
Intelligent Automation And Soft Computing, 2018
Copyright © 2018, TSI® Press
Vol. 24, no. 4, 883–899

CONTACT Susmit Bagchi profsbagchi@gmail.com
© 2018 TSI® Press

Hybrid Architecture for Autonomous Load Balancing in Distributed
Systems based on Smooth Fuzzy Function

Moazam Ali, Susmit Bagchi*

Department of Aerospace and Software Engineering (Informatics),
Gyeongsang National University, Jinju, South Korea

KEYWORDS: Distributed computing, load balancing, fuzzy logic, smooth function, load monitoring,
software agents.

1 INTRODUCTION
IN distributed systems, the load balancing

mechanism is the key factor to achieve improved
processing speed and optimum utilization of
distributed resources. The application of fuzzy logic in
designing load balancing algorithms is an attractive
research approach in the presence of uncertainties. In
distributed systems, fuzzy logic based load balancing
approaches are used to balance overall workload in
order to avoid generation of overloaded and under-
loaded nodes (Rajani et al., 2015; John et al., 2003). In
general, fuzzy logic is composed of fuzzy sets and
fuzzy rule-base to model and make decisions under
uncertainties (Sabahi et al., 2016; Fu et al., 2009).
The load balancing algorithmic outputs have a high
level of uncertainties which can be benefitted from
applications of fuzzy logical reasoning (Emami et al.,
1998). Fuzzy inference is a decision making process,
which formulates mapping from a given input set to an
output set by using fuzzy membership function (Seth
et al., 2012). Membership functions are used in the
fuzzification and defuzzification steps of a fuzzy logic

based system to map crisp input values to fuzzy
linguistic terms and vice versa. In fuzzy logic different
types of membership functions are proposed by the
researchers such as, triangular, trapezoidal, Gaussian,
bell sigmoidal and polynomial functions (Garibaldi et
al., 2003). However, most of the functions specified
are non-smooth in nature and, in general are not

∞C class. The non-smooth functions have sharp
boundaries which restrict the function from collecting
fine grained information on continuous basis, because
such functions are not differentiable everywhere.
Therefore, loss of information affects the overall
performance of a system.

In order to overcome this problem, we have
proposed a smooth and composite membership
function in ∞C class, which is able to extract fine-
grained information providing flexible and robust
analysis. A hybrid architecture for distributed load
monitoring and balancing is proposed employing
fuzzy logic and autonomous mobile agents.
Furthermore, we have presented a comparative
analysis of different load balancing algorithms to
enable users to gain insight into applications of

ABSTRACT
Due to the rapid advancements and developments in wide area networks and
powerful computational resources, the load balancing mechanisms in distributed
systems have gained pervasive applications covering wired as well as mobile
distributed systems. In large-scale distributed systems, sharing of distributed
resources is required for enhancing overall resource utilization. This paper
presents a comprehensive study and detailed comparative analysis of different
load balancing algorithms employing fuzzy logic and mobile agents. We have
proposed a hybrid architecture for integrated load balancing and monitoring in
distributed computing systems employing fuzzy logic and autonomous mobile
agents. Furthermore, we have proposed a smooth and composite fuzzy
membership function in order to model fine grained load information in a
system. The simulation study and a detailed qualitative as well as quantitative
analysis of algorithmic performances are presented. Lastly, a deployment
environment is described.

2 MOAZAM ALI, SUSMIT BAGCHI

different algorithms under different computing
environments.

1.1 Motivation
In large scale distributed systems, load balancing is

the key factor for efficient utilization of resources and
enhancing overall system performance. In the
literature, a number of different load balancing
approaches are employed, however, fuzzy logic based
load balancing approaches have outnumbered the
other approaches. The attractions of fuzzy logic based
load balancing approaches are their inherent abilities
to formulate nonlinear functions of arbitrary
complexities (Seth et al., 2012). The researchers have
proposed a two level fuzzy based approach for
dynamic load balancing to characterize uncertainty in
distributed systems (Ivanisenko et al., 2015). In this
approach processor speed and the queue length of
nodes are used to balance the load of nodes in cluster
level. The computing capacity and average queue
length of clusters are used to balance load of a cluster
in cloud level by using fuzzy logical approach (Ali et
al., 2016). This approach have achieved improved
average response time and throughput. However, this
approach causes high intercommunication cost
between cloud load manager and cluster load manager
in a system. In another approach, the researchers have
proposed a fuzzy grouping technique which utilizes a
membership graph representing the current status of
CPU time and memory space for inferring service
priority and load distribution (Ahn et al., 2007). This
approach has achieved improved overall response time
and throughput. However, this approach causes high
overhead intercommunication, which is created by
transmitting load information to load-collector
frequently.

In this paper, we have proposed a smooth and
composite fuzzy membership function to collect fine
grained information from the available nodes in a
distributed system. We have also presented a hybrid
architecture for load monitoring and balancing
employing fuzzy logic as well as mobile agents. The
main features of our proposed hybrid architecture are
intelligent monitoring and decision making in a hybrid
platform autonomously aiming high throughput and
low response time in a system.

The main contributions of this paper are as follows.
• A detailed comparative study is presented

covering different fuzzy logic based load
balancing algorithms as well as applications
of mobile agents in load monitoring in
distributed systems.

• We have proposed a novel fuzzy
membership function for collecting fine-
grained information of nodes for decision
making and load monitoring in our
hybridized model.

• A hybrid architecture is designed to monitor,
estimate and distribute load in a large-scale

distributed system to achieve load-balancing
with autonomy.

• A detailed comparative analysis of various
algorithmic performances is presented by
considering fuzzy logic based as well as
traditional (non-fuzzy) algorithms.

Rest of the paper is organized as follows. Section 2
illustrates load balancing algorithms and software
agents. Section 3 presents load monitoring using
agents. Section 4 represents fuzzy logic based load
balancing architectures. Section 5 presents designing
of smooth functions and hybrid architecture. A
detailed comparative analysis of different load
balancing algorithms is presented in section 6. Section
7 presents implementation directions. Lastly, section 8
concludes the paper.

2 TAXONOMY OF LOAD BALANCING
ALGORITHMS

IN general, load balancing approaches are divided
into two main categories such as, static load balancing
and dynamic load balancing (Rajani er al., 2015;
Ivanisenko et al., 2015). The taxonomy of load
balancing approaches is illustrated in Figure 1.

Static load balancing approaches use statistical
information for decision making purposes. This
approach works with fixed number of processes
known at compile time. Furthermore, static load
balancing algorithms are divided into two types such
as, probabilistic and deterministic algorithms. In
probabilistic approaches, attributes of the systems are
used while in deterministic approaches the
characteristics of processes and properties of nodes are
used. In deterministic approaches optimization is
difficult and costs are comparatively higher
(Ivanisenko et al., 2015).

On the other hand, in dynamic load balancing
(DLB), decisions are based on the current state of the
systems (i.e. system load) and the number of processes
are not fixed (El-Abd, 2002; Khan et al., 2015). As
illustrated in Figure 1, DLB is further divided into
centralized and distributed load balancing algorithms.
In centralized load balancing, all nodes share their

Figure 1. Taxonomy of load balancing
approaches in distributed systems

INTELLIGENT AUTOMATION AND SOFT COMPUTING 3

load information with one single node (master or
coordinator) for making the load balancing decisions.
In distributed load balancing, the load balancing
algorithm is implemented by replicating it on all the
nodes in a system (Naaz et al., 2010). From the
functional point of view, the distributed load
balancing is divided into local and global load
balancing algorithms. In local load balancing
algorithm, the decisions of load balancing are limited
to a single group. However, in global load balancing
algorithm, the scope of decision making is not limited
to a certain group of network nodes. Furthermore, in
terms of decision-making process, the global load
balancing algorithm can be cooperative (each node in
distributed systems cooperates with each other to
make load balancing decisions) and non-cooperative
(each node in distributed systems is autonomous and
load balancing decisions are made independently).

