority of algorithmic resource 
utilization is in category L (Low). Once again, the 
resources are wasted on reselection of master node, 
which reduces the efficiency of resource utilization. 
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5.7.6 Fault Tolerance 
Fault tolerance metric measures the ability of an 

algorithm to work continuously and to perform load 
balancing uniformly in the event of some failures. An 
algorithm is said to be efficient if a minor fault cannot 
degrade the performance of an algorithm. In 
centralized load balancing approach, all algorithmic 
fault tolerance is in category L (Low) because of the 
presence of a single point of failure. Hence, 
effectively there is no fault tolerance mechanism in 
centralized load balancing approach. In distributed 
load balancing approach, the majority of algorithmic 
fault tolerance is in category H (High). There is no 
single point of failure in the system and, the load 
balancing is done by every node. In hybrid load 
balancing approach, majority algorithmic fault 
tolerance is in category M (Medium). As each group 
nominates master node for load balancing, thus if a 
node crashes then the new master node will be 
nominated. The crashed master node would result in 
data loss however, the whole system would not crash. 

5.7.7 Waiting Time 
Waiting time determines the time period spent by a 

task in ready queue. Minimum the waiting time better 
the system performance. In centralized load balancing 
approach, the ratio of waiting time is in 50% L (Low) 
and 50% M (Medium) categories, because a large 
number of tasks would wait in the ready queue for 
some time. In distributed load balancing, majority of 
algorithmic waiting time is in L (Low) category. 
When a node becomes overloaded, it would search for 
another suitable node to transfer the load. Hence, there 
is no waiting time for tasks in distributed load 
balancing approach. In hybrid approach, majority of 
algorithmic waiting time is in L (Low) category. If the 
size of a group is kept small and the master node has 
prior information about nodes, then efficient task 
migration occurs to realize load balancing within a 
group. 

5.7.8 Scalability 
Scalability is the ability of an algorithm to provide 

optimized results in a system comprised of a finite 
number of nodes. A system is scalable if despite of 
gradual increase in the number of nodes, the algorithm 
continues to perform uniform load balancing. Highly 
scalable algorithm will result in reliable and stable 
system. In centralized load balancing approach, 
majority of algorithmic scalability is in L (Low) 
category. There is no restriction on adding or 
removing of nodes in a system. In distributed load 
balancing approach, majority of algorithmic 
scalability is in H (High) category. If the number of 
nodes is increased, then only the inter-nodal 
communications would increase in distributed load 
balancing systems. If a node is removed from the 
system then it will not affect the overall system. In 

hybrid load balancing approach, scalability is in L 
(Low) category, because the network is segmented 
into groups and the master node is assigned to each 
group. If the number of nodes in a system increases, 
then network is re-segmented into groups so that each 
group contains nearly equal number of nodes. 

5.7.9 Performance 
Performance parameter is used to check the overall 

efficiency of a system. In centralized load balancing 
approach, the ratio of performance is 50% H (High) 
and 50% M (Medium) categories. Performance metric 
is dependent on various parameters such as number of 
nodes, average response time and waiting time etc. In 
distributed load balancing approach, majority of 
algorithmic performances are in H (High) category, 
whereas in hybrid load balancing approach, the 
majority of algorithmic performances are in H (High) 
category. 

5.7.10 Reliability 
Reliability is used to measure the system stability. 

In centralized load balancing approach, majority of 
algorithmic reliability are in L (Low) category due to 
the existence of single point of failure in the system. 
In distributed load balancing approach, majority of 
algorithmic reliability are in H (High) category, 
because the failure of one or more nodes will not 
cause failure of the entire system. In hybrid load 
balancing approach, the ratio of reliability is in 50% H 
(high) and 50% M (Medium) categories, because if the 
selected master node fails then another master node 
would be re-elected. 
 

