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ABSTRACT
We use the public Human Activity Recognition Using Smartphones (HARUS) data-set to investigate 
and identify the most informative features for determining the physical activity performed by a user 
based on smartphone accelerometer and gyroscope data. The HARUS data-set includes 561 time 
domain and frequency domain features extracted from sensor readings collected from a smartphone 
carried by 30 users while performing specific activities. We compare the performance of a decision 
tree, support vector machines, Naive Bayes, multilayer perceptron, and bagging. We report the various 
classification performances of these algorithms for subject independent cases. Our results show that 
bagging and the multilayer perceptron achieve the highest classification accuracies across all feature 
sets. In addition, the signal from gravity contains the most information for classification of activities in 
the HARUS data-set.

1. Introduction

Sensor data from smartphones, such as accelerometer and 
gyroscope data, has been used to determine the physical activ-
ity performed by a user (Fahim, Fatima, Lee, & Park, 2013; 
Reyes Ortiz, 2015; Reyes-Ortiz, Oneto, Samà, Parra, & Anguita, 
2016; Shoaib, Bosch, Incel, Scholten, & Havinga, 2015; Weiss & 
Lockhart, 2012). Activity recognition is not limited to fitness 
tracking applications. Instead, activity recognition has appli-
cations in telemedicine services where monitoring of physical 
activity is part of treatment or therapy (Lau et al., 2010), remote 
patient monitoring for disabled and elderly patients, health-
care and assisted living technologies, and smart environments 
(Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz, 2013a; Zhang & 
Sawchuk, 2011).

The Human Activity Recognition Using Smartphones 
(HARUS) data-set (Anguita, Ghio, Oneto, Parra, & Reyes-
Ortiz, 2013b; Anguita et al., 2013a) is a public data-set built 
from the recordings of 30 users. Data was collected from 30 
users, with a smartphone mounted on their waist, while they 
performed six physical activities: walking, walking upstairs, 
walking downstairs, sitting, standing, and lying down. The data 
recorded included the sensor readings from the accelerometer 
and gyroscope embedded in the smartphone. From the sensor 
readings, 561 features were extracted and used to build models 
for the classification of physical activities (Anguita et al., 2013b; 
Reyes-Ortiz et al., 2016).

The HARUS data-set is unique in (1) deriving the accel-
eration and gyroscope readings over time to generate jerk 
and angular velocity jerk, and (2) extracting a large set of 
features–561–from body acceleration, gravity (low frequency 
acceleration readings), angular velocity, and the jerk signals. 
Jerk is the rate of change of acceleration, as acceleration is the 
rate of change of velocity over time. The 561 features provide 
a large set of features for classifiers to differentiate between 

all the physical activities at high accuracies. However, the 
large feature set also makes the classifiers prone to overfitting, 
increases the calculations needed to extract the features, and 
increases the training and testing time of the classifiers. Most 
importantly, the extraction of 561 features makes it unfeasible 
to do online activity recognition. As the research in physical 
activity recognition progresses to identifying more complex 
activities and every day activities, finding the most informa-
tive features becomes even more important. In addition, while 
accurate results (nearly 100% accuracy) have been achieved in 
prior work (Fahim et al., 2013; Reyes Ortiz, 2015; Reyes-Ortiz 
et al., 2016, p; Shoaib et al., 2015; Weiss & Lockhart, 2012), 
these results have been obtained when the physical activities 
are simple, well separated, and performed under controlled 
conditions according to researchers’ instructions (Lockhart & 
Weiss, 2014). Studies also suffer from data collection from a 
small group of participants (typically less than 10), obscure 
and poorly documented experimental and data processing 
techniques, and having the researchers being one of the par-
ticipants for the data collection (Lockhart & Weiss, 2014). Our 
goal is to advance research in physical activity recognition by 
identifying the most informative features from the 561 features 
of the HARUS set.

