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1 INTRODUCTION 
TRACTICAL missiles by virtue of their mission 

objectives, demand extremely accurate performance 
from their guidance and control components. The 
traditional design method of the missile guidance and 
control system is to design the guidance and control 
subsystems separately and then integrate them. As it 
ignores the coupling and time lag existing inevitably 
in the guidance and control subsystems, guidance and 
control subsystems fail to work synergistically, and 
the performance of overall missile system is not fully 
exploited (Yan & Ji, 2012). Considering these 
drawbacks in timescale separation design, integrated 
guidance and control (IGC) has been a hot topic of 
research in recent years (Wang & Wang, 2014). The 
IGC views the guidance subsystem and control 
subsystem as a whole and directly generates the fin 
deflection commands. Until now, a variety of 
approaches have been employed to design IGC laws, 
for example, feedback linearization (Menon et al., 
2004), state dependent Riccati equation (Vaddi et al., 
2009), active disturbance rejection control (Zhang & 
Wu, 2016), model predictive static programming 
(Padhi et al., 2014), sliding mode control (Song & 
Zhang, 2016), backstepping (Yan et al., 2014) and 
dynamic surface control (DSC) (Hou et al., 2013; 
Wang et al., 2015). 

It is noted that most of the existing relevant 
literature on IGC designs assumed the involved model 
coefficients related to the missile-target range R  or 
the relative velocity along the line of sight (LOS) R
were known and accessible, and hence, all state 
variables were available to the control law. However, 
this assumption is quite restrictive and unreasonable in 
many applications, especially for the missile equipped 
with the infrared seeker or passive radar seeker. 
Furthermore, attack and sideslip angles are usually 
regarded as part of state variables in many works, 
whereas they are difficult to measure. Thus, only a 
subset of state variables is measurable and available to 
the control law. In this work, we mainly focus on the 
IGC design when all the involved model coefficients, 
unmatched uncertainties and states except for the 
system output are unknown and unavailable to the 
IGC law. Therefore, a second-order continuous 
characteristic model is first presented to reconstruct 
the original system based on the principle that the 
original system and its continuous characteristic 
model should have the same output when their inputs 
are equivalent. 

A characteristic model has the following features. 
1) It should be equivalent to its practical plant in 
output for the same input. 2) It compresses high-order 
terms, uncertainties and disturbances into several 
parameters without losing any information. In the 
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1990s, an integrated and practical all-coefficient 
adaptive control theory and method based on 
characteristic models were proposed (Wu et al., 2007). 
This control theory is independent of the original 
system model and has already been applied to many 
fields successfully (Zhang & Hu, 2012; Huang & 
Zhang, 2015). However, it is denoted by a slow time-
varying second-order difference equation and requires 
that the sample time should be small enough to make 
the coefficients of the difference equation slow time-
varying. The model mismatch and the truncation error 
between the discrete controller and the continuous 
system are inevitable. To eliminate these 
shortcomings, a continuous characteristic model is 
presented in this work. As the novel characteristic 
model has no truncation error and is not related to the 
sample time, its characteristic parameters vary much 
faster. On the account of this fact, the continuous 
characteristic model is incorporated with the robust 
adaptive dynamic surface control technique. To avoid 
the problem of explosion of complexity of the back-
stepping method (Dimirovski et al., 2006), the DSC 
technique was proposed by introducing a first-order 
low pass filter at each design step. It has been 
extensively researched in many applications ranging 
from linear systems, nonlinear systems and stochastic 
systems (Wang & Lin, 2010; Kendrick et al., 2013; 
Song et al., 2014). 

In this paper, we consider the IGC design for the 
homing missile based on the novel continuous 
characteristic model and the adaptive dynamic surface 
control approach in the presence of unknown model 
coefficients, uncertainties and intermediate state 
variables. The rest of this paper is organized as 
follows: In Section 2, the integrated guidance and 
control design for the pitch channel is introduced, for 
example, the original pitch channel dynamics model 
description, continuous characteristic model, design 
objective, IGC law design procedure and stability 
analysis. In Section 3, the integrated guidance and 
control design for the yaw and roll channels are 
presented. Simulations on the nonlinear missile model 
are conducted, and conclusions are drawn in Section 4 
and 5, respectively. 

