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ABSTRACT
This paper proposes to apply machine learning techniques to predict students’ performance on two 
real-world educational data-sets. The first data-set is used to predict the response of students with 
autism while they learn a specific task, whereas the second one is used to predict students’ failure at a 
secondary school. The two data-sets suffer from two major problems that can negatively impact the 
ability of classification models to predict the correct label; class imbalance and class noise. A series 
of experiments have been carried out to improve the quality of training data, and hence improve 
prediction results. In this paper, we propose two noise filter methods to eliminate the noisy instances 
from the majority class located inside the borderline area. Our methods combine the over-sampling 
SMOTE technique with the thresholding technique to balance the training data and choose the best 
boundary between classes. Then we apply a noise detection approach to identify the noisy instances. 
We have used the two data-sets to assess the efficacy of class-imbalance approaches as well as both 
proposed methods. Results for different classifiers show that, the AUC scores significantly improved 
when the two proposed methods combined with existing class-imbalance techniques.

1. Introduction

Real-world data for many applications, including education, 
is never perfect. The data used to make predictions are often 
imbalanced and suffer from noise. Class imbalance is consid-
ered to be one of the ten challenging research problems in 
data mining (Yang & Wu, 2006). A data-set is said to be (class) 
imbalanced when one class (minority class) has much fewer 
instances than the remaining classes (majority classes). The 
minority class is usually the most interesting with respect to the 
domain of study; hence high prediction of minority class is our 
target. The traditional classification algorithms are designed to 
maximize the overall accuracy, which is independent of class 
distribution. Thus, when learning from imbalanced data, they 
are usually overwhelmed by the majority class instances and 
ignore the minority class (Thai-Nghe, Gantner, & Schmidt-
Thieme, 2010). Consequently, the instances that belong to the 
minority class are misclassified more often than those belong-
ing to the majority class. A number of approaches have been 
proposed to handle the problem of imbalanced classification, 
both for standard learning algorithms and for ensemble tech-
niques (Guo, Yin, Dong, Yang, & Zhou, 2008; López, Fernández, 
García, Palade, & Herrera, 2013; Sáez, Luengo, Stefanowski, & 
Herrera, 2015; Sluban, Gamberger, & Lavrač, 2014).

The term “noise” refers to data points, which could be con-
sidered as erroneous, irrelevant or meaningless. Noise is often 
divided into two categories (Wu & Zhu, 2008; Zhu, Wu, & 
Chen, 2003); (a) attribute noise (errors or missing values in one 
or more attributes); and (b) class noise, which can be found 
in the following forms: (1) Contradictory instances; instances 
with the same values of attributes but with different labels. 

(2) Misclassifications; instances with wrong class labels (Zhu 
et al., 2003).

Regardless of the type of noise, existence of noisy instances 
in a data-set has a negative effect on the quality of information 
retrieved from the data, models built using this data, and deci-
sions made based on the analysis of those models (Zhu & Wu, 
2004). Noise filtering approaches are often used in machine 
learning (ML) to detect and eliminate noisy instances from 
training data, and consequently improve the classification 
accuracy of models induced from the clean data (Anyfantis, 
Karagiannopoulos, Kotsiantis, & Pintelas, 2007; Khoshgoftaar 
& Rebours, 2007).

Borderline instances are located in the area surrounding deci-
sion boundary separating classes. In order to achieve better pre-
diction, most of the classification algorithms attempt to learn the 
borderline instances of each class during the training process (Sáez 
et al., 2014; Sáez et al., 2015; Seiffert, Khoshgoftaar, Van Hulse, & 
Folleco, 2014). Napierała, Stefanowski, and Wilk (2010) showed 
that a large number of borderline instances negatively affected the 
performance of a classifier. These instances are more likely to be 
misclassified than the ones far from the class boundary, and hence 
detecting and eliminating noisy instances within borderline area 
increases the chances of achieving more effective classification 
(Napierała et al., 2010; Sáez et al., 2015). In this study, we consider 
only noisy instances restricted within the area surrounding class 
boundaries. Thus the noisy instances, located inside the borderline 
area, from the majority class are removed and the minority class 
remains unchanged. The idea behind this is that since there are 
so scarce, instances from the minority class are important and 
should not be eliminated by the noise elimination procedures.
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The rest of the paper is organized as follows: In Section 2,  
we describe several approaches, which have been used to handle 
the class imbalance problem, and discuss the classifier evalu-
ation metrics. In Section 3, we review the state of the art on 
noise filter techniques. Section 4 explores the related work and 
background about predicting student’s performance using ML 
methods. Next, Section 5 proposes two empirical methods that 
address noise filtering and class imbalance problems simultane-
ously. Section 6 describes the data-sets and shows the experi-
ments carried out and the results obtained. Finally, in Section 7,  
we summarize the main conclusions and future work.