 

5.8 Analysis of algorithmic performances 
In this section we will quantitatively analyze 

different algorithmic performance in Centralized, 
Distributed and Hybrid load balancing approaches 
presented in (Kwork et al., 2004; Ahn et al., 2007; Ali 
et al., 2016). The comparative studies are performed 
based on normalized response time and throughput. 
Comparison of average response time for round robin 
and random algorithms in centralized approach is 
illustrated in Figure 16. In order to distribute load in 
round robin algorithm, the master or server node 

Figure 17. Avg. response time of Complex-IFGS, Simple-
IFGS and FA-TLFA in centralized approach 
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distributes load in round robin cycles. In this approach 
using the distributed system, the average response 
time is dependent on the number nodes such that 
increasing the number of nodes will decrease the 
average response and vice versa. In randomized 
algorithm, the server node distributes load randomly 
without any prior information about the status of 
nodes in a distributed system. However, there is a 
probability of already overloaded nodes and sending 
extra load to those nodes will worsen the load balance. 
For this reason the average response time of the 
randomized algorithm is higher than the round robin 
algorithm.  In Figure 17, we have compared the 
performance of complex-IFGS (com-IFGS), simple-
IFGS (sim-IFGS) and Fuzzy logic based algorithm FA 
(TLFA), where the respective data are gathered, 
filtered and compared from (Ahn et al., 2007; Ali et 
al., 2016).  In case of complex-IFGS and simple-
IFGS, the average response time is nearly equal. 
However, average response time of complex-IFGS is 
slightly better than simple-IFGS. In case of FA 
(TLFA) the average response time is improved, 
because in this approach two levels of load balancing 
is used which reduces the average response time. Due 
to two levels load balancing, FA (TLFA) outperforms 
complex-IFGS and simple-IFGS algorithms as shown 
in Figure 17. 
 

 
 

In Figure 18, the comparison of throughput is 
illustrated for round robin algorithm (RRA) and 
randomized algorithm (RA), where the respective data 
are gathered, filtered and compared from (Saxena et 
al., 2012; Kwork et al., 2004; Ahn et al., 2007; Ali et 
al., 2016). As illustrated in Figure 18, the performance 
of randomized algorithm is aperiodic and tends to 
overshoot or undershoot with respect to the number of 
nodes. In comparison, the throughput of round robin 
algorithm is better than the randomized algorithm. 
This is because, in randomized algorithmic approach 
the load is distributed randomly and if a node is 
overloaded then it will degrade the performance. 
 

 
 

In Figure 19, the comparison of complex-IFGS, 
simple-IFGS and, Fuzzy algorithmic throughput is 
illustrated, where the respective data are gathered, 
filtered and compared from (Ahn et al., 2007; Ali et 
al., 2016). The graph shows that, in complex-IFGS 
and simple-IFGS the throughput values are almost 
equal. In comparison, the throughput of fuzzy 
algorithm (FA-TLFA) is high, because the fuzzy 
algorithm is using two levels of fuzzy load balancing 
approach. In level 1, the system is segmented into 
groups and every group has its own local load 
balancer. In level 2, only the local load balancers will 
communicate with the global load balancer. Thus the 
communication overhead is reduced and it results in 
an increase in the overall performance as well as 
efficiency of the system. 
 

 

Figure 20 illustrates the comparison of average 
response time for round robin and fuzzy logic based 
algorithms for distributed load balancing, where the 
respective data are gathered, filtered and compared 
from (Kun-Ming et al., 2004; Karimi et al., 2009). In 
distributed load balancing approach, load balancing 
algorithm is replicated on all the nodes. By comparing 
fuzzy based algorithm with round robin algorithm, the 
graph indicates that fuzzy based algorithmic response 
time is better than the round robin algorithm, because 
in fuzzy algorithm load distribution takes place in an 
intelligent manner. It means that based on prior status 
information, the underloaded nodes accept additional 
load and vice versa. In contrast, in round robin 
algorithm the load is distributed without knowing the 
current status of nodes. Thus, the performance is 
dependent on the current load status of a node such 

Figure 16. Variations of response time of round robin and 
random algorithm in centralized approach Figure 19. Throughput comparison of Complex-IFGS, Simple-IFGS 

and FA-TLFA in centralized approach 

Figure 18. Throughput comparison of Round Robin and 
Randomized Algorithm in centralized approach 
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that transferring load to an underloaded node will be 
optimal. 
 

 

 

Figure 21 illustrates the comparison of average 
response time with respect to number of tasks for 
fuzzy (FA-DLB), randomized (RA-DLB), fuzzy 
enhanced symmetric algorithm (FESA-DLBA) and 
randomized algorithms (RA-DLBA), where the 
respective data are gathered, filtered and compared 
from (Cheung & Kwok, 2001; Cheung, 2001). In 
comparison between fuzzy (FA-DLBA) and 
randomized (RA-DLB) algorithms, the fuzzy-based 
algorithm performs better, because fuzzy logic based 
system computes the number of heavily loaded nodes 
in order to determine the status of each node in a 
system. Randomized algorithm randomly assigns tasks 
to nodes irrespective of the status of nodes and causes 
performance degradation. In conclusion, the fuzzy 
logic-based algorithm shows better performance than 
the randomized algorithm. 
 