2 INTEGRATED GUIDANCE AND CONTROL 
DESIGN FOR THE PITCH CHANNEL 

2.1 Continuous Characteristic Model of the 
Pitch Channel 

THE pitch channel model for the missile integrated 
guidance and control loop is given by (Liang et al., 
2015). 

 

1 11 1 12 2 1

2 22 2 3 2

3 32 2 3 3

1

x a x a x
x a x x
x a x b u
y x

= + + ∆
 = + + ∆
 = + + ∆
 =






 (1) 

Where 1x ε=  , 2x α=  and 3 zx ω=  are the system 
states; zu δ=  and y ε=   are the system input and 
output; 1∆ , 2∆  and 3∆  are the system uncertainties; 

3
z

z zb QSLm Jδ= , 11 2a R R= −  , 12 ya QSc mRα= −

, 22 ya QSc mVα= −  and 32 z za QSLm Jα=  are the 
model coefficients; m  is the mass of the missile; V  is 
the velocity of the missile; S  and L are the reference 
area and length; R  is the missile-target range; ε  is 
the elevation angle of LOS; α  is the attack angle; zω  
is the body-axis pitch rate; 2 / 2Q Vρ=  is the dynamic 
pressure; ρ  is the air density; zδ  is the elevator 

deflection; zJ  is the pitch moment of inertia; ycα  is 
the partial derivative of lift force coefficient with 
respect to α ; zmα  and z

zmδ are the partial derivatives 
of pitching moment coefficient with respect to α  and 

zδ , respectively. 
Remark 1. In general, ycα  and z

zmδ  are usually 
positive and negative constants, respectively. Hence, 
there exist two constants 0a <  and 0b <  such that 

12 0a a≤ <  and 3 0b b≤ < . 
So far, a great variety of literature deals with IGC 

designs on the condition that all the involved model 
coefficients are known and available, whilst only the 
uncertainties are unknown. Actually, for many 
missiles equipped with the infrared seeker or passive 
radar seeker, the model coefficients related to R  or R  
are unknown and unavailable. So, the restrictive 
assumption in previous works is unreasonable in many 
cases. As a result, in this paper, it is assumed that the 
model coefficients and uncertainties of model (1) 
satisfy the following assumption instead of the 
restrictive one.  

Assumption 1. All the involved model coefficients 
and uncertainties of model (1) are unknown bounded 
time-varying functions with bounded derivatives, and 
all the bounds are also unknown. 

At present, in some literature, the system states are 
considered to be known and available. But the attack 
and sideslip angles are difficult to measure. To solve 
the problem, the model states are supposed to meet the 
following assumption. 

Assumption 2.  Only the system input u  and 
output y  are available for measurement. 

Due to Assumption 1 and Assumption 2, it is of 
great interest to conduct an IGC design without a state 
observer and the designed adaptive law should be 

http://xueshu.baidu.com/s?wd=author%3A%28G.M.%20Dimirovski%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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much simple. In order to achieve this objective, a 
novel continuous characteristic model denoted by a 
second-order continuous time-varying differential 
equation is proposed. For the same input, the 
continuous characteristic model has the same output as 
that of its original model. As the proposed IGC design 
only uses the system output, it is able to substitute the 
continuous characteristic model for its original model 
in the design process. The novel continuous 
characteristic model of original model (1) is presented 
as follows. 

According to (1), the first-order derivative of 
output is 

 1 11 1 12 2 1x a x a x= + + ∆  (2) 

Then, the third-order derivative of output is 
expressed as 

 1 11 1 11 1 11 1

12 2 12 2 12 2 1

2
2

x a x a x a x
a x a x a x

= + + +

+ + + ∆

    

   
 (3) 

From (1), we have 

 2 22 2 22 32 2 3 2 3( )x a x a a x b u= + + + + ∆ + ∆    (4) 

Substituting (4) into (3) results to 

 1 11 1 11 1 12 22 2 12 2 1

12 22 32 2 3 2 3[( ) ]
x a x a x a a x a x

a a a x b u
= + + + + ∆ +

+ + + ∆ + ∆

    


 (5) 

According to (2), it can be obtained that 

 2 1 11 1 1 12( )x x a x a= − − ∆  (6) 

Substituting (6) into (5) results to 

 1 2 1 1 1 0 1x q x q x q x bu w+ + + = +    (7) 

where 2q , 1q , 0q , b  and w  are time-varying 
functions, and their expressions are presented as 
follows: 