2. Classification of Imbalanced Data-sets

2.1. Methods for Dealing with Class Imbalance

To deal with class imbalance problem (Guo et al., 2008; López 
et al., 2013), a number of approaches have been proposed. Here, 
we summarize some techniques that are commonly used to 
tackle the class imbalance problem.

2.1.1. Data Re-sampling Methods
Re-sampling methods aim to balance the class distribution in 
the training data by either duplicating or generate new minor-
ity instances (over-sampling) or removing instances from 
the majority class (under-sampling) (Blagus & Lusa, 2013; 
Thai-Nghe et al., 2010). Several techniques for performing 
over-sampling and under-sampling have been proposed. Both 
under-sampling and over-sampling have their benefits and 
drawbacks (Seiffert, Khoshgoftaar, Van Hulse, & Napolitano, 
2010). While under-sampling causes loss of information that 
comes from deleting instances, over-sampling could lead to 
over-fitting that comes from duplicating instances or creating 
new ones.

Random over-sampling (ROS) (He & Garcia, 2009; Thai-
Nghe et al., 2010) method is used to balance class distribution 
by randomly duplicating the minority class instances while 
training the classifier until a desired class ratio is achieved. 
Sample weight parameter is used in the fit method (Batista, 
Prati, & Monard, 2004). Although ROS is effective, it may 
increase the likelihood of over-fitting since it makes exact cop-
ies of the minority class instances (Guo et al., 2008).

The Synthetic Minority Oversampling Technique (SMOTE), 
introduced by Chawla, Bowyer, Hall, & Kegelmeyer (2002), 
is one of the most well-known and widely used re-sampling 
methods. SMOTE generates new artificial minority instances 
by interpolating among the existing minority instances. This 
method first finds the k nearest neighbors of each minority 
instance; next, it selects a random nearest neighbor. Then a 
new minority class instance is created along the line segment 
joining a minority class instance and its nearest neighbor. This 
procedure is repeated until both classes have equal number of 
instances (Chawla et al., 2002).

2.1.2. Cost-sensitive Learning
Standard classifiers assume that the misclassification costs (false 
negative and false positive cost) are the same for all classes. 
However, in most real-world applications, this assumption is 
not true. When learning from imbalanced data, the classifier 
tends to be biased towards the majority class. Thus we need 
to assign a high cost to misclassification of the minority class, 
and try to minimize the overall cost. In the weighting method 
(Ting, 1998), we assign a certain weight to each instance in 

terms of its class, according to the misclassification costs, with 
the minority class given larger weight. Classes with higher 
weights are given more importance while training the classifier.

2.1.3. Thresholding
Some classifiers can produce probability estimates on instances. 
However, when the classes in the training data are imbalanced, 
these predictions calculated by the classifier can be inaccurate, 
because many classifiers do not know how to adjust for the 
class imbalance. If a classifier’s probabilities are accurate, the 
appropriate way to convert its probabilities into predictions 
is to cut-off at a threshold (usually 0.5) and predict the posi-
tive class if the probability is above the cut-off and otherwise 
the negative class. When the probabilities are inaccurate, this 
method does not work well. We can improve the predictions 
by adjusting the threshold to a value that minimizes the total 
misclassification cost on the training instances, and use this 
value to predict the class label of test instances (Seiffert et al., 
2010; Sheng & Ling, 2006).