3 LOAD MONITORING USING AGENTS
SOFTWARE agents are emerging technological

entities capable of autonomously managing and
maintaining distributed systems (Nwana, 1996).
Software agents are goal oriented and act accordingly
for achieving user’s goals (Long et al., 2011; Horvat et
al., 2000). Functional classification of software agents
is illustrated in Figure 2. It is shown that different
agents have different inherent behavioral properties
such as autonomy, learning and, cooperation as
explained by (Franklin et al., 1996; Wooldridge et al.,
1995).

Figure 2. Functional classification and properties of agents

Agent-based load monitoring is employed in
distributed systems for enhancing system efficiency
and for better resources utilization. Researchers have
proposed different approaches for load monitoring in
distributed systems (Brandt et al., 2009; Jiang et al.,
2015). However, in this paper, we will be focusing
only on agent-based monitoring systems. Following
are the most relevant approaches we have considered
specifically for this paper.

3.1 Agent-based monitoring using fuzzy logic
Funika W. et al. have proposed agent-based

monitoring using fuzzy logic and rule base. In this
approach, monitoring is done by Semantic-based
Autonomous Monitoring and Management system
(SAMM) (Funika et al., 2011). The administrators are
provided a GUI interface for controlling and
monitoring agents. In SAMM system, agents can
exchange information with each other by
intercommunication. In SAMM-CA system, there are
five modes of operations with slightly different
functional capabilities. Schematic diagram of SAMM-
CA design is illustrated in Figure 3 as proposed in
(Funika et al., 2011).

Figure 3. Schematic diagram of SAMM-CA

3.2 Agent-based adaptive monitoring
The agent based adaptive monitoring system is

based on agents and multi-layered framework
consisting of communication layer, interpreter layer
and, management layer (Kwon et al., 2006). The
function of communication layer is to manage
protocol components (HTTP, Custom and Multicast);
exchange of messages is performed by interpreter
layer by using appropriate query components. The
agent management layer is responsible for controlling
the lifecycle of agents and the actual execution of
tasks according to user’s requests. The schematic
diagram of the multi-layered framework is illustrated
in Figure 4 as proposed in (Kwon et al., 2006).

4 FUZZY LOGIC BASED LOAD BALANCING
ARCHITECTURES

IN this section, we have studied different fuzzy
logic based load balancing approaches by using
distributed and centralized methods.

4 MOAZAM ALI, SUSMIT BAGCHI

Figure 4. Schematic diagram of Multi-layered framework

4.1 Fuzzy load balancing for homogeneous
distributed systems

Alakeel M. A. et al. have proposed a fuzzy
dynamic load balancing approach for homogenous
distributed systems. The usage of fuzzy logic is to deal
with inaccurate load information while making the
load distribution decisions and maintaining overall
system stability (Alakeel, 2012). This approach
specifies how, when and by whom (which node) load
balancing mechanism is implemented. For obtaining
the current load of the system, load balancer nodes
broadcast request message to all the connected nodes
for determining their current status. Load balancer
assigns a fuzzy membership value to the load of
individual node including itself in the interval of [0,
1]. The fuzzy membership values are assigned
according to the relative load of the node to the overall
system load. The assignment of the fuzzy membership
value is achieved by forming a fuzzy set defined as,
LOADED = {light, normal, heavy} representing the
respective load of a system. This mapping is
performed by considering the probability of migrating
a task from an overloaded node to an under-loaded
node (Giarratano, 1989).

4.2 Fuzzy load balancing for heterogeneous
distributed systems

Karimi A. et al. have proposed a dynamic load
balancing algorithm based on fuzzy logic (Karimi et
al., 2009). The algorithm considers distributed
network consisting of n nodes where each node is a
complex combination of multiple types of resources
(memory, CPUs, disks and switches etc.). All the
nodes in the distributed network are heterogeneous in
configuration settings such that, configurations of the
resources at one node are different from the
configurations of the physical resources of the other
nodes. The proposed system model is consisting of
routing table, load index, cost table and a fuzzy
controller as illustrated in Figure 5 (Karimi et al.,
2009).

The routing table is used to store the information

about communication links between the nodes in the
system. The load values of the nodes are indicated by
the load index. In order to deal with load imbalances,
the researchers have proposed four policies governing
the actions of load balancing which are, information
policy, transfer policy, location policy and selection
policy (Karimi et al., 2009). In order to determine the
node status such as, receiver, sender or neutral, a
fuzzy rule-based controller is proposed. The cost table
is used to provide information regarding
communication costs and the number of heavily
loaded nodes. Load index and routing table are used to
compute the cost table and, the heavily loaded nodes
are extracted from the obtained cost table. The
threshold value of load index is classified into five
categories, which are mapped between 0 to w and
threshold is fixed at s (where w is the maximum value
of load index and s is the threshold value) (Karimi et
al., 2009). Authors have considered five different
fuzzy levels to describe the fuzzy load index values
represented as, very lightly loaded, lightly loaded,
moderately loaded, heavily loaded and very heavy
loaded. The proposed dynamic load balancing
algorithm employing fuzzy logic shows significantly
better response time than the round robin and
randomized algorithms (Karimi et al., 2009).

4.3 Fuzzy load balancing for centralized system
Researchers have proposed hierarchical

architecture and centralized method for load balancing
using fuzzy logic (Moosavi et al., 2011). In centralized
load balancing method, communication overload from
data collection is considerably decreased. In the
proposed architecture, load balancing task is divided
into two levels: (1) group level global manager and,
(2) local manager at the node level, as illustrated in
Figure 6 (Moosavi et al., 2011).

Figure 5. Schematic diagram of dynamic system model

INTELLIGENT AUTOMATION AND SOFT COMPUTING 5

Figure 6. Schematic diagram of hierarchical architecture

The node, acting as local manager functions as a
designated representative of its own group, performs
load balancing tasks and communicates with other
local managers. Nodes in each group only interact
with its own group managers. Global managers will
communicate with designated representatives
(managers) of each group. In the proposed algorithm,
weight assignment is done on two levels such as,
global level and local manager levels. First, the global
manager will send tasks to local managers and then
local managers will send tasks to nodes in the
respective groups based on weight assignments. The
fuzzy controller is responsible for weight assignment.
The criteria for assigning the weights are based on two
variables i.e. current load and waiting time of the last
processed task. The load balancing process is handled
in three stages such as, (1) Data Collection Stage, (2)
Weight Assignment Stage and, (3) Distribution Stage
(Moosavi et al., 2011). In the proposed model, current
load and the waiting time information about last
processed task in each node are considered as input to
fuzzy controller. The result of the proposed algorithm
shows that it has improved performance as compared
to static and dynamic algorithms in terms of Drop
Rate, Throughput and Response Time (RT).

4.4 Fuzzy load balancing for multi-level
centralized architecture

Barazandeh I. et al. have proposed a fuzzy logic
based control approach to reflect global state of
uncertainty in load distribution decisions (Barazandeh
et al., 2009). The proposed model is hierarchical in
structure and centralized in type. The input variables
to fuzzy controller are current load and waiting time of
last completed task. The fuzzy controller infers
specific weights called bias as output (Barazandeh et
al., 2009). The migration of loads is based on the
computed biases. In their design structure, load
balancing is done into two levels such as, (1) Group
level by Global Load Balancer (GLB), and, (2) Node
level by Local Load Balancer (LLB), as illustrated in
Figure 7 (Barazandeh et al., 2009). The multi-level
model is significantly better in load management and
it reduces the communication overhead. In the
proposed model, every group contains one node which

is called Designated Representative (DR). This DR
node is responsible for local load balancing and it
communicates with Global Load Balancer (GLB). In
each group, nodes will only connect and communicate
to their own group’s DR. GLB is connected to the
designated representative of each group. Mechanisms
of load balancing are centralized at both levels. In the
beginning of biasing, a set of new fuzzy rule-based
biases are produced based on the collected information
from both groups and nodes in the system. GLB
distributes the arrived tasks in groups based on group
biases. Once the tasks arrived at each DR of the group,
they are distributed among all the nodes in that
particular group according to biases of nodes. In the
proposed model each DR maintains a control box
which is used for fuzzy based biasing. It means that
only DR nodes implement biasing in this model
(Barazandeh et al., 2009).