In Reyes Ortiz (2015), the performance of the following 
groups of features was compared using a linear SVM model: 
gyroscope time domain features, gyroscope time and frequency 
domain features, acceleration time domain features, acceler-
ation time and frequency domain features, and all 561 fea-
tures. In this paper we use the HARUS data-set and build on 
the analysis of different feature sets from Reyes Ortiz (2015). 
Over the 561 features, and specifically over the time-domain 
features, we answer the following questions: (1) which feature 
sets yield the highest accuracies? (2) how do these sets compare 
with feature sets tested in prior work and (3) how much does 
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accuracy improve when using large feature sets? Our goal is 
to identify feature sets, which derived from the accelerometer 
and angular velocity readings of a smartphone, maximize the 
classification performance of activities. The six activities we 
classify are: walking, walking upstairs, walking downstairs, sit-
ting, standing, and lying down (Anguita, Ghio, Oneto, Parra, 
& Reyes-Ortiz, 2012). Our results show that bagging and the 
multilayer perceptron achieved the highest classification accu-
racies across all our feature sets tested. In addition, the signal 
from gravity contained the most information for the accurate 
classification of activities in the HARUS data-set.

The rest of the paper is organized as follows: Section 2 
describes prior work on activity recognition based on acceler-
ometer readings. Section 3 presents our methodology for activ-
ity recognition. Section 4 discusses the results obtained. Finally, 
we conclude and present directions for future work in Section 5.

2. Related Work

In the past 15 years, human activity recognition using wearable 
sensors has been an active research area. A typical example is 
provided by accelerometer sensors. Their application includes 
healthcare and medicine (Jehn et al., 2009; Lau et al., 2010), 
daily activities (Bao & Intille, 2004; Bieber, Voskamp, & Urban, 
2009) and sports (Mladenov & Mock, 2009). The earlier work 
investigated recognition techniques using a number of selected 
sensors, placed on different parts of the body. For example, Bao 
and Intille (2004) used five sensor boards on different parts 
of the body such as arm, wrist, knee, ankle and waist. Each 
sensor board consisted of a biaxial accelerometer, four AAA 
batteries, and a memory card for storage. Another investiga-
tion, carried out by Kern et al., used 12 body worn tri-axial 
accelerometers to perform activity recognition (Kern, Schiele, 
& Schmidt, 2007). Both investigations demonstrated how one 
can achieve recognition accuracy up to around 90%. These 
investigations proposed the use of multiple sensors placed at 
fixed strategic positions depending on the targeted activities 
(Kern et al., 2007).

Over the last 7 years, there was a shift towards using built-in 
sensors on smartphones instead of multiple dedicated sensor 
devices. Mladenov et al. presented a step counter application 
using the accelerometer of a Nokia N95 (Mladenov & Mock, 
2009). The results showed that such smartphones can provide 
accurate step-counts, comparable to some of the commercial 
and dedicated step counter products. However, users needed to 
ensure that the phone was firmly attached to the body during 
data collection. The DiaTrace project (Bieber et al., 2009) used 
a mobile phone with accelerometers for physical activity mon-
itoring. The prototype obtained accuracy of more than 95% for 
activities like resting, walking, running, cycling, and driving 
a car. Lau et al. used the Nokia N95 smartphones to record 
movements such as walking, going upstairs and downstairs, 
standing, and sitting, using only the accelerometer sensor (Lau 
et al., 2010). With a small number of features (only three to five 
features), they applied classification algorithms to build move-
ment recognition models and achieved accuracy up to 94%. 
Even with low sampling rates (lowest was 8 Hz), it was possible 
to have recognition accuracy around 90% if meta-classifiers 
were applied. All these investigations have shown the potential 
of activity recognition using only a single smartphone placed 
at a specific position, such as the front pants pocket.

Most of the recent research now utilizes Android or iOS-
based smartphones. In (Kwapisz, Weiss, & Moore, 2011), 

Kwapisz et al. had users carry an Android smartphone in the 
front pants leg pocket as they performed various activities, 
including walking, jogging, ascending stairs, descending stairs, 
sitting, and standing. They enlisted 29 subjects and used a 10 
s window for the data analysis. They used Weka to compare 
decision trees (J48), logistic regression, and multilayer neural 
networks, using ten-fold cross-validation for their testing aver-
aged over 10 runs. The smartphone included a tri-axial accel-
erometer, thus each reading included an x, y, and z value. In 
contrast to our work, they generated only a total of 43 features, 
as opposed to the 561 total features of the HARUS data-set. The 
features included average, standard deviation, average absolute 
difference, average resultant acceleration, time between peaks, 
and binned distribution.