2.2. Evaluation Metrics in Imbalanced Domains

Evaluation measures are needed so that different classifiers’ 
performances can be compared to each other. For a two-class 
problem, the confusion matrix, shown in Table 1, illustrates the 
distribution of correct and incorrect instances for the positive 
and negative classes. TP and TN denote the number of posi-
tive and negative instances that are classified correctly, while 
FN and FP denote the number of misclassified positive and 
negative instances respectively.

A number of widely used metrics to measure the perfor-
mance of the models can be computed based on the confusion 
matrix. Predictive accuracy (ACC) is the performance meas-
ure generally associated with classification algorithms and is 
calculated as:

 

Typically, the accuracy is the most commonly used empirical 
measure, however, since it does not distinguish between the 
number of correctly classified instances of different classes, 
accuracy is no longer a proper measure when the data is imbal-
anced. The ROC (Receiver Operating Characteristics) curve is 
a standard technique for summarizing classifier performance 
on imbalanced data-sets (Fawcett, 2006). The ROC is a plot 
of the TPrate(sensitivity) against the FPrate(1-specificity), where 
TPrate =

TP

TP+FN
 and, FPrate =

FP

FP+TN
 for different threshold values 

characterizing the overall performance of a classifier. The area 
under the ROC curve (AUC) is the probability that the classifier 
will rank a randomly chosen positive instance higher than a 
randomly chosen negative instance (Fawcett, 2006). AUC val-
ues range from 0 to 1, with a higher AUC value indicating that 
the classifier has a higher discriminative capability to differen-
tiate positive samples from negative instances. An AUC equal 
to 1.0 indicates a perfect classifier, whereas 0.5 indicates that a 
model performs like a random classifier (Berrar & Flach, 2011). 
AUC has been shown to be a reliable performance measure for 
imbalanced data-sets (García et al., 2012; López et al., 2013; 

(1)Accuracy =
TP + TN

TP + FN + FP + TN

Table 1. Confusion matrix for a two-class problem.

Predicted Positive Predicted Negative
Actual positive true positive false negative
Actual negative false positive true negative
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Sáez et al., 2015). Thus we have used AUC metric to evaluate 
our experiments in Section 6.

3. Noise Filter Approaches

Noise handling is a central focus in many areas of ML. The pre-
liminary approaches to noise treatment aim to create inductive 
learning algorithms that are able to resist the data-set’s noise. 
However, the most common approaches to noise handling is to 
eliminate noise by filtering of noisy instances before the model 
is built. Noise filters are preprocessing mechanisms designed to 
enhance the data quality by eliminating noisy instances in the 
training set (Zhu et al., 2003). The separation of noise detection 
has the advantage that noisy instances do not influence the 
classifier design. Then a classifier is used on the reduced and 
clean training data.

There are numerous noise detection approaches in litera-
ture. The most widely used are; Classification Filter (CF) pro-
posed by Gamberger, Boskovic, Lavrac, and Groselj (1999), 
Ensemble Filter (EF) (Khoshgoftaar, Joshi, & Seliya, 2006), 
and Iterative-Partitioning Filter (IPF) (Zhu et al., 2003). CF 
approach identifies the noisy instances using cross validation. 
The training set is partitioned into n parts, and then n differ-
ent classifiers are trained using collection of any n-1 parts to 
identify noise from the excluded part. On the other hand, the 
EF approach learns a classifier from each single part and then 
the classifier is evaluated on the whole data-set. To identify 
noisy instances, CF directly adds the misclassified instances by 
one classifier to the noise filtered set, but EF takes the majority 
or consensus vote of a committee of n classifiers (Zhu et al., 
2003). IPF is a preprocessing technique based on the EF. It 
removes noisy instances in multiple iterations until the number 
of identified noisy instances in each of these iterations is less 
than a certain percentage of the size of the original training 
data (Sáez et al., 2015).