Figure 7. Schematic diagram of multi-level architecture

5 DESIGNING SMOOTH FUNCTIONS AND
HYBRID ARCHITECTURE

5.1 Designing smooth composite function
A fuzzy membership function maps a set of input

values into an interval set, where the sets are crisp.
The degree of membership values varies in between
[0, 1], which is known as membership grade
(Barazandeh et al., 2009). In the proposed model we
have formulated a smooth composite fuzzy
membership function in ∞C class. A smooth function

)(xf is continuous at point a if

)()(lim afxf
ax

=
→

 and)(xf is continuously

differentiable on a set X representing a ∞C class. It
means that, Xa∈∀ the Taylor expansion of

)(axf = exists and,),(|)(+∞−∞∈=ax
n xfD ,

where }0{∪∈ +Zn . The proposed membership
function is designed to solve the problem of load
balancing in distributed systems by equalizing load
among all the nodes. In order to distribute load, our
composite membership function collects fine grained

6 MOAZAM ALI, SUSMIT BAGCHI

information from all the nodes and, maps into unit
intervals following smooth composite function. The
proposed composite membership function is given
below.

Let a real-valued function be represented as,
}0{)(: ∪→⊂ +RRAf where,

}30:{

|,sin|)(
π≤≤=

=∈
xxA

xAxf (1)

Let a second real-valued function be given by,

}2/52/:{
|,cos|)(

},0{)(:

ππ ≤≤=
=∈

∪→⊂ +

xxB
xBxg
RABg

 (2)

The smooth and composite fuzzy membership
function is generated as,

)()()(

],1,0[:
BgAfA

A
∪=

→
µ
µ (3)

The composite profile of fuzzy membership function
is given in Figure 8. In the proposed membership
function there are overlapping regions. The
importance of these overlapping regions is to give
robustness to the controller to fire at least one rule for
each possible input. In addition, overlapping regions
are important for completeness. The completeness of a
fuzzy set is represented by total overlap 0>ω
describing the characteristics of a reference set. When
the ω value is decreased, the partition of the
universe of discourse of fuzziness is also decreased.
The decrease in completeness level causes inefficient
control because greater region of universe of discourse
will be prone to larger set of activated rules. The
cross-over points between two overlapping smooth
functions are computed as given below,

}0{\))()((

),(
BgAfE

AE
∩=

⊂ µ (4)

The entire overlapping area can be computed as,

EJIgJIf

dxxgdxxf

k
k

k
k

k
k

k
k

k
BJBI kk

==






 +=

====

=
⊂⊂∑ ∫∫

)()(

,)()(

4

1

4

1

4

1

4

1

4

1

 

ω
 (5)

5.2 Creating rule-base
The fuzzy rule-base (FRB) system creates a set of

rules in the form of (if-then) statements for generating
control outputs. In fuzzy rule-base, if part is known as
antecedent, and then part is called consequent (Jeong
et al., 2004). In our rule-base system we have two
antecedent covering resources such as, CPU and
RAM. However, the linguistic terms in our rule base
system are: very_lightly_loaded, lightly_loaded,
moderately_loaded, highly_loaded and
very_highly_loaded. The corresponding consequent
linguistic terms are: no_migrate, calculate_again and,
migrate_load. Fuzzy reasoning (if-then) rules have
two basic features. In our proposed model the first rule
will partially match input data to make an inference.
In the second step, fuzzy inference system will
combine all the conclusions of the employed rules to
form a final outcome. A set of inference rules of our
proposed model is defined in Table 1.

The fuzzy inference rules and membership
functions are the processes to carry out the
fuzzification and defuzzification. The inference rules
illustrated in Table 1 show a decision process that is
generated based on both antecedents.

5.3 Hybrid architecture
The proposed system architecture following

hybridization of mobile agents and fuzzy logic based
load balancing framework is illustrated in Figure 9.
The proposed model is distributed in nature, such that
it employs load distribution in a distributed manner by
replicating the control algorithm on each and every
node. The replication will remove the bottleneck and a
single point of failure. All nodes in the distributed
systems will monitor and balance their local workload
accordingly. Moreover, the combination of fuzzy logic

Figure 8. Composite fuzzy membership function

INTELLIGENT AUTOMATION AND SOFT COMPUTING 7

Table 1. Fuzzy inference rules

 CPU

RAM VH H M L VL
VH NM NM NM NM CA
H NM NM NM CA ML
M NM NM CA ML ML
L NM CA ML ML ML

VL CA ML ML ML ML
Legends: VH: very_highly_loaded, H: highly_loaded, M:
moderately_loaded, L: lightly_loaded, VL: very_lightly_loaded,
ML: migrate_load, CA: calculate_again, NM: no_migrate.

and mobile agents forms a hybrid model. In the hybrid
model, the fuzzy logic will make decisions and mobile
agents will collect systems load information in
distributed environment. The key components of our
proposed model are: Mobile agents, Fuzzy logic
controller (FLC) and Load distribution module. The
mobile agent is used to collect the current load,
searching and discovering of resources, to update
status information about connecting network links
and, to perform monitoring for potential nodes
entering or leaving the system autonomously.

On the basis of status information collected from
mobile agents, the fuzzy controller module will take
intelligent decisions for load balancing. The load
distribution module is used to migrate the load to
under-loaded nodes. Load distribution module is
acting accordingly on the decision made by the fuzzy
controller for transferring the load. In our proposed
model, if at any instant a node gets overloaded, then
the mobile agent will autonomously execute to collect
the current status of all the nodes for making load
distribution decisions. The key characteristics of our
proposed architecture are intelligent monitoring and
decision making in a hybrid platform autonomously
aiming high throughput and low response time in a
system. The proposed architecture aims to yield high
throughput and low response time based on the
following design parameters: (a) mobile agents are
used to determining the current status (load
monitoring) of the available nodes, (b) load balancing
decisions are made by a fuzzy logic controller which
gives the precise result according to the status of the
nodes and, (c) the proposed model is based on

distributed approach i.e. each node will make their
own decision regarding load balancing reducing
response time and increasing throughput.

5.4 Deployment model of mobile agents
The proposed deployment model for mobile agent

based monitoring system is illustrated in Figure 10. In
our deployment model, we have one monitoring node
and four client nodes. The monitoring node
communicates with client nodes to monitor their
current load status. Mobile agents collect the current
status information and send a response message to
monitoring node. After sending the status information
the mobile agent will migrate to the next node
autonomously.

The mobile agents migrate to the next node
depending on node availability. If a node is added or
removed their updated status information are
maintained in a database. Unlike traditional load
monitoring approaches, our proposed agent based
monitoring system enable mobile agents to efficiently
collect status information of a node and send this
information immediately to monitoring node. The goal
of our proposed approach is to reduce the
computational time as well as waiting time to improve
the overall system performance.

5.5 Simulation study
A simulation study of the designed fuzzy system is

conducted to evaluate the response profiles. In this
section, the experimental setup is described generating
random load by two synthetic benchmarks (Heavy
Load and CPU stress). The instantaneously available
CPU and RAM resources are fed into fuzzyfication
module to generate inference rule sequences according
to rule-base. The simulation is evaluated for five
different levels of quantization such that, VL: from 0
up to 0.20, L: from 0.21 up to 0.40, M: from 0.41 up
to 0.60, H: from 0.61 up to 0.80 and, VH: from 0.81

Figure 9. Fuzzy logic and mobile agent based hybrid
architecture

Figure 10. Deployment model of mobile agent monitoring
system

8 MOAZAM ALI, SUSMIT BAGCHI

up to 1. The snapshot of rule firing sequences under
random load generation events are illustrated in
Figures 11, 12, 13, 14 and, 15, respectively. In the
figures, Y-axis represents decision logic from rule-
base, where 1: ML, 2: CA and, 3: NM. The simulation
is conducted in five sets. Each simulation experiment
is conducted for 30 minutes to measure the rule firing
sequences under synthetic benchmarks.