 ( )2 11 22 12 122q a a a a= − + +   (8) 

 ( )
1 11 22 32 12 12 11 22

2 2
22 12 11 12 12 12

2

2 2

q a a a a a a a

a a a a a a

= − − − − + +

+ +

  

  
 (9) 

 
( )

2 2
0 11 11 22 11 32 11 12 12

22 11 12 11 12 11 12 12 11 22

2
2

q a a a a a a a a
a a a a a a a a a a

= − + + − −

− − +

  

    
(10) 

 12 3b a b=  (11) 

 

12 22 12
1 1 12 2 12 3

12

2
22 12 12 12

22 32 12
12 12

2

2

a a aw a a
a

a a a a a a
a a

+
= ∆ − ∆ + ∆ + ∆ +

 −
+ − − ∆ 

 

  

  


 (12) 

As 1y x= , from (7), one can obtain that 

 1 0y q y q y bu ξ+ + = +   (13) 

where ( )21w y q yξ = − + −  . 
Let 1δ >  is a positive constant arbitrarily, then 

define  

 
1 22 2 2 2

3 32 2
0

, ,

, .
m

i

i

y y
y y y y

y y

υ υ
δ δ

δυ ζ υ
δ =

= =
+ + + +

= =
+ + ∑



 



 (14) 

where 0m >  is a positive integer. Then, the compress 
mapping function sf  is defined as 

 1
1 2 3

m
sf y yζυ ζυ υ += + +  (15) 

Note that the compress mapping function has the 
property that 1sf = . Combining (15) with (13), 
obviously, it can be obtained that 

 1 0

0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

y t a t y t a t y t
b t u t d t
+ +

= +

 
 (16) 

where 1a , 0a , 0b  and d are time-varying functions, 
and their expressions are presented as follows: 

 

1 1 1

0 0 2

0
1

3

( ) ,
( ) ,
( ) ,

( ) .m

a t q
a t q
b t b

d t

ζυ ξ
ζυ ξ

υ ξ+

= −
= −

=

=

 (17) 

In summary, equation (16) is called the continuous 
characteristic model of system (1), 1a , 0a , 0b  and d  
are the time-varying characteristic parameters. 
Moreover, from the above theoretical deduction, it has 
been proven that the continuous characteristic model 
has the same output as that of its original model for 
the same input.  
Remark 2. There are many choices for the 
intermediate parameters δ  and m  appearing in (14), 
that is, the compress mapping function is not unique. 
It means that the original system has many continuous 
characteristic models with different characteristic 
parameters. The main purpose of above deduction is to 
prove the existence of continuous characteristic 
model, which is the most important of all for the IGC 
design conducted in this paper. Due to the 
characteristic parameters that are related to the 
coefficients and uncertainties of model (1), which are 
supposed to be unknown in assumption 1, all the 
characteristic parameters are also unknown. 

In addition, for the stability of the closed-loop 
system, the characteristic parameters are supposed to 
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satisfy the following reasonable assumption in view of 
their physical backgrounds. 

Assumption 3.  The characteristic parameters 
1( )a t , 0 ( )a t , 0 ( )b t  and ( )d t  are bounded time 

functions having bounded derivatives. 

2.2 Design objective 
The objective of IGC design can be elaborated as: 

Use the continuous characteristic model instead of its 
original model to design an IGC law in the presence of 
unknown model coefficients, mismatched 
uncertainties and states except the output of model, 
which should guarantee the missile intercepts the 
target with small miss distance and keep all the states 
of missile stable.  

By accepting the concept that zeroing LOS angular 
rates will lead to a successful interception with zero 
miss distance, the specific guidelines for the IGC 
design are given as follows. 

(1) To sustain LOS angular rates ε  and η  as zeros 
for making the miss distance small. 

(2) To maintain the roll angle γ  in a small 
neighbourhood of zero. 

(3) To stabilize the states of the missile and be 
robust to the unknown coefficients and uncertainties 
existing in the missile dynamics. 

2.3 IGC Law Design 
As the characteristic model (16) is a fast time-

varying linear system with a matched uncertainty, the 
adaptive dynamic surface control approach has been 
the most common method for such a kind of systems 
recently (Song et al., 2014). In this section, an 
adaptive dynamic surface control algorithm is 
developed to deal with the output control problem 
under Assumption 3. 