 

 

 

 

 

The comparative study of variations of normalized 
response time of round robin algorithm in centralized 

and distributed approach is illustrated in Figure 22, 
where the respective data is obtained from (Ahn et al., 
2007; Ali et al., 2016; Cheung, 2001; Kun-Ming et al., 
2004). In case of round robin algorithm in centralized 
approach, normalized average response time sharply 
decreases when the number of nodes increases. In 
centralized approach, master node is responsible for 
load distribution by maintaining a cost table 
containing the current load information of all the 
nodes. In distributed approach the average response 
time is dependent not only to increasing the number of 
nodes but also on the current load status. There is a 
probability that if there is an increase in the number of 
nodes but if they are not overloaded, then the average 
response time will not increase. Conversely, if there is 
increase in the number of nodes as well as in the load, 
then the average response time will increase. 

The comparative study of variations of normalized 
response time of fuzzy logic based algorithms in 
centralized and distributed approach is illustrated in 
Figure 23, where the respective data are gathered, 
filtered and compared from (Ahn et al., 2007; Ali et 
al., 2016; Cheung, 2001; Kun-Ming et al., 2004). In 
the centralized approach there is an exponential decay 
in the average response time with respect to increase 
in the number of nodes, because in the centralized 
approach only the master node is responsible for load 
balancing. If a node is overloaded it will only send a 
request to the master node. The master node will 
search for an appropriate node for load balancing. 
Thus, the centralized load balancing reduces 
communication overhead as well as average response 
time. In distributed approach load balancing is 
performed on every available node. If a node is 
overloaded then it will contact all the nodes for 
migrating the extra load. The optimal migration 
depends upon the number of nodes in the system. If a 
node takes less time to search an appropriate node 
then the average response time is less because of less 
communication overhead and vice versa. 
 

 
In Figure 24, the comparative study of variations of 

average response time of fuzzy logic based algorithms 
in centralized, distributed and hybrid approaches are 
illustrated, where the  respective data are gathered, 
filtered and compared from (Alakeel, 2016; Ali et al., 

Figure 20. Comparison of avg. response time with 
respect to number of nodes in distributed approach 

Figure 22. Comparison of avg. response time with respect 
to number of nodes in centralized and distributed 
approach 

Figure 23. Comparison of avg. response time with 
respect to number of nodes in centralized and 
distributed approaches 

Figure 21. Comparison of avg. response time with 
respect to number of tasks in distributed approach 
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2016; Cheung, 2001). In comparison to centralized 
approach, the average response time increases 
gradually in distributed and hybrid approaches. In the 
hybrid approach, load balancing is performed in 
centralized manner but the master node is selected for 
a fixed period of time. In order to perform further load 
balancing, another node is selected as master for some 
time period and so on. However, selecting and 
reselecting a master node results in increasing average 
response time. The bottleneck of single point of failure 
in centralized approach results in higher average 
response time. 
 

 

The comparative study of variations of normalized 
response time (∆Tna) with respect to Distributed 
Round Robin (DRR) and Centralized Dynamic 
Algorithm (CDA) is illustrated in Figure 25, where the 
respective data are gathered, filtered and compared 
from (Karimi et al., 2009; Barazandeh et al., 2009). In 
centralized approach employing dynamic biasing, the 
normalized average response time per node decreases 
rapidly with the increase in number of nodes. When 
the average response time per node is 51.93ms, the 
normalized average response time is on peak. With the 
increase in the number of nodes in CDA the average 
response time per node is 19.01ms, resulting in 
decrease in normalized average response time to 
approximately 35ms.  Due to further increase in the 
number of nodes in CDA, the average response time 
per node becomes 1.96ms and, the normalized average 
response time is decreased to approximately 10ms. 
Thus, the decrease in the average response time per 
node results in steep decrease in the normalized 
average response time. In distributed approach 
employing DRR, the variation of average response 
time per node (normalized) is aperiodic in nature with 
undershoot as well as overshoot with the increase in 
number of nodes. When the average response time per 
node is 1.5ms, the normalized average response time 
is on the peak. When the number of nodes is 
increased, the average response time per node is 
decreased to 1.25ms and, the normalized cumulative 
average response time is decreased to 36.41ms. A 
further increase in the number of nodes results in the 
increase in average response time per node to 