5.6 Comparative analysis
The performance of different algorithmic

approaches such as, centralized, distributed and hybrid
vary considerably. Therefore, it is important to
analyze the factors which are affecting the efficiency
and performance of the distributed load balancing
algorithms (Cheung et al., 2001). Table 2 illustrates
the comparative analysis of different fuzzy based load
balancing approaches by considering different
parameters, where the respective data are gathered,
filtered and compared from (Alakeel, 2016; Cheung et
al., 2001; Karimi et al., 2009; Ivanisenko et al., 2015;
Ahn et al., 2007). In order to measure the efficiency of
the fuzzy load balancing algorithms several different
indicators/parameters are determined, which are
explained below.

5.7 Parametric discussions

5.7.1 Overhead
The overhead is used as parameter to measure the

amount of computation done by any load balancing
algorithm involving inter-process communication and
task migration. In centralized load balancing
approach, majority of algorithmic overhead is L
(Low). This is because, the centralized approach uses
single node or master node for load balancing, which
reduces the communication overhead between nodes.
In distributed load balancing approach, the ratio of
overhead is 50% L (Low) and 50% H (High). The
high overhead is due to inter-nodal communication to
select appropriate node for load migration. In hybrid
load balancing approach, majority of algorithmic
overhead is M (Medium). This is because, in a hybrid
approach, a distributed system is segmented into
groups. The control within each group of nodes is
centralized and, the load balancing is distributed
globally in a system among the groups. The use of
group-wise central node is the main reason for
introducing overhead in hybrid load balancing
approach.

Figure 13. Variation of rule firing sequence (set 3)

Figure 11. Variation of rule firing sequence (set 1)

Figure 14. Variation of rule firing sequence (set 4)

Figure 12. Variation of rule firing sequence (set 2)

Figure 15. Variation of rule firing sequence (set 5)

INTELLIGENT AUTOMATION AND SOFT COMPUTING 9

Table 2. Comparative analysis of different fuzzy load balancing
algorithms

Comparative Analysis of Load Balancing Algorithms

Parameters

Centralized Distributed Hybrid

R
R
A-
IF
C

R
A
-
I
F
C

C
o
m
-
IF
G
S

Si
m-
IF
G
S

F
A
-
T
L
F
A

R
R
A
-
D
O
C

R
A
-
D
O
C

F
A
-
D
O
C

F
E
S
A-
D
LB
A

F
A
-
H
D
S

S
A

T
A

R
A

Overhead H H L L L H H L L M M L H

Throughput L L H H H L L H H H M M L

Process
Migration

H M M M M L H H H H M M H

Response
Time

M L H M L L L H H L H H H

Resource
Utilization

L L M M H L L H H H M L L

Fault
Tolerance

L L L L L M L H H M M M L

Waiting
Time

M H L L M L H L L L × L H

Scalability M L L M L H × H H L × × ×

Performanc
e

M L H M H M L H H H M H L

Reliability L L L L M M L H H H × M ×

Legends: H: High, L: Low, M: Medium, ×: not determined,
RRA-DOC: Round Robin Algorithm in Distribute Object
Computing, RA-DOC: Random Algorithm in Distribute Object
Computing, RRA-IFC: Round Robin Algorithm Intelligent
Fuzzy Controller, Com-IFGS: Complex Intelligent Fuzzy
Grouping system, Sim-IFGS: Simple Intelligent Fuzzy Grouping
System, FA-TLFA: Fuzzy Algorithm in Two Level Fuzzy
Approach, RA-IFC: Random Algorithm in Intelligent Fuzzy
Controller, FA-DOC: Fuzzy Algorithm in Distributed Object
Computing, FESA-DLBA: Fuzzy Enhance Symmetric
Algorithm in Dynamic Load Balancing Algorithm, FA: Fuzzy
Algorithm in Hybrid Dynamic System, SA: Shortest Algorithm,
TA: Threshold Algorithm, RA: Random Algorithm.

5.7.2 Throughput
Throughput parameter is used to compute the total

number of tasks whose executions have been
completed successfully. Therefore, higher throughput
of an algorithm indicates higher performance of the
overall system. In centralized load balancing
approach, majority of algorithmic throughput is H
(High). Because the master node contains prior
information of current load status of all the nodes and
their rapid distribution results in a high throughput of
a system. In distributed load balancing approach, the
ratio of throughput is 50% L (Low) and 50% H
(High). In hybrid load balancing approach, the
majority of algorithmic throughputs are M (Medium).
This is because the reselection of the centralized node

for load balancing affects the throughput of the
system.

5.7.3 Process Migration
Process migration indicates transfer of a task from

one node to another node on demand. Reduction in
migration time enhances the system performance. In
centralized load balancing approach, the majority of
load balancing algorithms employ process migration
in category M (Medium). This is because only the
master node is responsible for load migration
however, efficient load migration depends on the
number of nodes in a distributed system. In distributed
load balancing approach, majority of algorithms
perform process migration in category H (High). This
is because each node handles load balancing locally,
which increases process migration frequency. In
hybrid load balancing approach, the ratio of process
migration is 50% H (High) and 50% M (Medium).
Hence, it is observed that lesser the number of nodes
in a group, higher the efficiency of process migration.

5.7.4 Response Time
Response time determines the time taken to

complete a task by the load balancer. For better
system performance, response time must be kept low.
In centralized load balancing approach, the ratio of
response time is 50% L (Low) and 50% M (Medium).
The response time depends on scale of the overall
system; if the number of nodes is high then the
response time will be low. Thus, the overall response
time will degrade, when the master node processes
more requests in case of high number of nodes. In
distributed load balancing approach, the ratio of
response time is 50% H (High) and 50% L (Low).
Selecting appropriate node for load transfer would
consume computational time. In the hybrid approach,
the majority of algorithmic response time is in
category H (High).

5.7.5 Resource Utilization
In order to get the better performance from the

overall system, the algorithm must ensure the
appropriate use of all the system resources. In
centralized load balancing approach, the ratio of
resource utilization is 50% L (Low) and 50% M
(Medium). The resource utilization efficiency depends
on the number of nodes in a system and the
corresponding network saturation. In distributed load
balancing approach, the ratio of resource utilization is
50% L (Low) and 50% H (High). The 50% L (Low)
category indicates that some of the resources are
wasted for searching receiver node. In hybrid load
balancing approach, majority of algorithmic resource
utilization is in category L (Low). Once again, the
resources are wasted on reselection of master node,
which reduces the efficiency of resource utilization.

10 MOAZAM ALI, SUSMIT BAGCHI

5.7.6 Fault Tolerance
Fault tolerance metric measures the ability of an

algorithm to work continuously and to perform load
balancing uniformly in the event of some failures. An
algorithm is said to be efficient if a minor fault cannot
degrade the performance of an algorithm. In
centralized load balancing approach, all algorithmic
fault tolerance is in category L (Low) because of the
presence of a single point of failure. Hence,
effectively there is no fault tolerance mechanism in
centralized load balancing approach. In distributed
load balancing approach, the majority of algorithmic
fault tolerance is in category H (High). There is no
single point of failure in the system and, the load
balancing is done by every node. In hybrid load
balancing approach, majority algorithmic fault
tolerance is in category M (Medium). As each group
nominates master node for load balancing, thus if a
node crashes then the new master node will be
nominated. The crashed master node would result in
data loss however, the whole system would not crash.

5.7.7 Waiting Time
Waiting time determines the time period spent by a

task in ready queue. Minimum the waiting time better
the system performance. In centralized load balancing
approach, the ratio of waiting time is in 50% L (Low)
and 50% M (Medium) categories, because a large
number of tasks would wait in the ready queue for
some time. In distributed load balancing, majority of
algorithmic waiting time is in L (Low) category.
When a node becomes overloaded, it would search for
another suitable node to transfer the load. Hence, there
is no waiting time for tasks in distributed load
balancing approach. In hybrid approach, majority of
algorithmic waiting time is in L (Low) category. If the
size of a group is kept small and the master node has
prior information about nodes, then efficient task
migration occurs to realize load balancing within a
group.