The second-order continuous characteristic model 
(16) is written in the state-space form 

 
1

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
t t t t u t t

y t x t
= + +

 =

x A x b d
 (18) 

Where Ru∈  and Ry∈  are the system input and 
output, T 2

1 2[ , ] Rx x= ∈x  is the system state vector, 
and 

 0 1

0 1
( ) ( )a t a t

 
 − − 

A =
, 

 0

0
( )

( )
t

b t
 

=  
 

b
, 

0
( )

( )
t

d t
 

=  
 

d
. 

Remark 3. Since 0 12 3( )b t b a b= = , meanwhile, 

12 0a a≤ <  and 3 0b b≤ <  in Remark 1, it can be 

seen that 0 ( ) 0b t >  and the sign of 0 ( )b t  is known 
and constant throughout the engagement. 

The robust output-feedback adaptive dynamic 
surface control design for system (18) is proceeded as 
follows: 

Step 1: The first surface error is defined as 

 1S y=  (19) 

By considering (18), the time derivative of first 
surface error is 

 ( )1 1 1 2 1 1 1 1S y c S x c Sα α= = − + − + +  
   (20) 

where 1c  is a positive design parameter, 1α  is the 
virtual control to be designed to stabilize (20) in the 
absence of 2 1( )x α− . 

Choosing the virtual control as 

 1 1 1c Sα = −  (21) 

Let 1α  as the input of the following first-order 
filter. 

 2 2 2 1d dx xτ α+ =  (22) 

Where 2τ  is the time constant, 2dx  is the filter output. 
Step 2: The second surface error is defined as 

 2 2 2 2d dS x x y x= − = −  (23) 

Whose time derivative is 

 ( ) T
2 2 2 0S c S b t u = − + + 
 θ ω  (24) 

Where 2c  is a positive design parameter, and 

 
[ ]
[ ]

T
0 0 0 1 0 0

T
2 2 2

1 , , , ,

, , ,1 .d

b a b a b d b

c S x y y

= − − −

= −  

θ

ω
 (25) 

Define the estimate error as 

 ˆ= −θ θ θ  (26) 

Where θ̂  is the estimate of θ , and the adaptive law is 
defined as 

 2
ˆ ˆS σ= −θ Γ ω θ  (27) 

Where Γ  is a positive definite matrix, σ  is a 
positive design parameter. 

In final step, the actual system input is chosen as  

 Tˆu = −θ ω  (28) 

Remark 4. It is seen that the design procedure is quite 
simple compared with traditional adaptive controllers 
for linear time-varying (LTV) plants. The number of 
estimate parameters is small and constant, which is not 
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related to the model order and relative degree of its 
original system. In addition, the proposed scheme does 
not need a state observer any more. Thus, the 
algorithm does not introduce state observer errors, 
which may affect the rate of convergence and the 
output error to some extent. 

2.4 Stability Analysis 
The stability analysis is based on the Lyapunov 

stability theory. First, define the boundary layer error 
as 

 1 2 1dy x α= −  (29) 

In view of (22) and (29), we have 

 
( )1 1 1 1 2 2 1

2
1 2 1 1

dy y y x

y y

α τ α

τ η

= − −  
≤ − +


 (30) 

Where 1η  is a positive continuous function. Similarly 
to the linear time-invariant case (Wang & Lin, 2010), 
the existence of 1η  can be checked with the 
Assumption 3. 

Consider the following Lyapunov function 
candidate 

 ( )2 2 2 T 1
1 2 1 0 2V S S y b t − = + + + 

 θ Γ θ  (31) 

Where ˆ= −θ θ θ  is the estimate errors vector. As 
mentioned in Remark 3, there exists a constant 0b >  
such that 0 ( ) 0b t b≥ > , thus V  is positive definite.  
Theorem 1: On condition that assumption 1-3 are 
satisfied, the closed-loop system consisting of the 
equivalent continuous characteristic model (16) 
instead of its original LTV system (1) in the design 
process, the control law(28), the adaptive update law 
(27) and the first-order filters (22) is considered. If the 
positive constant R0 given arbitrarily meets the 
following inequality 

 ( ) 00V R≤  

there exist 1c , 2c , 2τ , Γ  and σ  to guarantee that all 
closed-loop signals are uniformly bounded and the 
output error S1 is arbitrarily small with proper design 
parameters. 
Proof 