Bayat et al. collected data from four users (Bayat, Pomplun, 
& Tran, 2014). Their experiments included collecting data with 
the smartphone in hand and with the smartphone in the pocket. 
They used Weka to train various classifiers, with the multilayer 
perceptron performing the best. They separated the raw acceler-
ometer signal into body acceleration and gravity by using a low 
pass and a high pass filter.

Much of the previous work focused on feasibility and explor-
atory work that applied sensors on smartphones for human 
activity recognition, with the majority limited to accelerome-
ters. In our work, we focus on two aspects. First, we investigate 
how feature selection can be optimized for activity recognition 
using features extracted from both the accelerometer and the 
gyroscope embedded in a smartphone. Second, we assess how 
the signals from accelerometer and gyroscope can be maxi-
mized by deriving jerk signals, and how the features from all 
these signal types can be combined to optimize accuracy of 
activity recognition.

3. Methodology

To conduct our experiments we used the Human Activity 
Recognition Using Smartphones (HARUS) Data-Set (Anguita 
et al., 2013b). Our motivation was to compare and analyze 
how various feature sets, in combination with various classi-
fiers, affect the accuracy of activity recognition. In addition, 
we use an open and public data-set to enable comparison of 
feature extraction techniques and choice of classifier systems 
with prior work.

3.1. Data-Set

The HARUS data-set includes the recordings of 30 subjects. The 
data-set is divided into a training set, with the data from 21 
subjects, and a testing set, with the data from the remaining 9 
subjects. The subjects were between the ages of 19–48, though 
the data does not identify the age of each subject. The subjects 
performed six activities while wearing a smartphone mounted 
on their waist: walking, walking upstairs, walking downstairs, 
sitting, standing, and lying down. As opposed to prior work 
where several dedicated sensors are placed at strategic locations 
on the users body (Bao & Intille, 2004; Preece, Goulermas, 
Kenney, & Howard, 2009), the HARUS data-set is generated 
from a triaxial accelerometer and a triaxial gyroscope embed-
ded on a smartphone, the Samsung Galaxy S II. By relying on 
data from a smartphone, the data collection is more natural 
and unobtrusive.

Figure 1 shows the process of gathering raw sensor read-
ings from the accelerometer and gyroscope embedded in the 
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smartphone, and using it to build a model, which can then 
recognize activities. The accelerometer and gyroscope generate 
time series data, where at each point in time there is an accel-
erometer reading and an angular velocity reading, each having 
an x, y, and z component. The HARUS data-set was gathered 
from data sampled at 50 Hz.

The HARUS data-set maximizes the acceleration and angu-
lar velocity data from the smartphone by deriving additional 
features. Figures 2 and 3 show how additional features are 
derived from the raw acceleration and angular velocity read-
ings. The sensor signals, for the accelerometer and gyroscope, 
were processed with noise filters: a median filter and a 3rd order 
low pass Butterworth filter with a corner frequency of 20 Hz 
(Anguita et al., 2012). Body acceleration (BA) was obtained 
by passing the acceleration signal through a high-pass filter 
with a corner frequency of 0.3 Hz. The gravity signal (G) was 
obtained by subtracting body acceleration (BA) from the accel-
eration signal (A). Deriving the body acceleration signals over 
time resulted in acceleration jerk signals. A similar process, 
detailed in Figure 3, was used to derive various signals from 
the raw angular velocity (AV) readings. Time-domain features 
were extracted from body acceleration, gravity, the acceleration 
jerk, angular velocity, and angular velocity jerk. This process 

of signal processing and feature extraction was documented in 
(Reyes Ortiz, 2015; Reyes-Ortiz et al., 2016).

The HARUS data-set includes features extracted from 
frequency domain signals, generated by applying the Fast 
Fourier Transform (FFT) to the body acceleration signals and 
the angular velocity readings. Out of the 561 features from 
the HARUS data-set, 289 features are frequency-domain fea-
tures. In this paper, we limit our experiments and analysis to 
the time-domain features, and leave the analysis of frequency 
domain-features and their combination with time-domain fea-
tures for future work.