5.7.8 Scalability
Scalability is the ability of an algorithm to provide

optimized results in a system comprised of a finite
number of nodes. A system is scalable if despite of
gradual increase in the number of nodes, the algorithm
continues to perform uniform load balancing. Highly
scalable algorithm will result in reliable and stable
system. In centralized load balancing approach,
majority of algorithmic scalability is in L (Low)
category. There is no restriction on adding or
removing of nodes in a system. In distributed load
balancing approach, majority of algorithmic
scalability is in H (High) category. If the number of
nodes is increased, then only the inter-nodal
communications would increase in distributed load
balancing systems. If a node is removed from the
system then it will not affect the overall system. In

hybrid load balancing approach, scalability is in L
(Low) category, because the network is segmented
into groups and the master node is assigned to each
group. If the number of nodes in a system increases,
then network is re-segmented into groups so that each
group contains nearly equal number of nodes.

5.7.9 Performance
Performance parameter is used to check the overall

efficiency of a system. In centralized load balancing
approach, the ratio of performance is 50% H (High)
and 50% M (Medium) categories. Performance metric
is dependent on various parameters such as number of
nodes, average response time and waiting time etc. In
distributed load balancing approach, majority of
algorithmic performances are in H (High) category,
whereas in hybrid load balancing approach, the
majority of algorithmic performances are in H (High)
category.

5.7.10 Reliability
Reliability is used to measure the system stability.

In centralized load balancing approach, majority of
algorithmic reliability are in L (Low) category due to
the existence of single point of failure in the system.
In distributed load balancing approach, majority of
algorithmic reliability are in H (High) category,
because the failure of one or more nodes will not
cause failure of the entire system. In hybrid load
balancing approach, the ratio of reliability is in 50% H
(high) and 50% M (Medium) categories, because if the
selected master node fails then another master node
would be re-elected.

5.8 Analysis of algorithmic performances
In this section we will quantitatively analyze

different algorithmic performance in Centralized,
Distributed and Hybrid load balancing approaches
presented in (Kwork et al., 2004; Ahn et al., 2007; Ali
et al., 2016). The comparative studies are performed
based on normalized response time and throughput.
Comparison of average response time for round robin
and random algorithms in centralized approach is
illustrated in Figure 16. In order to distribute load in
round robin algorithm, the master or server node

Figure 17. Avg. response time of Complex-IFGS, Simple-
IFGS and FA-TLFA in centralized approach

INTELLIGENT AUTOMATION AND SOFT COMPUTING 11

distributes load in round robin cycles. In this approach
using the distributed system, the average response
time is dependent on the number nodes such that
increasing the number of nodes will decrease the
average response and vice versa. In randomized
algorithm, the server node distributes load randomly
without any prior information about the status of
nodes in a distributed system. However, there is a
probability of already overloaded nodes and sending
extra load to those nodes will worsen the load balance.
For this reason the average response time of the
randomized algorithm is higher than the round robin
algorithm. In Figure 17, we have compared the
performance of complex-IFGS (com-IFGS), simple-
IFGS (sim-IFGS) and Fuzzy logic based algorithm FA
(TLFA), where the respective data are gathered,
filtered and compared from (Ahn et al., 2007; Ali et
al., 2016). In case of complex-IFGS and simple-
IFGS, the average response time is nearly equal.
However, average response time of complex-IFGS is
slightly better than simple-IFGS. In case of FA
(TLFA) the average response time is improved,
because in this approach two levels of load balancing
is used which reduces the average response time. Due
to two levels load balancing, FA (TLFA) outperforms
complex-IFGS and simple-IFGS algorithms as shown
in Figure 17.

In Figure 18, the comparison of throughput is
illustrated for round robin algorithm (RRA) and
randomized algorithm (RA), where the respective data
are gathered, filtered and compared from (Saxena et
al., 2012; Kwork et al., 2004; Ahn et al., 2007; Ali et
al., 2016). As illustrated in Figure 18, the performance
of randomized algorithm is aperiodic and tends to
overshoot or undershoot with respect to the number of
nodes. In comparison, the throughput of round robin
algorithm is better than the randomized algorithm.
This is because, in randomized algorithmic approach
the load is distributed randomly and if a node is
overloaded then it will degrade the performance.

In Figure 19, the comparison of complex-IFGS,
simple-IFGS and, Fuzzy algorithmic throughput is
illustrated, where the respective data are gathered,
filtered and compared from (Ahn et al., 2007; Ali et
al., 2016). The graph shows that, in complex-IFGS
and simple-IFGS the throughput values are almost
equal. In comparison, the throughput of fuzzy
algorithm (FA-TLFA) is high, because the fuzzy
algorithm is using two levels of fuzzy load balancing
approach. In level 1, the system is segmented into
groups and every group has its own local load
balancer. In level 2, only the local load balancers will
communicate with the global load balancer. Thus the
communication overhead is reduced and it results in
an increase in the overall performance as well as
efficiency of the system.

Figure 20 illustrates the comparison of average
response time for round robin and fuzzy logic based
algorithms for distributed load balancing, where the
respective data are gathered, filtered and compared
from (Kun-Ming et al., 2004; Karimi et al., 2009). In
distributed load balancing approach, load balancing
algorithm is replicated on all the nodes. By comparing
fuzzy based algorithm with round robin algorithm, the
graph indicates that fuzzy based algorithmic response
time is better than the round robin algorithm, because
in fuzzy algorithm load distribution takes place in an
intelligent manner. It means that based on prior status
information, the underloaded nodes accept additional
load and vice versa. In contrast, in round robin
algorithm the load is distributed without knowing the
current status of nodes. Thus, the performance is
dependent on the current load status of a node such

Figure 16. Variations of response time of round robin and
random algorithm in centralized approach Figure 19. Throughput comparison of Complex-IFGS, Simple-IFGS

and FA-TLFA in centralized approach

Figure 18. Throughput comparison of Round Robin and
Randomized Algorithm in centralized approach

12 MOAZAM ALI, SUSMIT BAGCHI

that transferring load to an underloaded node will be
optimal.

Figure 21 illustrates the comparison of average
response time with respect to number of tasks for
fuzzy (FA-DLB), randomized (RA-DLB), fuzzy
enhanced symmetric algorithm (FESA-DLBA) and
randomized algorithms (RA-DLBA), where the
respective data are gathered, filtered and compared
from (Cheung & Kwok, 2001; Cheung, 2001). In
comparison between fuzzy (FA-DLBA) and
randomized (RA-DLB) algorithms, the fuzzy-based
algorithm performs better, because fuzzy logic based
system computes the number of heavily loaded nodes
in order to determine the status of each node in a
system. Randomized algorithm randomly assigns tasks
to nodes irrespective of the status of nodes and causes
performance degradation. In conclusion, the fuzzy
logic-based algorithm shows better performance than
the randomized algorithm.

The comparative study of variations of normalized
response time of round robin algorithm in centralized

and distributed approach is illustrated in Figure 22,
where the respective data is obtained from (Ahn et al.,
2007; Ali et al., 2016; Cheung, 2001; Kun-Ming et al.,
2004). In case of round robin algorithm in centralized
approach, normalized average response time sharply
decreases when the number of nodes increases. In
centralized approach, master node is responsible for
load distribution by maintaining a cost table
containing the current load information of all the
nodes. In distributed approach the average response
time is dependent not only to increasing the number of
nodes but also on the current load status. There is a
probability that if there is an increase in the number of
nodes but if they are not overloaded, then the average
response time will not increase. Conversely, if there is
increase in the number of nodes as well as in the load,
then the average response time will increase.