According to (27) - (30), the time derivative of (31) 
yields 

 

( )
( ) ( )

( )

2 2 T 1
1 1 2 2 0

T 1
1 2 1 0

2
T 1 1

0 1 1
2

ˆ

2

V c S c S b t

S S y b t

yb t y

σ

η
τ

−

−

−

≤ − − + +

+ + +

 
+ − + 
 



  

 

θ Γ θ

θ Γ θ

θ Γ θ

 (32) 

Using Young’s inequality, we have 

 

2 2
1 1

1 1

T 1 T 1 T 1

,
2 2

1 1ˆ
2 2

yy η εη
ε

− − −

≤ +

≤ − +  θ Γ θ θ Γ θ θ Γ θ.
 (33) 

Where ε  is a positive constant given arbitrarily. 
According to (33), the inequality (32) is written as 

 

( )

( )

( ) ( )

2 2 T 1
1 1 2 2 0

2 2
2 T 12 1

1 0

T 1 T 1
0 0

2
21
1

2

1
2

1
2 2 2

1
2

1
2 2

V c S c S b t

S yS b t

b t b t

y

σ

σ

η ε
τ ε

−

−

− −

≤ − − − +

 
+ + + + 

 

+ +

 
− + + 
 

 

    

θ Γ θ

θ Γ θ

θ Γ θ θ Γ θ
 (34) 

Define the function 

 
( ) ( )

( )

T 1 T 1
0 0

T 1
0

2

2 2

b t b t

b t

ϕ σ

ε

− −

−

= + +

+

 

  

θ Γ θ θ Γ θ

θ Γ θ
 (35) 

Substituting (35) into (34) yields 

 
( )2 2 T 1

1 1 2 2 0

2 2 2
2 21 2 1
1 1

2

1
2

1
2 2 2

V c S c S b t

S yy S

σ

η
ϕ

τ ε

−≤ − − − +

   
− + + + + +   
   

  θ Γ θ
 (36) 

Define the compact set 

 ( ){ } 7
0 1 2 1 0: , , , : RS S y V RΩ = ≤ ∈θ  (37) 

Where 0R  is a given positive constant. Thus, from 
(37), the continuous functions 1η  and ϕ  have 
maximums on 0Ω , say, 1M  and Mϕ , respectively.  

Choose 

 1 0 2 0
2

2 1 0 0

1 , 0.5 ,

1 0.5 2 , 2 .

c c

M

α α

τ ε α σ α

≥ + ≥ +

≥ + + ≥
 (38) 

Where 0α  is a positive design parameter.  
Substituting the inequality (38) into (36), we obtain 

 02V V Mϕα≤ − +  (39) 

Hence, if ( )0 0R V≥  and 0α  is chosen as  

 0 02M Rϕα ≥  (40) 

then 0V ≤  on 0V R= . 
From the inequality (39), we can obtain that 
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 ( ) 02

0 0

0 0
2 2

tM M
V V eϕ ϕα

α α
− 

≤ ≤ − + 
 

 (41) 

Hence,  

 ( ) ( )1 0lim lim 2
t t

S t V t Mϕ α
→∞ →∞

≤ =  (42) 

Therefore, the output error can be made arbitrarily 
small with a large value of 0α , which can be 
implemented by letting the values of 1c , 2c  and σ  
large enough and that of 2τ  small enough. 

3 CONTROL DESIGN FOR THE YAW AND 
ROLL CHANNELS 

SIMILARLY to the pitch channel, the yaw channel 
model for the integrated guidance and control loop is 
given by 

 

1 11 1 12 2 1

2 22 2 3 2

3 32 2 3 3

1

x a x a x
x a x x
x a x b u
y x

= + + ∆
 = + + ∆
 = + + ∆
 =






 (43) 

Where 1x η= , 2x β=  and 3 yx ω=  are system 

states; 1x η=  is the azimuth angle of LOS; β is the 
sideslip angle; yω is the body-axis yaw rate; yu δ=  
and y η=   are system input and output; yδ  is the 

rudder deflection; 1∆ , 2∆  and 3∆  are uncertainties; 

11 2a r r= −  , 12 za QSc mrβ= , 22 za QSc mVβ= ,

32 y ya QSLm Jβ=  and 3
y

y yb QSLm Jδ=  are model 

coefficients; yJ  is the yaw moment of inertia; zcβ  is 
the partial derivative of side force coefficient with 
respect to β ; ymβ  and y

ymδ are the partial derivatives 
of yawing moment coefficient with respect to β  and 

yδ , respectively. 
Obviously, the yaw channel model (43) takes the 

form of the pitch channel model. Thus, their adaptive 
control algorithms are similar and the design 
procedure of yaw channel is omitted. 