approximately 1.66ms and the aggregated normalized 
response time is decreased to 17.38ms. The overshoot 
and undershoot in the average response time per node 
is due to the distributed approach. When the average 
response time per node is decreased from 1.5ms to 
1.25ms, at that time the nodes are not overloaded and 
the requests are processed swiftly, which results in 
decrease in average response time. When the number 
of nodes is further increased the average response time 
per node is also increased to 1.66ms. It is because at 
that time the nodes are overloaded and the processing 
of requests are delayed. The variation of normalized 
average response time is highly influenced by 
centralized approach (CDA), because in centralized 
approach only one node is responsible for managing 
load of the nodes in a system. 
 

 

Figure 26 illustrates a comparative analysis of 
average response time per node in Distributed Fuzzy 
Algorithm (DFA) and Centralized Fuzzy Algorithm 
(CFA) with respect to normalized average response 
time (∆Tna), where the respective data are gathered, 
filtered and compared from (Cheung, 2001; 
Barazandeh et al., 2009).  In centralized approach 
employing CFA, the average response time per node 
(normalized) decreases rapidly with the increase in 
number of nodes. When the average response time per 
node is 52ms, the normalized average response time is 
high. With the increase in the number of nodes in 
CFA, the average response time per node becomes 
37ms resulting in a decrease in normalized average 
response time to approximately 36ms.  Further 
increase in the number of nodes in CFA results in the 
average response time per node reaching 18.57ms and, 
the normalized average response time is decreased to 
17ms. Thus, the decrease in the average response time 
per node results in steep decrease in the normalized 
average response time, because centralized load 
balancing approach employs fuzzy algorithm, which 
realizes intelligent load balancing mechanism. In 
centralized approach, the master node has status 
information of all the nodes and using fuzzy algorithm 
it intelligently selects the appropriate nodes for 
transferring the load. In distributed approach 
employing DFA, the average response time per node 
(normalized) is appearing to be aperiodic in nature 
with increase in number of nodes. When the average 

Figure 25. Surface map of normalized ∆Tna with 
respect to DRR and CDA 

Figure 24. Comparison of avg. response time with respect 
to number of nodes in centralized, distributed and hybrid 
approaches 
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response time per node is approximately 0.1ms, the 
normalized average response time is at maximum. 
Due to further increase in the number of nodes, the 
average response time per node is also increased to 
0.75ms monotonically. Continuing increase in the 
number of nodes means continuous decrease in 
average response time per node to 0.66ms and the 
aggregated (cumulative) normalized response time is 
decreased to 17.91ms. Further increase in the number 
of nodes results in increase of the average response 
time per node up to 1.1ms. Following the above 
statistics it can be stated that the average response 
time per node is not directly dependent on the number 
of nodes, instead it is highly dependent on the 
increasing communication overhead due to increasing 
node count in the system. 
 

 

In Figure 27, the comparative study of variations of 
normalized average response time (∆Tna) with respect 
to Centralized Random Algorithm (CRA) and 
Distributed Random Algorithm (DRA) is illustrated, 
where the respective data are gathered, filtered and 
compared from (Kwork et al., 2004; Saxena et al., 
2012; Cheung, 2001). In centralized approach which 
employs Random algorithm (CRA), the average 
response time per node decreases rapidly when the 
number of nodes is increased. When the average 
response time per node is 46ms, the normalized 
average response time is at maximum. With the 
increase in the number of nodes in CRA, the average 
response time per node is 26.66ms resulting in a steep 
decrease in normalized aggregated average response 
time to approximately 24.66ms. When the number of 
nodes is increased, the average response time per node 
is decreased to 15.23ms resulting in an exponential 
decrease in normalized cumulative response time to 
12.4ms. Due to further increase in the number of 
nodes in CRA results in exponential decrease in the 
average response time per node up to 4.07ms. The 
normalized average response time is decreased to 
0.07ms, approximately. Thus, decrease in the average 
response time per node results in steep decrease in the 
normalized average response time in centralized 
approach. In distributed approach employing DRA, 
the average response time per node gradually 
increases with the increase in number of nodes. When 