The comparative study of variations of normalized
response time of fuzzy logic based algorithms in
centralized and distributed approach is illustrated in
Figure 23, where the respective data are gathered,
filtered and compared from (Ahn et al., 2007; Ali et
al., 2016; Cheung, 2001; Kun-Ming et al., 2004). In
the centralized approach there is an exponential decay
in the average response time with respect to increase
in the number of nodes, because in the centralized
approach only the master node is responsible for load
balancing. If a node is overloaded it will only send a
request to the master node. The master node will
search for an appropriate node for load balancing.
Thus, the centralized load balancing reduces
communication overhead as well as average response
time. In distributed approach load balancing is
performed on every available node. If a node is
overloaded then it will contact all the nodes for
migrating the extra load. The optimal migration
depends upon the number of nodes in the system. If a
node takes less time to search an appropriate node
then the average response time is less because of less
communication overhead and vice versa.

In Figure 24, the comparative study of variations of

average response time of fuzzy logic based algorithms
in centralized, distributed and hybrid approaches are
illustrated, where the respective data are gathered,
filtered and compared from (Alakeel, 2016; Ali et al.,

Figure 20. Comparison of avg. response time with
respect to number of nodes in distributed approach

Figure 22. Comparison of avg. response time with respect
to number of nodes in centralized and distributed
approach

Figure 23. Comparison of avg. response time with
respect to number of nodes in centralized and
distributed approaches

Figure 21. Comparison of avg. response time with
respect to number of tasks in distributed approach

INTELLIGENT AUTOMATION AND SOFT COMPUTING 13

2016; Cheung, 2001). In comparison to centralized
approach, the average response time increases
gradually in distributed and hybrid approaches. In the
hybrid approach, load balancing is performed in
centralized manner but the master node is selected for
a fixed period of time. In order to perform further load
balancing, another node is selected as master for some
time period and so on. However, selecting and
reselecting a master node results in increasing average
response time. The bottleneck of single point of failure
in centralized approach results in higher average
response time.

The comparative study of variations of normalized
response time (∆Tna) with respect to Distributed
Round Robin (DRR) and Centralized Dynamic
Algorithm (CDA) is illustrated in Figure 25, where the
respective data are gathered, filtered and compared
from (Karimi et al., 2009; Barazandeh et al., 2009). In
centralized approach employing dynamic biasing, the
normalized average response time per node decreases
rapidly with the increase in number of nodes. When
the average response time per node is 51.93ms, the
normalized average response time is on peak. With the
increase in the number of nodes in CDA the average
response time per node is 19.01ms, resulting in
decrease in normalized average response time to
approximately 35ms. Due to further increase in the
number of nodes in CDA, the average response time
per node becomes 1.96ms and, the normalized average
response time is decreased to approximately 10ms.
Thus, the decrease in the average response time per
node results in steep decrease in the normalized
average response time. In distributed approach
employing DRR, the variation of average response
time per node (normalized) is aperiodic in nature with
undershoot as well as overshoot with the increase in
number of nodes. When the average response time per
node is 1.5ms, the normalized average response time
is on the peak. When the number of nodes is
increased, the average response time per node is
decreased to 1.25ms and, the normalized cumulative
average response time is decreased to 36.41ms. A
further increase in the number of nodes results in the
increase in average response time per node to

approximately 1.66ms and the aggregated normalized
response time is decreased to 17.38ms. The overshoot
and undershoot in the average response time per node
is due to the distributed approach. When the average
response time per node is decreased from 1.5ms to
1.25ms, at that time the nodes are not overloaded and
the requests are processed swiftly, which results in
decrease in average response time. When the number
of nodes is further increased the average response time
per node is also increased to 1.66ms. It is because at
that time the nodes are overloaded and the processing
of requests are delayed. The variation of normalized
average response time is highly influenced by
centralized approach (CDA), because in centralized
approach only one node is responsible for managing
load of the nodes in a system.

Figure 26 illustrates a comparative analysis of
average response time per node in Distributed Fuzzy
Algorithm (DFA) and Centralized Fuzzy Algorithm
(CFA) with respect to normalized average response
time (∆Tna), where the respective data are gathered,
filtered and compared from (Cheung, 2001;
Barazandeh et al., 2009). In centralized approach
employing CFA, the average response time per node
(normalized) decreases rapidly with the increase in
number of nodes. When the average response time per
node is 52ms, the normalized average response time is
high. With the increase in the number of nodes in
CFA, the average response time per node becomes
37ms resulting in a decrease in normalized average
response time to approximately 36ms. Further
increase in the number of nodes in CFA results in the
average response time per node reaching 18.57ms and,
the normalized average response time is decreased to
17ms. Thus, the decrease in the average response time
per node results in steep decrease in the normalized
average response time, because centralized load
balancing approach employs fuzzy algorithm, which
realizes intelligent load balancing mechanism. In
centralized approach, the master node has status
information of all the nodes and using fuzzy algorithm
it intelligently selects the appropriate nodes for
transferring the load. In distributed approach
employing DFA, the average response time per node
(normalized) is appearing to be aperiodic in nature
with increase in number of nodes. When the average

Figure 25. Surface map of normalized ∆Tna with
respect to DRR and CDA

Figure 24. Comparison of avg. response time with respect
to number of nodes in centralized, distributed and hybrid
approaches

14 MOAZAM ALI, SUSMIT BAGCHI

response time per node is approximately 0.1ms, the
normalized average response time is at maximum.
Due to further increase in the number of nodes, the
average response time per node is also increased to
0.75ms monotonically. Continuing increase in the
number of nodes means continuous decrease in
average response time per node to 0.66ms and the
aggregated (cumulative) normalized response time is
decreased to 17.91ms. Further increase in the number
of nodes results in increase of the average response
time per node up to 1.1ms. Following the above
statistics it can be stated that the average response
time per node is not directly dependent on the number
of nodes, instead it is highly dependent on the
increasing communication overhead due to increasing
node count in the system.

In Figure 27, the comparative study of variations of
normalized average response time (∆Tna) with respect
to Centralized Random Algorithm (CRA) and
Distributed Random Algorithm (DRA) is illustrated,
where the respective data are gathered, filtered and
compared from (Kwork et al., 2004; Saxena et al.,
2012; Cheung, 2001). In centralized approach which
employs Random algorithm (CRA), the average
response time per node decreases rapidly when the
number of nodes is increased. When the average
response time per node is 46ms, the normalized
average response time is at maximum. With the
increase in the number of nodes in CRA, the average
response time per node is 26.66ms resulting in a steep
decrease in normalized aggregated average response
time to approximately 24.66ms. When the number of
nodes is increased, the average response time per node
is decreased to 15.23ms resulting in an exponential
decrease in normalized cumulative response time to
12.4ms. Due to further increase in the number of
nodes in CRA results in exponential decrease in the
average response time per node up to 4.07ms. The
normalized average response time is decreased to
0.07ms, approximately. Thus, decrease in the average
response time per node results in steep decrease in the
normalized average response time in centralized
approach. In distributed approach employing DRA,
the average response time per node gradually
increases with the increase in number of nodes. When

the average response time per node is 2ms, the
normalized average response time is high. When the
number of nodes is increased the average response
time also increased to 2.83ms, and the normalized
aggregated average response time steeply decreases to
12.4ms. A further increase in number of nodes results
in average response per node to become 4ms and, the
normalized average response time decreases to
0.07ms, approximately. From the above analysis it is
clear that even if the algorithm is same in centralized
and distributed approaches, the average response time
will have continuous variations. It means that when
the randomized algorithm is analyzed in centralized
approach the average response time decreases with the
increase in number of nodes. However, when the
randomized algorithm is analyzed in the distributed
approach the average response time increases with the
increase in number of nodes. The variation of
normalized average response time is highly influenced
by CRA, because in CRA approach centralized load
balancing is employed.