In the data-set, the acceleration, angular velocity, and jerk 
signals are segmented into 2.56 s sliding windows with 50% 
overlap. The features extracted from each of these windows 
formed a feature vector of size 561, with each feature normal-
ized and bounded within [−1, 1]. The training set includes 7352 
feature vectors, generated from the data from 21 subjects (out 
of the total 30 subjects). We randomly split the training set into 
70/30 for training and testing of the classifier systems. To test 
for statistical significance, we repeat the random 70/30 splitting 
10 times. The original test data from the 9 subjects is left as 
validation data. This has been shown to be a reliable method 
of training, testing, and building models (Bishop, 1996).

Figure 1. the process of Sampling Acceleration Sensor Readings and Angular Velocity Sensor Readings from the Accelerometer and the gyroscope embedded in a 
Smartphone, extracting features, and using the features to train a model for Activity Recognition.

Figure 2. processing of Raw Accelerometer Sensor Readings from embedded Accelerometer of Smartphone to generate Body Acceleration Data (BA), gravity Data 
(g), Body Acceleration Jerk Data (Jerk), and Body Acceleration frequency Data (f Jerk and f BA).

Figure 3. processing of Sensor Readings from embedded gyroscope of Smartphone to generate Angular Velocity Data (AV), Angular Velocity Jerk Data (AV Jerk), and 
Angular Velocity frequency Data (f AV and f AV Jerk).
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and correlation between axes (3). All of these features are com-
puted for each of the x, y, and z components of acceleration 
and angular velocity, with signal magnitude area and the auto 
regression coefficients with Burg order equal to 4, four features 
per axis, being the exception.

For our experiments, first we selected all of the time-domain 
features for body acceleration (feature vector of size 40), and 
compared the classification accuracy against angular velocity, 
gravity, and using the entire set of time-domain features (fea-
ture vector of size 256). Next, we compared body accelera-
tion to body acceleration jerk, and angular velocity to angular 
velocity jerk, to determine whether the jerk signals resulted in 
higher accuracies. Table 1 lists the sets of time-domain features 
extracted from the available signal types.

When using all of the time-domain features for one signal, 
such as body acceleration, make up a feature vector with 40 
dimensions. However, evaluating every feature reduces the 
speed of training and execution of the model. High dimensional 
data can also make models prone to overfitting and reduce their 
predictive power due to the curse of dimensionality (Donoho, 
2000). Thus, we selected subsets of features from the feature 
vector of size 40, in order to identify high performing feature 
subsets for activity recognition on the HARUS data-set. Table 2  
shows ten different sets of time-domain features selected from 
the 40 time-domain features listed above. The selection of these 
ten sets was driven by our experimentation and by the use of 
particular time-domain features in prior work (Bao & Intille, 
2004; Khan, Siddiqi, & Lee, 2013; Lara & Labrador, 2013; 
Shoaib et al., 2015).

For the first set, we use the following 13 time-domain fea-
tures: mean (for each axis), standard deviation (for each axis), 

3.2. Classifier Systems

We used WEKA, a machine learning workbench written in 
Java, for our experiments (Hall et al., 2009). We compare 
the following base-level classifiers from the WEKA toolkit: 
decision trees (J48), support vector machines (libSVM), 
radial basis function (RBF) network (RBFNetwork), Naive 
Bayes classifier (NaiveBayes), and multilayer perceptron 
(MultilayerPerceptron). In addition, we test the adaptive boost-
ing (AdaBoostM1) and bagging (Bagging) meta-classifiers. We 
use these classifiers with their default settings in Weka.

3.3. Feature Selection

Figures 2 and 3 identify the data sets that are derived from the 
raw acceleration and angular velocity sensor readings. From 
the acceleration sensor readings and the angular velocity sen-
sor readings, the following sensor signals are generated: body 
acceleration (BA), gravity (G), body acceleration jerk (AJ), 
acceleration frequency data, angular velocity (AV), angular 
velocity jerk (AVJ), and angular velocity frequency data. We 
discuss the use of the acceleration and angular velocity fre-
quency signals as future work in Section 5.