4. Related Work

Recently, researchers in the educational community have been 
interested in applying ML techniques for predicting student 
performance. Class imbalance problem was one of the obsta-
cles that caused unsatisfactory prediction results. Thai-Nghe, 
Busche, and Schmidt-Thieme (2009) proposed a model to 
improve the student academic performance prediction by deal-
ing with the class imbalance problem. They first re-balanced 
the data-set by SMOTE and then used cost-insensitive learning 
to minimize the misclassification cost. The model was exam-
ined on four data-sets, and the results improved compared 
to the baseline classifiers. Márquez-Vera, Cano, Romero, and 
Ventura (2013) devised a genetic programming algorithm with 
a data balancing approach for solving the problem of student 
failure using real data about 670 first-year high school stu-
dents in Mexico. In a more recent study, an ensemble filter-
ing approach has been used in Satyanarayana and Nuckowski 
(2016) to enhance the quality of students’ data by eliminating 
noisy instances. They showed that, compared to single filters, 
using ensemble filters gives better predictive accuracies.

With reference to the original SMOTE technique, several 
adaptations have been proposed in the literature, most of them 
aim at identifying the region in which the minority instances 
should be generated. Another extension of SMOTE corre-
sponds to the Borderline-SMOTE technique (Han, Wang, & 
Mao, 2005), which only over-sampled the minority instances 

near the borderline since these are more likely to be mis-
classified. This method achieves better TP rate and F-value 
than SMOTE and random over-sampling methods. Batista  
et al. (2004) proposed two data cleaning methods to the over- 
sampled training set by SMOTE. In the first method, SMOTE-TL 
uses Tomek links to remove instances after applying SMOTE 
(Seiffert et al., 2010). An instance is removed either, because it 
is noisy or because it is near the border. Tomek links (Tomek, 
1976) are defined on pairs of minimally distanced nearest 
neighbors of opposite classes. The second method SMOTE-
ENN (SMOTE with Edited Nearest Neighbor) tends to remove 
more instances (from both classes) than the SMOTE-TL does, 
so it is expected to provide a more effective data cleaning. ENN 
removes from the training set any instance that differs from 
two of its three nearest neighbors (Batista et al., 2004). The two 
methods SMOTE-TL and SMOTE-ENN are characterized by 
their over-sampling followed by under-sampling.

Researchers have used ensemble methods (Dietterich, 2000) 
to deal with the problem of noise filtering. Consensus and 
majority are the two voting schemes that could be implemented 
to identify noisy instances. The former eliminates an instance if 
it is misclassified by all the classifiers, while the latter eliminates 
an instance if it is misclassified by more than half of the classi-
fiers (Sáez et al., 2015). There are many ensemble-based noise 
filters. For example, Brodley and Friedl (1999) used consensus 
filters and majority vote filters to identify and eliminate misla-
beled training instances, which are incorrectly classified by the 
multiple classifiers. Their results show that if that the training 
data-set is sufficiently large, then classification accuracy can be 
improved as more noisy instanced were removed. Sluban et al. 
(2014) presented an ensemble-based methodology for explicit 
noise detection and ranking, called NoiseRank. It can rank the 
detected noisy instances according to the predictions of several 
different noise detection algorithms and thus it provided more 
reliable results.

Seiffert et al. (2014) performed a comprehensive and empir-
ical study on the effects of class imbalance and class noise on 
11 different classification algorithms and data sampling tech-
niques when they used to predict software quality. They com-
pared the performance of seven sampling techniques using 12 
data-sets derived from real world software quality data with 
different levels of class noise and imbalance. Later, Sáez et al. 
(2015) proposed and examined a new extension of SMOTE 
through an IPF filter, called SMOTE-IPF, which can overcome 
the problems introduced by noisy and borderline instances 
in imbalanced data-sets. The results show that SMOTE–IPF 
performed better than existing SMOTE generalizations with 
both synthetic and real-world data-sets.

5. Proposed Methods

We present two empirical methods that address noise filter-
ing and class imbalance problems simultaneously; the first is 
class-Balanced by SMOTE & Thresholding combined with 
Classification Filter, called BST-CF, and the second is class- 
Balanced by SMOTE & Thresholding combined with Ensemble 
Filter, called BST-EF. Both methods eliminate noisy instances, 
located inside the borderline area, from the majority class and 
the minority class remains unchanged. Our methods incor-
porate a noise filtering into two class-imbalance techniques 
SMOTE and thresholding, which are used to balance the class 
distribution of the training data and choose the best boundary 
between classes. The CF approach is used to identify noisy 
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(1)  The fit set Xfit consists of only one subset while the 
validation set Xval is a union of the remaining 9 sub-
sets (step 4 above).