In Figure 28, the comparative study of variations of
normalized average response time with respect to
Distributed Random Algorithm (DRA), Distributed
Round Robin Algorithm (DRR) and Distributed Fuzzy
Biasing Algorithm (DFA) is illustrated, where the
respective data are gathered, filtered and compared
from (Cheung, 2001; Kun-Ming et all., 2004). The
figure illustrates that, average response time of round
robin algorithm is gradually increasing and the surface
is not smooth. In DRR initially the average response
time per node is 1.5ms, however due to further
increase in the number of nodes, the average response
time per node is decreased to 1.25ms. In the DRR, the
average response time per node increases to 1.66ms
and 1.87ms with respect to increase in the number of
nodes. A further increase in the number of nodes
results in decrease in the average response time per
node to 0.43ms. The performance of DFA algorithm
in distributed approach illustrates that, the average
response time per node follows a gradual and smooth
increase with respect to number of nodes. Initially the
average response time per node is 2ms however, when
the number of nodes is increased the average response
time per node is also increased to 2.83ms.
Continuation of the increase in the number of nodes

Figure 26. Surface map of normalized ∆Tna with respect
to DFA and CFA

Figure 27. Surface map of normalized ∆Tna with respect to
CRA and DRA

INTELLIGENT AUTOMATION AND SOFT COMPUTING 15

results in increase in the average response time per
node up to 3.25ms and 4.00ms, respectively. In case
of DRA, initially the average response time is 0.1ms,
approximately. The average response time per node is
increased to 0.75ms with the increase in number of
nodes. Further increase in the number of nodes results
in decrease in average response time to 0.66ms. From
the above analysis it can be concluded that the average
response time per node is indirectly proportional to
increasing the number of nodes in distributed
approach. The average response time per node can be
increased or decreased due to communication
overhead, network latency and heterogeneity of the
system. The average response time is sensitive to
joining and leaving of nodes and, unreliable network
links.

The comparative study of variations of average
response time with respect to fuzzy algorithm (HFA)
in hybrid approach, fuzzy algorithm (CFA) in
centralized approach and fuzzy algorithm (DFA) in
distributed approach is illustrated in Figure 29, where
the respective data are gathered, filtered and compared
from (Alakeel, 2016; Ahn et al., 2007; Cheung, 2001).
Analysis of fuzzy-based algorithm in centralized
approach illustrates that, the average response time is
decreasing very rapidly with the increase in a number
of nodes. Figure 29 illustrates that, the average
response time per node is 52ms, but with the increase
in number of nodes there is a steep decrease in the
average response time per node from 52ms to 1.59ms.
In distribute approach employing the fuzzy-based
algorithm the average response time is aperiodic with
respect to increase in the number of nodes. Initially
the average response time per node is 0.1ms
approximately however, it is increased to 0.75ms with
respect to increase in the number of nodes. Continuing
with an increase in the number of nodes, the average
response time per node is decreased to 0.66ms.
However, due to further increase in the number of
nodes the average response time also increases.
Aperiodic nature of increase and decrease in the
average response time per node shows that in
distributed approach performance of fuzzy is not
directly dependent on the number of nodes. In the
hybrid approach, the average response time per node

is gradually increased with respect to the number of
nodes. In Figure 29 it can be observed that, initially
the average response time per node is 1ms, however it
is increased to 1.1ms and 1.3ms with the increase in
number of nodes, respectively. This gradual increase
in average response time per node continues with the
increase in number of nodes. The gradual increase in
the average response time per node in hybrid approach
is due to the selection and reselection of master node,
disconnection of master node and randomized network
latency.

6 IMPLEMENTATION DIRECTION
THIS section illustrates implementation and

deployment environment for further validation of
proposed architecture. The proposed architecture is
intended to be implemented in heterogeneous
operating systems environment and, Java
programming language is used to deploy mobile agent
framework i.e. Java Development Framework
(JADE). JADE is selected because it is Java-based
platform providing a simple, portable and efficient
Java API. Agent containers in JADE are distributed
among all the nodes in the network. The
configurations of our mobile agent framework
development architecture and runtime environment
specification are illustrated in Table 3. The proposed
mobile agent monitoring algorithm is developed using
Java eclipse IDE agent platform for monitoring the
distributed system. In addition, to test the proposed
monitoring algorithm, we have used two additional
load generators software which are, (a) CPU Stress
and, (b) Heavy Load. The purpose of using load
generator software is to generate resource load (CPU
and RAM) on our target nodes while monitoring the
variations by mobile agents under different load
scenarios. In terms of connectivity, one of the nodes is
wirelessly connected and remaining nodes are wired
connected with monitoring node. The wired
connections operate at 100Mbps (maximum) and
wireless network bandwidth is 100Mbps on average.

Figure 28. Surface map of Normalized DRA, DRR and DFA
in Decentralized System

Figure 29. Surface map of normalized CFA, DFA and HFA
in Centralized, Distributed and Hybrid systems

16 MOAZAM ALI, SUSMIT BAGCHI

Table 3. Platform specifications of runtime environment and
system configuration

Nodes Specification
Runtime Environment

Operating System Software

Node 1 Intel Celeron G1840
CPU 2.80 GHz RAM:
4GB, HDD: 128 GB

NIC: Wireless
Adaptor

Windows 10

Eclipse 4.6, JADE
4.5.0, JDK 1.8,
CPU Stress and

Heavy Load.

Node 2 Intel Core i7-6700
CPU 3.40 GHz, RAM:

8 GB, HDD: 2 TB,
NIC: Realtek PCIe

GBE Family
Controller

Linux darnel 2.6
Fedora

Node 3 Inter Core i5 3.1 GHz,
RAM: 3 GB, HDD:

500 GB, NIC: Realtek
PCIe GBE Family

Controller

Windows 8

Node 4 Intel Core 2 Duo
E8400 CPU 3.00
GHz, RAM: 3 GB,

HDD: 320 GB, NIC:
Realtek PCIe GBE
Family Controller

Windows 7

Monitoring
Node

Intel Core i7-6700
CPU 3.40 GHz, RAM:

8 GB, HDD: 2 TB,
NIC: Realtek PCIe

GBE Family
Controller

Windows 10

Network Ethernet: 100Mbps
LAN, Wireless:
100Mbps WAP,

Signal strength: 45%
(average)

0.83

7 CONCLUSION
THE purpose of optimal utilization of resources in

distributed systems is to minimize computing time and
maximize the overall performance. The most
frequently used load balancing algorithms of
distributed systems are classified according to
different system architectures and designing of
respective algorithms. In this paper, we have focused
on the fuzzy logic based load balancing approaches
for load distribution as well as agent-based load
monitoring mechanisms. We have put forward a study
of current fuzzy based load balancing approaches. In
order to highlight and motivate for fuzzy load
balancing, a detailed comparative analysis of different
load balancing algorithms based on various
parameters is carried out. In this paper, we have
presented the formulation of smooth composite fuzzy
membership function aiming to realize fine grained
load estimation. The related fuzzy rule-base is
designed. The corresponding system architecture is
presented, which is based on hybrid approach for load
balancing and load monitoring combining fuzzy logic
controller and mobile agents. The proposed
architecture hybridizes autonomous mobile agents and

fuzzy controller into a single platform, which is
distributed over a set of nodes. The evaluations
through simulation and implementation directions are
presented.

8 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

9 REFERENCES
M. A. Alakeel. (2012). A fuzzy dynamic load

balancing algorithm for homogenous distributed
systems, World Academy of Science, Engineering
and Technology, WASET, 6, 7-10.

M. A. Alakeel. (2016). Application of fuzzy logic in
load balancing of homogenous distributed
systems, International Journal of Computer
Science and Security, volume, IJCSS, 10, 95-106.

H. C. Ahn, Youn. H. Y., Jeon. K. Y., and Lee K. S.
(2007). Dynamic load balancing for large
distributed system with intelligent fuzzy
controller, International Conference on
Information Reuse and Integration, IEEE, 576-
581.

M. M. Ali and Derakhshi M. R. F. (2016). Two level
fuzzy approach for dynamic load balancing in the
cloud computing, Journal of Electronic System,
DLINE, 6, 17-31.

I. Barazandeh and Mortazavi. S. S. (2009). Two
Hierarchical Dynamic Load Balancing Algorithms
in Distributed Systems, International Conference
on Computer and Electrical Engineering, IEEE,
516-521.

I. Barazandeh, Mortazavi S.S., and Rahmani M.A.
(2009). Intelligent fuzzy based biasing load
balancing algorithm in distributed systems, 9th
IEEE Malaysia International Conference on
Communications, Malaysia, IEEE, 713-718.