Our goal is to analyze how features extracted from the vari-
ous acceleration and angular velocity signals affect the accuracy 
of activity recognition, and which features may be combined to 
maximize classification performance. The data-set is structured 
such that there is a total of 40 time-domain features calculated 
for each of the sensor signals: mean (3), standard deviation 
(3), median absolute deviation (3), max (3), min (3), signal 
magnitude area (1), energy (3), interquartile range (3), entropy 
(3), auto regression coefficients with Burg order equal to 4 (12), 

Table 1. original Sets of time-domain features in the HARuS data-set, the features extracted from Body Acceleration, Angular Velocity, gravity, Body Acceleration 
Jerk, and Angular Velocity Jerk Signals. these Sets all have a total of 40 features.

Set No Features Signal Type Features Extracted
Set BA 40 BA mean (3), standard deviation (3), median absolute 

deviation (3), max (3), min (3), signal magnitude 
area (1), energy (3), interquartile range (3), 
entropy (3), auto regression coefficients with 
Burg order equal to 4 (12), correlation between 
axes (3)

Set AJ 40 BA jerk
Set AV 40 AV
Set AVJ 40 AV Jerk
Set g 40 g
Set All 265 BA, AV, g, BA jerk, AV jerk, magnitude

Table 2. Smaller Sets of time-domain features generated by Selecting a Subset of features from the original 40 time-domain features listed in table 1 for Various 
Signal types.

Set No Features Signal Type Features Extracted
Set 1 13 BA mean (3), standard deviation (3), median absolute deviation (3), signal 

magnitude area (1), correlation (3)
Set 2 22 BA mean (3), standard deviation (3), median absolute deviation (3), signal 

magnitude area (1), correlation (3), energy (3), interquartile range (3), 
entropy (3)

Set 3 13 AV mean (3), standard deviation (3), median absolute deviation (3), signal 
magnitude area (1), correlation (3)

Set 4 22 AV mean (3), standard deviation (3), median absolute deviation (3), signal 
magnitude area (1), correlation (3), energy (3), interquartile range (3), 
entropy (3)

Set 5 26 BA and AV Set 1 + Set 3
Set 6 44 BA and AV Set 2 + Set 4
Set 7 13 g mean (3), standard deviation (3), median absolute deviation (3), signal 

magnitude area (1), correlation (3)
Set 8 22 g mean (3), standard deviation (3), median absolute deviation (3), signal 

magnitude area (1), correlation (3), energy (3), interquartile range (3), 
entropy (3)

Set 9 6 BA mean (3), standard deviation (3)
Set 10 6 BA median absolute deviation (3), correlation (3)
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the exception of bagging. For gravity, bagging performed best 
with an accuracy of 91.5%, with this performance being sta-
tistically better than all classifiers except for the perceptron. 
The last column shows the classification performance using 
all statistical features, consisting of a feature vector of size 265. 
The multilayer perceptron achieved the highest classification 
accuracy of 97.2%, which was statistically significant over all 
the classifiers.

The gravity features resulted in the highest classification 
accuracies. This was surprising, as we expected acceleration 
and angular velocity readings to provide more useful infor-
mation for classification. We believe that this may be due to 
gravity providing useful information for discerning activities 
that would typically require less movement and energy, such 
as sitting, standing, and lying down.

Table 3 shows that angular velocity is not as effective as 
body acceleration for the classification of physical activities. 
The performance of all the classifiers drops slightly when using 
angular velocity features instead of body acceleration features, 
with the largest drop being for the SVM. The performance 
of the RBF network and Naive Bayes actually increases from 
64.6% to 67.3% and from 53.9% to 58.2% respectively. For the 
multilayer perceptron, the drop in performance is 1.6%, yet 
the accuracy remains over 80%. Thus, in the absence of accel-
erometer readings, or in the absence of reliable accelerometer 
readings, angular velocity readings provide suitable data for 
classification of physical activities, with the multilayer percep-
tron being a good choice.