Additionally, the roll channel model is given by 

 
1 2 1

2 2 2

1

x x
x b u
y x

= + ∆
 = + ∆
 =



  (44) 

Where 1x γ=  and 2 xx ω=  are the system states; γ  
is the roll angle; xω  is the body-axis roll rate; xu δ=  
and y γ=  are the system input and output; xδ  is the 
aileron deflection; 1∆  and 2∆  are systems 

uncertainties; 2
x

x xb QSLm Jδ=  is the model 

coefficient; xJ  is the roll moment of inertia; x
xmδ  is 

the partial derivative of rolling moment coefficient 
with respect to xδ . 

Although the roll channel model (44) is much 
different from the pitch and yaw channels, the 
proposed scheme is not related to the model structure. 
So, the adaptive control algorithm can be utilized to 
stabilize system (44) is given as follows, the form of 
which is same as that of the pitch and yaw channels.  

 

1

1 1 1

2 2 2 1

2 2

2

T

ˆ ˆ

ˆ

d d

d

S y
c S

x x
S y x

S

u

γ
α
τ α

σ

= =
 = −
 + =
 = −

 = −
 = −





θ Γ ω θ

θ ω

 (45) 

Where θ̂  is the estimate of θ  defined in (25), ω  is 
defined in (25). The design parameters 1c , 2c , 2τ  and 
σ  should satisfy the inequality (38). 

4 SIMULATION RESULTS 
IN this section, the effectiveness of the newly 

proposed IGC scheme based on the continuous 
characteristic and the dynamic surface control 
technique is verified through the 6DOF nonlinear 
numerical simulation (Wang et al., 2016), where an 
air-to-surface missile is considered in its terminal 
homing to intercept a maneuvering target on ground.  

As the forms of IGC laws for pitch, yaw and roll 
channels are the same as each other, in this section, we 
select the same design parameters for each channel. 
The design parameters of the novel IGC law are 
chosen as  

1 2c = , 2 4c = , 2 0.02τ = , 

1σ = , { }diag 2, 2, 2, 2=Γ . 

and the initial value of θ̂  is set as T[0,0, 0, 0] .  
For comparison, the traditional separate channel 

guidance and control scheme with proportional 
navigation guidance (PNG) plus proportional-integral-
derivative (PID) control law is also carried out. For 
simplicity, the novel IGC law and traditional separate 
scheme are denoted as NIGC and TSGC, respectively. 

In numerical simulations, the missile dynamics 
parameters are outlined in Table 1. 0xc  is the zero-lift 
drag coefficient. xcα  and xcβ  are the partial derivatives 
of drag force coefficient with respect to α and β, 
respectively. ycβ  and z

ycδ  are partial derivatives of lift 
force coefficient with respect to β and δz, respectively. 

zcα  and y
zcδ  are partial derivatives of side force 
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coefficient with respect to α and δy, respectively. xmα  
and xmβ  are partial derivatives of rolling moment 
coefficient with respect to α and β, respectively. The 
initial states of the missile are respectively set as  

600m/sV = , 0vθ ψ= = , 
0.02radϑ ψ= = , 0.1radγ = , 

0.2rad/sxω = , 0.1rad/sy zω ω= = . 
In the inertial coordinate system, the initial position 

of the missile is set as T[0, 10000, 0] m . The initial 
position, velocity, and acceleration of the target in the 
inertial coordinate system are set as 

T[8000, 0, 2000] m− , T[ 17, 0, 0] m/s−  and 
T 2[ 1.5, 0, 10cos(0.5 )] m/st− − , respectively. 

 
Table 1.  The Nominal Parameters of Missile Dynamics. 