J. Brandt, Gentile A., Mayo J., and Pebay P. (2009).
Resource monitoring and management with OVIS
to enable HPC in cloud computing environments,
International Symposium on Parallel &
Distributed Processing, IEEE, 1-8.

L. S. Cheung and Kwok. Y. K. (2001). A Quantitative
comparison of load balancing approaches in
distributed object computing systems, Computer
Software and Applications Conference,
COMPSAC 25th Annual International, IEEE, 257-
262.

R. M. Emami, Turksen B. I., and Goldenberg A. A.
(1998). Development of a systematic methodology
of fuzzy logic modeling, IEEE Transactions on
Fuzzy System, IEEE, 6, 346-360.

S. Franklin and Graesser. A. (1996). Is it an agent, or
just a Program? A taxonomy for autonomous
agents, Third International Workshop on Agents
Theories, Architecture, and Languages, Springer
Berlin Heidelberg, 21-35.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 17

Y. Fu, Li, H., Jiang, Z. and Wang, S., (2009). Double
layers fuzzy logic based mobile robot path
planning in unknown environment. Intelligent
Automation & Soft Computing, 15(2), 275-288.

W. Funika, Szura F., and Kitowski. (2011). Agent-
Based monitoring using fuzzy logic and rules,
Computer Science Annual of AGH-UST, 12, 103-
113.

J. M. Garibaldi and John, R.I. (2003). May. Choosing
membership functions of linguistic terms. In Fuzzy
Systems, 2003. FUZZ'03. The 12th IEEE
International Conference on, 1, 578-583.

J. Giarratano. (1989). Expert Systems: Principles and
Programming, PWSKENT Publishing Company,
ISBN-10: 0534384471.

D. Horvat, Cvetkovic. D., Milutinovic.V., Kocovic. P.,
and Kovacevic. V. (2000). Mobile Agents and
Java Mobile Agents Toolkits, International
Conference on System Sciences, IEEE, 1-10.

N. I. Ivanisenko and Radivilova .A.T. (2015). Survey
of major load balancing algorithms in distributed
system, Information Technologies in Innovation
Business (ITIB), IEEE, 89 - 92.

J. Jeong and Oh, S.Y, (2004). Automatic Rule
Generation of Fuzzy Logic Controllers based on
Asynchronous Coevolution of Rule-Level
Subpopulations. Intelligent Automation & Soft
Computing, 10(3), 195-207.

Y. Jiang, Sun H., Ding J., and Liu Y. (2015). A data
transmission method for resource monitoring
under cloud computing environment, International
Journal of Grid Distribution Computing, IJGDC,
8, 15-24.

C. M. John and V. Teagu. (2003). Autonomous nodes
and distribute mechanisms, In Software Security-
Theories and Sstems, Springer-Verlag, 58-83.

A. Karimi Zrafshan F., Jantan B.A., Ramli A.R., and
Saripan I. (2009). A New fuzzy approach for
dynamic load balancing algorithm, International
Journal of Computer Science and Information
Security, IJCSIS, 6, 1-5.

R. Khan, Haroon. M., and Husain. M. S. (2015).
Different technique of load balancing in
distributed system: A Review Paper, Conference
on Communication Technologies, IEEE, 371-375.

V. Kun-Ming, Chou. Y., and Wang. Y. (2004). A
fuzzy-based dynamic load-balancing algorithm,
Journal of Information, Technology and Society,
Springer, 4, 55-63.

S. Kwon and Choi J. (2006). An agent based adaptive
monitoring system, Pacific Rim International
Workshop on Multi-Agents, Springer-Verlag, 672-
677.

Y. K. Kwork and Cheung L. S. (2004). A new fuzzy-
decision based load balancing system for
distributed object computing, Journal of Parallel
and Distributed Computing, ELSEVIER, 64, 238-
253.

Q. Long, Lin. J., and Sun. Z. (2011). Agent scheduling
model for adaptive dynamic load balancing in
agent-based distributed simulations, In Simulation
Modelling Practice and Theory, ELSEVIER, 19,
1021- 1034.

S. A. Moosavi Nejad, Mortazavi. S.S., Vahdat.B.V.
(2011). Fuzzy based design and tuning of
distributed systems load balancing controller, 5th
Symposium on Advances in Science And
Technology, Iran, Mashhad, SASTech.

S. Naaz, Alam. A and Biswas. R. (2010).
Implementation of a new Fuzzy Based Load
Balancing Algorithm for Hypercubes,
International Journal of Computer Science and
Information Security, IJCSIS, 8, 270-274.

H. S. Nwana. (1996). Software Agents: An Overview,
The knowledge engineering review, 11, 205-244.

S. Rajani and Garg N. (2015). A clustered approach
for load balancing in distributed systems,
International Journal of Mobile Computing &
Application, SSRG-IJMCA, 2, 2393-9141.

F. Sabahi and Akbarzadeh M., (2016). Extended fuzzy
logic: Sets and systems, IEEE Transactions on
Fuzzy Systems, IEEE, 24, 530 - 543.

S. Saxena, Khan. M. Z., and Sing. R. (2012).
Performance analysis in distributed system of
dynamic load balancing using fuzzy logic,
Engineering and Technology (S-CET), IEEE, 1-5.

S. Seth, Sahu A., Jena K. S. , (2012). Efficient load
balancing in cloud computing using fuzzy logic,
IOSR Journal of Engineering, IOSRJEN, 2, 65-71,
ISSN: 2250-3021.

M. Wooldridge and Jennings. N. R. (1995). Intelligent
Agents: Theory and Practice, The Knowledge
Engineering Review, 10, 115-152.

10 NOTES ON CONTRIBUTORS

Moazam Ali obtained his
BCS in Computer Science in
year 2007 from the Islamia
College, University of
Peshawar and, MS-IT in
Computer Networks in year
2012 from the Institute of

Management Sciences, Peshawar. Currently, he is
pursuing his PhD in Distributed Systems in the
Department of Aerospace and Software Engineering
(Informatics), Gyeongsang National University, Jinju,
South Korea.

Susmit Bagchi has received
B.Sc. (Honours) in 1993 from
Calcutta University, B.E.
(Electronics Engineering) from
Nagpur University in 1997, M.E.
(Electronics and Telecom
Engineering) from Bengal

Engineering and Science University (presently IIEST)

18 MOAZAM ALI, SUSMIT BAGCHI

in 1999. He obtained Ph.D. (Engineering) from IIEST
in 2008 in Information Technology. Currently, he is
Associate Professor in Department of Aerospace and
Software Engineering, Gyeongsang National
University. His research interests are in Distributed
Computing and Systems.

	1 INTRODUCTION
	1.1 Motivation

	2 Taxonomy of LOAD BALANCING ALGORITHMS
	3 Load monitoring using agents
	3.1 Agent-based monitoring using fuzzy logic
	3.2 Agent-based adaptive monitoring

	4 Fuzzy Logic based load balancing architectures
	4.1 Fuzzy load balancing for homogeneous distributed systems
	4.2 Fuzzy load balancing for heterogeneous distributed systems
	4.3 Fuzzy load balancing for centralized system
	4.4 Fuzzy load balancing for multi-level centralized architecture

	5 Designing smooth functions and hybrid architecture
	5.1 Designing smooth composite function
	5.2 Creating rule-base
	5.3 Hybrid architecture
	5.4 Deployment model of mobile agents
	5.5 Simulation study
	5.6 Comparative analysis
	5.7 Parametric discussions
	5.7.1 Overhead
	5.7.2 Throughput
	5.7.3 Process Migration
	5.7.4 Response Time
	5.7.5 Resource Utilization
	5.7.6 Fault Tolerance
	5.7.7 Waiting Time
	5.7.8 Scalability
	5.7.9 Performance
	5.7.10 Reliability

	5.8 Analysis of algorithmic performances

	6 Implementation direction
	7 Conclusion
	8 Disclosure statement
	9 References
	10 Notes on contributors