(2)  When identifying a noisy instance, BST-CF adds it 
directly to S set at each run, but BST-EF computes 
the number of times that an instance is identified as 
a noise, then eliminates the noisy instances with high 
scores; such that the total number of eliminated noisy 
instances in S equals the average number of noisy 
instances identified at each of the ten runs (step 9).

(3)  The optimal threshold �∗val is found by cross valida-
tion on the set X

′

fit (step 12).

6. Experiments and Results

In this section, we first present the two real-world data-sets, 
then we describe a series of experiments that handle class 
imbalance and class noise problems. We then present the test 
results of our methods on the two data-sets, and finally discuss 
the results. All experiments have been conducted using scikit-
learn package. Scikit-learn (Pedregosa et al., 2011) is a general 
purpose ML library written in Python, which provides effi-
cient implementations of many ML algorithms. All classifier’ 
performances were evaluated through stratified 10-fold cross 
validation method.

6.1. Performance of Students with Autism Data-set

The Autism data-set has been gathered from the web applica-
tion during learning sessions of five students with autism whilst 

instances in the first method while the EF approach is used in 
the second. The main differences between our methods and 
other noise filters are:

•  The noisy instances are refined and restricted within 
borderline area of majority class.

•  To the best of our knowledge, thresholding together 
with noise filtering approach has not been used before.

In order to perform a fair comparison, random forest (RF) 
(Breiman, 2001) is deployed as the base classifier in both meth-
ods, because it runs efficiently on large data, and it provides 
methods for balancing error in class population imbalanced 
data-sets (Breiman, 2001; Truong, Lin, & Beecher, 2004). 
Moreover, our methods need to find the probabilities that 
assigned to each instance in a subset of training data; RF can 
easily estimate probability on instances using scikit-learn.

Our proposed method BST-CF is described as follows:

(1)  Grid search with cross validation are used to deter-
mine the optimal hyper-parameters for RF model 
in terms of AUC.

(2)  Split the whole data-set X into five subsets, four of 
them are selected as training data Xtrain, and the fifth 
subset is used as the test data Xtest to evaluate the 
performance of RF model on the clean data.

(3)  Initially, the method starts with a set of noisy 
instances S = ∅.

(4)  Use stratified 10-fold cross validation to divide Xtrain 
into fit set Xfit (aggregation of any 9 subsets) and 
validation set Xval (excluded subset) such that they 
are randomly sampled, and classes are equally bal-
anced in both.

(5)  Firstly, the over-sampling technique SMOTE is 
applied to balance Xfit, then the RF is built on this 
set.

(6)  Investigate the threshold value �∗fit in range from 
0.40 to 0.80 that gives the best average AUC score 
when converting probabilities on Xfit into classes by 
the RF classifier using cross validation.

(7)  Generate the predicted probabilities that the RF 
classifier assigned to each instance in validation set 
Xval.

(8)  Find out the borderline instances in Xval, i.e., 
instances around the chosen threshold �∗fit with a 
certain β width.

(9)  Add to set S the noise, which are incorrectly clas-
sified instances within the borderline area and 
belonging to the majority class.

(10)  Repeat steps 4–9 on the other folds; and then elim-
inate the noisy set S.

(11)  Re-fit the RF model on the filtered fit set X
′

train.
(12)  Find the optimal threshold value �∗val by taking the 

mean of �∗fit of the ten runs.
(13)  The final RF model generated in step 11 is then 

used to predict the class label of test data Xtest using 
threshold �∗val.

Evaluation measures are estimated in 10-fold cross valida-
tion repeated 5 times and the results are obtained by averaging 
scores of the 5 runs. Figure 1 illustrates the overall design of 
our methods.

The second method BST-EF differs from the BST-CF 
method in the following:

Figure 1. the overall Design of BSt-Cf and BSt-ef. the Steps that Differ between 
two methods are Shown using a thick Border.
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(1)  All classifiers in “None” case have the test AUC score 
of about 0.5, which means that they perform similar 
to a random classifier.