Table 4 shows the confusion matrix for one run of a deci-
sion tree (J48) on the body acceleration set BA(40). The overall 
accuracy was 75%, which was consistent with the result on 
Table 3. The highest misclassification is in rows 4–6, which 
corresponds to the static activities of sitting, standing, and lying 
down. Table 5 shows the confusion matrix for one run of a 
decision tree on the gravity set G(40). In this case the overall 
accuracy was 90.3%. The difference is that features extracted 
from the gravity signal result in the static activities (rows 4–6) 
being classified more accurately. However, when using the 
gravity signal, the prediction accuracy decreases slightly for the 
dynamic activities of walking, walking upstairs, and walking 
downstairs, as evident from rows 1–3 of Table 5.

4.2. Jerk Signals

Table 6 compares the accuracy results between acceleration, 
angular velocity, and jerk. Results show that classification per-
formance drops when using features from jerk as opposed to 
acceleration. For jerk, the multilayer perceptron outperforms 
all the other classifiers (p < 0.05). For angular velocity jerk, 
the performance of the multiplayer perceptron and bagging is 
statistically significant better over the other classifiers, though 

median absolute deviation (for each axis), the correlation 
between the X and Y axis, the correlation between the X and 
Z axis, and the correlation between the Y and Z axis. For the 
second set, we add nine 9 features, for a total of 22 features. 
Third, can we achieve high accuracy activity recognition with 
only angular velocity data? That is, in the absence of accel-
eration data, do the features extracted from angular velocity 
provide accurate results for activity recognition? The third and 
fourth sets are used to test this hypothesis.

The fifth and sixth sets test combinations of sets 1–4. Sets 7 
and 8 test the accuracy achieved by using only gravity data. Set 
9 consists of the mean and standard deviation extracted from 
accelerometer readings, with features widely used for activity 
recognition in prior work (Bao & Intille, 2004; Preece et al., 
2009). Set 10 includes the median standard deviation and the 
correlation between axes. For this set, we found empirically 
that the median absolute deviation and correlation between 
axes to be features that provided high classification perfor-
mance. Correlation between axes has been used in prior work 
for activity recognition (Bao & Intille, 2004; Fahim et al., 2013; 
Ravi, Dandekar, Mysore, & Littman, 2005; Zheng, Wong, Guan, 
& Trost, 2013). The median absolute deviation has not been 
used in prior work.

4. Results and Discussion

For all of our results, we performed the Friedman test to test 
the differences between the classifiers and the Nemenyi post 
hoc test to determine whether the performance of two classi-
fiers is significantly different (p < 0.05) (Demšar, 2006). The 
Friedman test is a non-parametric equivalent to the repeated 
measures ANOVA.

4.1. Acceleration vs Angular Velocity vs Gravity

Table 3 compares the classification performance using a sub-
set of time-domain features for acceleration, acceleration jerk, 
gravity, angular velocity, angular velocity jerk, and all time-do-
main features. When classifying activities using a feature vector 
of size 40 from accelerometer readings, the multilayer percep-
tron resulted in the highest accuracy (83.9%). The multilayer 
perceptron has an input layer with size equal to the size of the 
input vector, in this case being size 40. The single hidden layer 
includes I + 1 nodes where I is the size of the input layer. Finally, 
the output layer has 6 nodes, with each node representing one 
of the six physical activities.

For body acceleration, the perceptron accuracy of 83.9% 
was statistically significant over the performance of the other 
classifiers. For angular velocity, the multilayer perceptron per-
formed best (82.2%), with this difference being statistically 
significant over the performance of the other classifiers, with 

Table 3. Activity Recognition Accuracy of Classifiers using time-domain features extracted from Acceleration, Angular Velocity, gravity, and all 265 time-domain 
features from the HARuS Data-set.

note: Statistically significant results in bold.

 Classifier BA (40) AV (40) G (40) All (265)
 J48 75.6 73.5 89.7 94.5
 AdaBoost 35.7 35.7 37.8 35.8
 Bagging 81.0 79.5 91.5 95.9
 SVm 79.2 72.9 84.2 94.8
 RBf 64.6 67.3 79.6 88.7
 naiveBayes 53.9 58.2 75.0 85.4
 perceptron 83.9 82.2 89.8 97.2
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bagging yields 80% accuracy. Thus, classifiers can be trained 
on smaller feature spaces, leading to faster training and test-
ing times for classifiers, while achieving accuracies comparable 
to larger feature sets. Set 5, which combines 13 time-domain 
features of body acceleration and 13 time-domain features of 
angular velocity, performed better than each of the larger sets 
BA(40) and AV(40).