the average response time per node is 2ms, the 
normalized average response time is high. When the 
number of nodes is increased the average response 
time also increased to 2.83ms, and the normalized 
aggregated average response time steeply decreases to 
12.4ms. A further increase in number of nodes results 
in average response per node to become 4ms and, the 
normalized average response time decreases to 
0.07ms, approximately. From the above analysis it is 
clear that even if the algorithm is same in centralized 
and distributed approaches, the average response time 
will have continuous variations. It means that when 
the randomized algorithm is analyzed in centralized 
approach the average response time decreases with the 
increase in number of nodes. However, when the 
randomized algorithm is analyzed in the distributed 
approach the average response time increases with the 
increase in number of nodes. The variation of 
normalized average response time is highly influenced 
by CRA, because in CRA approach centralized load 
balancing is employed.  

 

In Figure 28, the comparative study of variations of 
normalized average response time with respect to 
Distributed Random Algorithm (DRA), Distributed 
Round Robin Algorithm (DRR) and Distributed Fuzzy 
Biasing Algorithm (DFA) is illustrated, where the 
respective data are gathered, filtered and compared 
from (Cheung, 2001; Kun-Ming et all., 2004). The 
figure illustrates that, average response time of round 
robin algorithm is gradually increasing and the surface 
is not smooth. In DRR initially the average response 
time per node is 1.5ms, however due to further 
increase in the number of nodes, the average response 
time per node is decreased to 1.25ms. In the DRR, the 
average response time per node increases to 1.66ms 
and 1.87ms with respect to increase in the number of 
nodes. A further increase in the number of nodes 
results in decrease in the average response time per 
node to 0.43ms. The performance of DFA algorithm 
in distributed approach illustrates that, the average 
response time per node follows a gradual and smooth 
increase with respect to number of nodes. Initially the 
average response time per node is 2ms however, when 
the number of nodes is increased the average response 
time per node is also increased to 2.83ms. 
Continuation of the increase in the number of nodes 

Figure 26. Surface map of normalized ∆Tna with respect 
to DFA and CFA 

Figure 27. Surface map of normalized ∆Tna with respect to 
CRA and DRA 
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results in increase in the average response time per 
node up to 3.25ms and 4.00ms, respectively.  In case 
of DRA, initially the average response time is 0.1ms, 
approximately. The average response time per node is 
increased to 0.75ms with the increase in number of 
nodes. Further increase in the number of nodes results 
in decrease in average response time to 0.66ms. From 
the above analysis it can be concluded that the average 
response time per node is indirectly proportional to 
increasing the number of nodes in distributed 
approach. The average response time per node can be 
increased or decreased due to communication 
overhead, network latency and heterogeneity of the 
system. The average response time is sensitive to 
joining and leaving of nodes and, unreliable network 
links. 

 

 

The comparative study of variations of average 
response time with respect to fuzzy algorithm (HFA) 
in hybrid approach, fuzzy algorithm (CFA) in 
centralized approach and fuzzy algorithm (DFA) in 
distributed approach is illustrated in Figure 29, where 
the respective data are gathered, filtered and compared 
from (Alakeel, 2016; Ahn et al., 2007; Cheung, 2001). 
Analysis of fuzzy-based algorithm in centralized 
approach illustrates that, the average response time is 
decreasing very rapidly with the increase in a number 
of nodes. Figure 29 illustrates that, the average 
response time per node is 52ms, but with the increase 
in number of nodes there is a steep decrease in the 
average response time per node from 52ms to 1.59ms. 
In distribute approach employing the fuzzy-based 
algorithm the average response time is aperiodic with 
respect to increase in the number of nodes. Initially 
the average response time per node is 0.1ms 
approximately however, it is increased to 0.75ms with 
respect to increase in the number of nodes. Continuing 
with an increase in the number of nodes, the average 
response time per node is decreased to 0.66ms. 
However, due to further increase in the number of 
nodes the average response time also increases. 
Aperiodic nature of increase and decrease in the 
average response time per node shows that in 
distributed approach performance of fuzzy is not 
directly dependent on the number of nodes. In the 
hybrid approach, the average response time per node 

is gradually increased with respect to the number of 
nodes. In Figure 29 it can be observed that, initially 
the average response time per node is 1ms, however it 
is increased to 1.1ms and 1.3ms with the increase in 
number of nodes, respectively. This gradual increase 
in average response time per node continues with the 
increase in number of nodes.  The gradual increase in 
the average response time per node in hybrid approach 
is due to the selection and reselection of master node, 
disconnection of master node and randomized network 
latency. 