(2)  Classification with balanced data-set results in effec-
tive performance, regardless of any used classifier.

(3)  All approaches have been able to improve the AUC 
results. However, SMOTE-ENN and weighting are 
quite robust on average among those approaches for 
all classifiers.

6.1.2. Experiment 2—Class Imbalance and Noise Filter
The goal of experiment 2 is to investigate the performance of 
the two proposed methods for different classifiers. The methods 
BST-CF and BST-EF were used to produce the optimal noise 
set to be removed from the Autism data-set at different widths 
β (from 0 to 0.6). The number of noisy instances detected by 
BST-CF method was 350 (11.3%), and by BST-EF method was 
320 (10.3%). The experimental results shown in Figure 2 are 
presented in terms of the average AUC via 10 runs for different 
four classifiers after removing noisy instances from the Autism 
data-set using BST-CF and BST-EF methods. Figure 2 reveals 
the following conclusions. First, the AUC scores obtained by 
classifier using class-imbalance approaches after removing 
noise from the Autism data-set are better than the AUC results 
obtained by a classifier with only class-imbalance approaches. 
For instance, the results for RF with SMOTE increase from 
0.593 to 0.673 when using our methods. Secondly, the best 
AUC’s scores (0.749 for BST-CF and 0.74 for BST-EF) are 
achieved by RF classifier. Third, the AUC results of BST-CF are 
slightly better than BST-EF. The reason may be due to BST-CF 
eliminates more noisy instances.

6.2. UCI Portuguese Student’s Failure Prediction  
Data-set

This UCI repository1 data-set called Portuguese is based on a 
study of data collected during the 2005–2006 school year from 
two public schools at Alentejo region in Portugal (Cortez & 
Silva, 2008). The data-set is the Portuguese language class per-
formance of secondary school students. The data-set contains 
649 instances; each representing a secondary school student. 
Each instance has 32 attributes including student grades, demo-
graphic, social and school related features. Attributes of the 
data-set are shown in Table 4. During the school year, students 
are evaluated in two periods (G1, G2) and the last evaluation 

they have been teaching object recognition over the period 
from April to June 2015 (Radwan, Birkan, Hania, & Cataltepe, 
2017). Students’ ages ranged from 5 to 9 years. Each student 
performed 20 sessions; each contains 30 to 40 assessment trials. 
The total number of instances (rows) used in this study is 3090. 
Each instance represents the results of an assessment trial for 
a particular student during the conduction of the investiga-
tion. The attributes/variables of the Autism data-set are shown 
in Table 2. Since they contain discrete and unordered values, 
1-of-K representation was used for the following attributes: 
student_id, object_id, and category_id. After applying this rep-
resentation, the total number of features was 42.

Since we want to predict the RC, we have a binary classi-
fication problem. As 85.6% instances are labeled with 1 (cor-
rect) and the remaining 14.4% of instances are labeled with 0 
(incorrect), this is an imbalanced data-set and the imbalance 
ratio (IR) of 1 to 0 instances is 5.94. In this paper (and without 
loss of generality), the minority class (class 0) is regarded as 
the positive class, and the majority class (class 1) is regarded 
as the negative class.

6.1.1. Experiment 1—Class Imbalance
In the first set of experiments, we analyzed the behavior of class 
imbalance approaches. Our aim is to investigate the improve-
ment of classifier’s result when using five different approaches: 
ROS, SMOTE, SMOTE-TL, SMOTE-ENN and weighting. 
Four base ML classification algorithms were used: Logistic 
Regression (LR), Random Forest classifier, linear Support 
vector machine (SVM) and AdaBoost. The RF involves an 
ensemble of decision trees grown based a randomly selected 
subset of samples and features. The prediction is made by 
aggregating majority vote of the ensemble. For the RF model, 
the number of trees in the forest was empirically chosen. We 
performed a grid search of the n_estimators model parameter, 
evaluating a series of values from 20 to 320 with a step size of 
30. The best number of trees was n_estimators = 200 that can 
be used to build more accurate RF classifiers. AdaBoost is an 
ensemble classifier (Dietterich, 2000), which follows a boosting 
technique that combines multiple weak classifiers into a strong 
one. AdaBoost was used with LR model.