The median standard deviation and correlation between 
axes (set 10) outperforms the accuracy of the feature set 
including the mean and standard deviation (set 9). For set 
10, bagging achieved the highest accuracy of 78.9%, statis-
tically significant over all classifiers except for the decision 
tree with accuracy of 75.6%. The accuracy achieved compares 
favorably with the accuracy of sets 1 and 2, with the differ-
ence being less than 2%, even though sets 9 and 10 use half 
the features of sets 1 and 2. The use of smaller feature sets 
results in faster training times, faster modeling times, and 
simpler models. When considering online training and clas-
sification, the use of small feature sets is key to an effective 
system implementation.

Table 8 shows time-domain feature subsets extracted from 
gravity. For most of the classifiers, using 22 features instead of 
13 results in a modest increase in classification accuracy. For 
the decision tree and bagging, the increase is less than 1%. 
The biggest increase is in the SVM accuracy, increasing from 
67.9% to 72.3%. For SVM and the multilayer perceptron, the 
increase is more modest; the highest accuracy achieved 87.8% 

there was no statistically significance between the perceptron 
and bagging.

Overall the results show that the statistical features extracted 
from acceleration readings yield higher classification perfor-
mances compared to classification with features extracted from 
acceleration jerk readings. Similarly, features from angular 
velocity readings are more useful than features from angular 
velocity jerk readings.

4.3. Performance of Smaller Feature Sets

We experimented with feature combinations to find effec-
tive, yet smaller feature sets. Table 7 shows sets of features 
by taking the 40 time-domain features listed in Table 1, and 
selecting only a subset of those features for a particular sig-
nal type. The feature sets are listed in Table 2. Set 1 includes 
13 time-domain features extracted from body acceleration. 
Set 2 includes the same features from set 1, plus nine addi-
tional body acceleration features. Sets 3 and 4 are the same 
as set 1 and 2, except that they are extracted from angular 
velocity. Set 5 combines sets 1 and 3, while set 6 combines 
sets 2 and 4.

Over all the sets, bagging yielded the highest accuracy, with 
the multilayer perceptron performing second-best. When using 
all 40 time-domain features for body acceleration, BA(40), the 
multilayer perceptron achieved the highest accuracy of 83.9%, 
whereas using only 13 time-domain features, BA(13), with 

Table 5. Confusion matrix for Rf with feature Set g(40), with an Accuracy of 90.3% (1992 Correctly Classified Instances and 214 Incorrectly Classified Instances). 
Activities: (1) Walking, (2) Walking upstairs (3) Walking Downstairs (4) Sitting (5) Standing (6) lying Down.

    Prediction

    1 2 3 4 5 6
truth 1 304 12 40 2 10 0

2 13 300 17 0 3 0
3 42 25 240 2 1 0
4 1 0 0 350 19 0
5 5 8 5 9 397 0
6 0 0 0 0 0 401

Table 6. Activity Recognition Accuracy of Classifiers using time-domain features extracted from Acceleration, Acceleration Jerk, Angular Velocity, and Angular  
Velocity Jerk.

note: Statistically significant results in bold.

Classifier BA (40) AJ (40) AV (40) AVJ (40)
J48 75.6 64.4 73.5 65.8
AdaBoost 35.7 35.8 35.7 35.8
Bagging 81.0 71.2 79.5 74.4
SVm 79.2 73.2 72.9 68.2
RBf 64.6 64.4 67.3 55.7
naiveBayes 53.9 48.9 58.2 43.6
perceptron 83.9 76.2 82.2 76.5

Table 4. Confusion matrix for Decision tree (J48) with feature Set A(40), with an Accuracy of 75.0% (1655 Correctly Classified Instances and 551 Incorrectly Classified 
Instances). Activities: (1) Walking , (2) Walking upstairs (3) Walking Downstairs (4) Sitting (5) Standing (6) lying Down.