 

 

6 IMPLEMENTATION DIRECTION 
THIS section illustrates implementation and 

deployment environment for further validation of 
proposed architecture. The proposed architecture is 
intended to be implemented in heterogeneous 
operating systems environment and, Java 
programming language is used to deploy mobile agent 
framework i.e. Java Development Framework 
(JADE). JADE is selected because it is Java-based 
platform providing a simple, portable and efficient 
Java API. Agent containers in JADE are distributed 
among all the nodes in the network. The 
configurations of our mobile agent framework 
development architecture and runtime environment 
specification are illustrated in Table 3. The proposed 
mobile agent monitoring algorithm is developed using 
Java eclipse IDE agent platform for monitoring the 
distributed system. In addition, to test the proposed 
monitoring algorithm, we have used two additional 
load generators software which are, (a) CPU Stress 
and, (b) Heavy Load. The purpose of using load 
generator software is to generate resource load (CPU 
and RAM) on our target nodes while monitoring the 
variations by mobile agents under different load 
scenarios. In terms of connectivity, one of the nodes is 
wirelessly connected and remaining nodes are wired 
connected with monitoring node. The wired 
connections operate at 100Mbps (maximum) and 
wireless network bandwidth is 100Mbps on average.  
 

Figure 28. Surface map of Normalized DRA, DRR and DFA 
in Decentralized System 

Figure 29. Surface map of normalized CFA, DFA and HFA 
in Centralized, Distributed and Hybrid systems 
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Table 3. Platform specifications of runtime environment and 
system configuration 

Nodes Specification 
Runtime Environment 

Operating System Software 

Node 1 Intel Celeron G1840 
CPU 2.80 GHz RAM: 
4GB, HDD: 128 GB 

NIC: Wireless 
Adaptor 

Windows 10  
 
 
 
 
 
 
 
 
 
 

Eclipse 4.6, JADE 
4.5.0, JDK 1.8, 
CPU Stress and 

Heavy Load. 

Node 2 Intel Core i7-6700 
CPU 3.40 GHz, RAM: 

8 GB, HDD: 2 TB, 
NIC: Realtek PCIe 

GBE Family 
Controller 

Linux darnel 2.6 
Fedora 

Node 3 Inter Core i5 3.1 GHz, 
RAM: 3 GB, HDD: 

500 GB, NIC: Realtek 
PCIe GBE Family 

Controller  

Windows 8 

Node 4 Intel Core 2 Duo 
E8400 CPU 3.00 
GHz, RAM: 3 GB, 

HDD: 320 GB, NIC: 
Realtek PCIe GBE 
Family Controller  

Windows 7 

Monitoring 
Node 

Intel Core i7-6700 
CPU 3.40 GHz, RAM: 

8 GB, HDD: 2 TB, 
NIC: Realtek PCIe 

GBE Family 
Controller 

Windows 10 

Network Ethernet: 100Mbps 
LAN, Wireless: 
100Mbps WAP, 

Signal strength: 45% 
(average) 

0.83 

7 CONCLUSION 
THE purpose of optimal utilization of resources in 

distributed systems is to minimize computing time and 
maximize the overall performance. The most 
frequently used load balancing algorithms of 
distributed systems are classified according to 
different system architectures and designing of 
respective algorithms. In this paper, we have focused 
on the fuzzy logic based load balancing approaches 
for load distribution as well as agent-based load 
monitoring mechanisms. We have put forward a study 
of current fuzzy based load balancing approaches. In 
order to highlight and motivate for fuzzy load 
balancing, a detailed comparative analysis of different 
load balancing algorithms based on various 
parameters is carried out. In this paper, we have 
presented the formulation of smooth composite fuzzy 
membership function aiming to realize fine grained 
load estimation. The related fuzzy rule-base is 
designed. The corresponding system architecture is 
presented, which is based on hybrid approach for load 
balancing and load monitoring combining fuzzy logic 
controller and mobile agents. The proposed 
architecture hybridizes autonomous mobile agents and 

fuzzy controller into a single platform, which is 
distributed over a set of nodes. The evaluations 
through simulation and implementation directions are 
presented. 
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