Name Value Name Value Name Value 
m  1200 kg xmβ  -0.38 xcβ  0.4 

S  0.42 m2 x
xmδ  1.06 ycα  57.2 

L  0.68 m ymβ  -27.3 ycβ  -0.1 

xJ  100 kg·m2 y
ymδ  -13.3 z

ycδ  5.7 

yJ  5700 kg·m2 zmα  -28.2 zcα  0.1 

zJ  5600 kg·m2 z
zmδ  -14.0 zcβ  -56.3 

ρ  1.16 kg/m3 0xc  0.2 y
zcδ  -5.6 

g  9.8 m/s2 xcα  0.4 xmα  0.45 
 
The NIGC and TSGC approaches will be 

conducted in the case. The curves of locations, LOS 
angular rates, aerodynamic angles and deflection 
angles are presented in the Figure 1~Figure 3. The 
three dimensional (3D) trajectory of the missile with 
respect to NIGC and TSGC is shown in Figure 1. The 
curves of missile-target range and LOS angular rates 
are presented in Figure 2. The missile distance of the 
NIGC is 0.1537m, while, the missile distance of the 
TSGC is 8.3206m. The proposed IGC law has smaller 
missile distance than the classical separate channel 
scheme, and can guarantee the missile hits the target 
with higher accuracy. In addition, it is known that the 
NIGC scheme has better transient response 

performance in driving LOS angular rates to zero than 
that of TSGC approach from Figure 2(b). The angle of 
attack, sideslip angle and velocity bank angle are 
shown in Figure 3(a), and the deflection angles of the 
roll, yaw, and pitch control surface are presented in 
Figure 3(b). 
 

 

Figure 1.  The Trajectory of the Missile. 

 

(a) 

 

(b) 
Figure 2.  Simulation Results: (a) Missile-target Range; and (b) 
LOS Angular Rates. 
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(a) 

 

(b) 
Figure 3.  Simulation Results: (a) Angles α, β and γv; and (b) Fin 
Deflections δz, δy and δx. 

According to Figure 2(b), for the TSGC scheme, 
LOS angular rates begin to diverge rather than 
converge to zero when the missile gets close to the 
target at the last moment. Meanwhile, it also makes 
the fin deflections increase largely and chatter, which 
affects the Euler angles and angular rates directly. But 
on the contrary, for the NIGC scheme, the LOS 
angular rates converge to a small neighbourhood of 
zero in finite time and do not diverge. Therefore, the 
missile distance of the NIGC scheme is much smaller 
than that of the TSGC scheme.  

In order to verify the robustness of the IGC method, 
one hundred times of Monte Carlo simulations are 
conducted. Suppose that the coefficients of 
aerodynamics forces and moments all offset randomly 
by -20% ~ +20% of their respective nominal values. 
The impact point deviation distributions of the Monte 
Carlo simulations are shown in Figure 4.  

The mean missile distance of the NIGC is 0.2343m 
with a standard deviation 0.1449m. However, the 
mean missile distance of the TIGC is 1.0685m with 
standard deviation of 0.8861m. As a result, it can be 
obtained that the proposed NIGC scheme is more 
robust to uncertainties and has better performance 
during the interception than the classical TSGC 
scheme. 

 

(a) 

 

(b) 
Figure 4.  Impact Point Deviation Distributions: (a) NIGC and 
(b) TIGC. 

5 CONCLUSION 
A novel adaptive IGC scheme for the homing 

missile is proposed based on the novel fully 
continuous characteristic model of the IGC model and 
the dynamic surface control technique. The major 
advantages of the proposed IGC scheme are drawn as 
follows: 

(1) For the IGC model of each channel, the 
continuous characteristic model is established for the 
IGC law design. The continuous characteristic model 
is equivalent to its original model in output, that is, 
their outputs are identical when their inputs are the 
same. 

(2) With the novel continuous characteristic model, 
all the model coefficients of the IGC dynamics model 
related to the missile-target range, relative velocity 
along the LOS and aerodynamic coefficients can be 
unknown. Moreover, the intermediate states such as 
attack angle, sideslip angle and angular rates of roll, 
yaw and pitch are also unavailable for the proposed 
IGC law which only utilizes the LOS angular rates. 

(3) The dynamic surface control method is used for 
the continuous characteristic model to drive the LOS 
angular rates to an arbitrarily small neighborhood of 
zero and guarantee the stability of the closed-loop 
system. 

(4) Nonlinear numerical simulations explicitly 
demonstrate the effectiveness of the proposed IGC 
scheme, which has better performance than the 
classical separate channel guidance and control 
scheme. 
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