    Prediction

    1 2 3 4 5 6
truth 1 330 34 4 0 0 0

2 34 262 37 0 0 0
3 12 29 269 0 0 0
4 0 0 0 202 112 56
5 0 0 0 119 267 38
6 0 0 0 56 20 325
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For future work we plan to analyze how the frequency- 
domain features from various signals affect activity recognition 
accuracy. A limitation from our work is that we did not use 
algorithmic feature selection. The HARUS data-set, with its 
large number of features, provides an ideal test case for testing 
various feature selection algorithms to identify small feature 
sets that yield high classification accuracies in this data-set. 
We plan to use the feature importance from random forests 
for feature selection. Other algorithmic methods to be tested 
include subset correlation-based feature selection, principal 
component analysis, and genetic algorithms. Finally, having 
identified the features that are the most informative, these fea-
tures need to be tested on additional data sets to assess how 
well they can generalize?
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with 13 features. By increasing the number of features to 40, 
the accuracy of bagging increases about 4% to 91.5%. Thus, 
the set of 13 time-domain features extracted from the gravity 
readings yields high accuracies, without having to explore or 
build models on higher dimensional feature spaces. Out of sets 
1–10, sets 7 and 8 perform the best.

In this paper we do not test and explore the performance 
of frequency domain features. We expect that the adding 
 frequency-domain features to our feature sets would show 
the accuracy of all the classifiers consistent with the results 
in (Reyes Ortiz, 2015). Using the frequency-domain features 
would almost double the total number of features available for 
classification. In practice, the use of the frequency-domain 
 features for online activity recognition would be more costly 
due to the Fast Fourier Transform (FFT) needing to be calcu-
lated to transform the signals to the frequency domain. Our 
current approach is computationally simpler by not using the 
frequency domain signals.

5. Conclusions and Future Work

We presented a comparison of the accuracy of classifiers for 
activity recognition. We used the HARUS data-set to com-
pare the accuracy achieved with features extracted from body 
acceleration, angular velocity, gravity, body acceleration jerk, 
and angular velocity jerk. We found that for this particular 
data-set, the gravity signals provide high classification accu-
racy, especially for static activities of sitting, standing, and lying 
down. This is important since gravity signals are usually fil-
tered and discarded in favor of linear acceleration. Jerk signals 
do not provide as high accuracy as simply using acceleration 
and angular velocity. Thus, jerk signals alone do not merit the 
additional derivation step. Lastly, we found that features from 
angular velocity are not as helpful for classification as body 
acceleration, yet a few features extracted from angular velocity 
can considerably improve the accuracy of body acceleration 
feature sets. Our contributions not only benefit traditional 
physical activity recognition, but also applications that rely on 
sensor data extracted from smartphones for the purpose of 
remote patient monitoring and smart environments.

Table 7. Activity Recognition Accuracy of Classifiers using the feature Sets from table 2.

note: Statistically significant results in bold.

Classifier

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 9 Set 10

BA(13) BA(22) AV(13) AV(22) BA+AV(26) BA+AV(44) BA(6) BA(6) BA(40) AV(40)
J48 75.9 76.6 73.3 73.9 82.7 82.5 65.8 75.6 75.6 73.5
AdaBoost 35.5 35.5 35.7 35.7 35.6 35.7 35.5 35.4 35.7 35.7
Bagging 80.0 80.8 78.1 78.5 87.1 87.5 69.7 78.9 81.0 79.5
SVm 69.5 73.7 60.3 66.5 74.7 80.0 50.1 69.5 79.2 72.9
RBf 62.0 63.2 60.1 61.3 64.2 65.5 55.3 67.0 64.6 67.3
naiveBayes 53.3 52.4 53.2 51.8 57.9 56.6 49.3 61.2 53.9 58.2
perceptron 76.1 79.3 70.2 73.2 82.3 85.5 60.9 73.5 83.9 82.2

Table 8. Classification Accuracy of Activities using features extracted from gravity Signals.

note: Statistically significant results in bold.

Classifier

Set 7 Set 8

G (13) G (22) G (40)
J48 85.0 85.2 89.7
AdaBoost 37.8 37.8 37.8
Bagging 87.8 87.9 91.5
SVm 67.9 72.3 84.2
RBf 72.3 70.9 79.6
naiveBayes 59.9 59.1 75.0
perceptron 78.9 80.9 89.8
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