Table 3 presents the overall test AUC results (± standard  
deviation) obtained by different classifiers using class- 
imbalance approaches considered in this paper. The row 
denoted by “None” corresponds to the case in which no 
class-imbalance approach is performed. From results of  
Table 3, the following main points should be stressed:

Table 2. Description of the Autism Data-set.

Attribute Description Values Type
student_id the student ID numeric: from 1 to 5 predictor
object_id the object ID used in a trial numeric: from 1 to 30 predictor
category_id the category ID of object numeric: from 1 to 5 predictor
level difficulty level of the object numeric: from 1 to 4 predictor
Rt the response time numeric: real predictor
RC the response by the student binary: 1 or 0 output

Table 3. Comparison of Different Classifiers on a Autism Data-set in terms of AuC.

Algorithm LR RF SVM AdaBoost
none 0.514 ± .015 0.509 ± .010 0.5 ± 0.0 0.536 ± .024
RoS 0.643 ± 0.067 0.631 ± 0.042 0.649 ± 0.054 0.638 ± 0.047
Smote 0.682 ± 0.038 0.593 ± 0.030 0.679 ± 0.047 0.678 ± 0.034
Smote-tl 0.687 ± 0.042 0.602 ± 0.039 0.684 ± 0.044 0.684 ± 0.039
Smote-enn 0.690 ± 0.027 0.677 ± 0.044 0.695 ± 0.035 0.686 ± 0.026
Weighting 0.690 ± 0.039 0.682 ± 0.043 0.681 ± 0.041 0.678 ± 0.028
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average test AUC obtained by different classifiers using five 
class-imbalance approaches. When class-imbalance approaches 
except SMOTE-ENN are used, AUC scores improve compared 
with “None” case regardless of any used classifier. In most cases, 
SVM outperforms the others classifiers. The results indicate 
that the weighting is robust on average among the approaches, 
and the worst results are obtained by SMOTE-ENN.

We also replicated the above experiment 2 on the 
Portuguese data-set. The two methods BST-CF and BST-EF 
were used to produce the best noise set to be removed from 
Portuguese data-set. The number of noisy instances detected 
by BST-CF method was 54 (8.32%), and by BST-EF method 
was 49 (7.55%). The experimental results, shown in Figure 3, 

(G3) corresponds to the final grade. In this work, the grade 
G3 has been modelled using supervised approach as binary 
classification where a student passes if G3 ≥ 10 else fails. The 
majority of students (549) passed and a minority (100) failed 
thus the data-set is imbalanced and the IR ration of pass to fail 
instances is 5.49. The nominal attributes were transformed into 
a 1-of-K encoding. The G3 attribute was transformed into 1 
(pass) and 0 (fail).

We replicated the above experiment 1 on the Portuguese 
data-set. The same classifiers were used here. Since AdaBoost 
with LR using different class-imbalance approaches achieved 
test AUC scores of about 0.53, which is very low, so we changed 
Adaboost to be with decision tree (DT). Table 5 presents the 

Figure 2. Average AuC obtained by Different Classifiers using only Class-imbalance Approaches (Dashed line) and Class-imbalance Approaches with one of proposed 
methods (Solid line) on Autism Data-set. (left) using BSt-Cf method. (Right) using BSt-ef method.

Table 4. Attributes of the portuguese Data-set.

Attribute Description Values
school student’s school binary: gp or mS
sex student’s sex binary: female or male
age student’s age numeric: from 15 to 22
address student’s home address type binary: urban or rural 
famsize family size binary: ≤ 3 or > 3
pstatus parent’s cohabitation status binary: living together or apart
medu mother’s education numeric: from 0 to 4
fedu father’s education numeric: from 0 to 4
mjob mother’s job nominal: teacher, health, services, at_home or other
fjob father’s job nominal: teacher, health, services, at_home or other
reason reason to choose this school nominal: close to home, school reputation, course preference 

or other
guardian student’s guardian nominal: mother, father or other
traveltime home to school travel time < 15 min, 15 to 30 min, 30 min to 1 h, or >1 h
studytime weekly study time < 2 h, 2 to 5 h, 5 to 10 h, or >10 h
failures number of past class failures numeric: n if 1<=n<3, else 4
schoolsup extra educational support binary: yes or no
famsup family educational support binary: yes or no
paid extra paid classes within the course binary: yes or no
activities extra-curricular activities binary: yes or no
nursery attended nursery school binary: yes or no
higher wants to take higher education binary: yes or no
internet Internet access at home binary: yes or no
romantic with a romantic relationship binary: yes or no
famrel quality of family relationships numeric: from 1 - very bad to 5 - excellent
freetime free time after school numeric: from 1 - very low to 5 - very high
goout going out with friends numeric: from 1 - very low to 5 - very high
Dalc workday alcohol consumption numeric: from 1 - very low to 5 - very high
Walc weekend alcohol consumption numeric: from 1 - very low to 5 - very high
health current health status numeric: from 1 - very bad to 5 - very good
absences number of school absences numeric: from 0 to 93
g1 first period grade numeric: from 0 to 20
g2 second period grade numeric: from 0 to 20
g3 final grade (output target) numeric: from 0 to 20
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In the future, we aim to carry out the proposed methods 
on data-sets outside the education domain, and examine the 
effectiveness of them. We will investigate the use of other noise 
filter approaches such as IPF (Zhu et al., 2003), saturation filter 
or NoiseRank (Sluban et al., 2014) using the same procedures 
employed in our methods.

Note
1.  http://archive.ics.uci.edu/ml
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are presented in terms of the average AUC for different four 
classifiers after removing noisy instances from Portuguese  
data-set using BST-CF and BST-EF methods (solid line) com-
pared with results obtained without noise removal (dashed 
line). The classifiers’ performance always improves with noise 
elimination. With all five class-imbalance approaches, BST-CF 
and BST-EF methods can contribute from 3% to over 15% to 
the AUC performance improvement, varying from classifiers 
and approaches. Comparing the results in Table 5, the AUC 
scores for RF and SVM with SMOTE increase from 0.801 and 
0.83 to 0.92 and 0.953 respectively when using the BST-CF 
method. In terms of AUC, the SVM is the best choice in 8 
cases (out of 12), followed by the RF, which obtains 4 best 
results. One can also find that the least AUC values obtained 
with SMOTE-ENN using two methods.

7. Conclusion and Future Work

Despite the increasing number of class noise filtering tech-
niques, these have been slightly used in the context of learning 
from the imbalanced data (Sáez et al., 2015). According to our 
best knowledge, class noises together with class imbalance have 
not yet been used on an educational domain data-set.

This paper proposes two noise filter methods, BST-CF 
and BST-EF that deal with class imbalance and noise filter-
ing problems simultaneously. Our experimental results on 
the two imbalanced Autism and Portuguese data-sets show 
that the four classification algorithms have a notably bet-
ter performance when combining our methods with class- 
imbalance approaches. The most accurate classifier tested over 
our methods is the random forest on Autism data-set and SVM 
on the Portuguese data-set.

Table 5. Comparison of Different Classifiers on a portuguese Data-set in terms of AuC.

Algorithm LR RF SVM AdaBoost
none 0.774 ± 0.059 0.805 ± 0.048 0.824 ± 0.069 0.818 ± 0.086
RoS 0.793 ± 0.055 0.868 ± 0.039 0.893 ± 0.029 0.831 ± 0.075
Smote 0.779 ± 0.061 0.801 ± 0.047 0.830 ± 0.054 0.820 ± 0.031
Smote-tl 0.802 ± 0.062 0.815 ± 0.042 0.828 ± 0.071 0.815 ± 0.093
Smote-enn 0.712 ± 0.075 0.729 ± 0.070 0.702 ± 0.075 0.747 ± 0.089
Weighting 0.865 ± 0.052 0.889 ± 0.036 0.902 ± 0.026 0.835 ± 0.045

Figure 3. Average AuC obtained by Different Classifiers using only Class-imbalance Approaches (Dashed line) and Class-imbalance Approaches with one of proposed 
methods (Solid line) on portuguese Data-set. (left) using BSt-Cf method. (Right) using BSt-ef method.

http://archive.ics.uci.edu/ml
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