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ABSTRACT
Structure from Motion algorithms offer good advantages, such as extract 3D information in monocular 
systems and structures estimation as shown in Hartley & Zisserman for numerous applications, for 
instance; augmented reality, autonomous navigation, motion capture, remote sensing and object 
recognition among others. Nevertheless, this algorithm suffers some weaknesses in precision. In the 
present work, we extent the proposal in Arana-Daniel, Villaseñor, López-Franco, & Alanís that presents 
a new strategy using bio-inspired intelligence algorithm and Conformal Geometric Algebra, based in 
the object mapping paradigm, to overcome the accuracy problem in two-view Structure form motion 
algorithms. For this instance, we include two new experiments and the inclusion of the circle entity; 
the circle carries stronger information about its motion than other geometric entities, as we will show.

1. Introduction

The computer vision field has been a very active research topic 
in  last decades, but the problems to solve have proven to be 
difficult. The research of new techniques and the exploration of 
new paradigms bring benefits in the development of the field. 
In the present work, we propose a new strategy to overcome the 
accuracy problem in Structure from Motion (SfM) algorithms.

SfM algorithms (Hartley & Zisserman, 2003) are a family 
of computer vision algorithms whose paradigm is based on 
the relation between the motion and structures, and how this 
relation is implicit in the images. Using SfM, over two or more 
images we can calculate structures that represent objects, when 
we know the motion of the camera or the geometric relation 
between two or more cameras, as well as we can calculate the 
motion of known structure.

SfM is based in the epipolar restriction (1.1), where x1 and x2 
represent a couple of images of a euclidian point X, with respect 
to two different cameras; E is called the Essential matrix, which 
relates corresponding points in stereo images, assuming that 
the cameras satisfy the pinhole camera model.

However, in order to use this useful equation, we have to com-
pute the Essential matrix. This problem is the main difference 
between SfM variants and has been achieved by a serial of 
algorithms like Random Sample Consensus (RANSAC) or the 
eight-points algorithm as is shown on (Hartley & Zisserman, 
2003) and (Ma, Soatto, Kosetska, & Sastry, 2004), despite their 
velocity, they present a serious accuracy problem as we present 
in the next sections.

In the present time, the Bio-inspired Intelligence Algorithms 
(BIA) offers good solutions to complex problems, giving com-
petitive times and small errors (Simon, 2013). The principal 

task in this kind of algorithm is to establish a suitable objective 
function, this is commonly performing in the linear algebra 
mathematical framework, but we can obtain good advantages 
using more general mathematical framework; like Conformal 
Geometric Algebra (CGA) as we will see in this work.

In this work, we propose a novel technique to overcome 
the accuracy problem in SfM algorithms with the use of BIA 
(Hernandez-Vargas, Lopez-Franco, Rangel, Arana-Daniel, & 
Alanis, 2014) and CGA. With this work, we extend the previ-
ous result shown in Arana-Daniel, Villaseñor, López-Franco, & 
Alanís (2014) to include a projection of the motion estimation 
error over the image, and in this way to be able to compare the 
proposal and the classical approach more intuitively and how 
this can affect the reconstruction of 3D structures. Moreover, 
we extended the initial proposal to include circles that are rich 
information geometric entities presented in many real objects. 
The circle detection is a very spread out research topic (Jiang, 
2009; Semeikina & Yurin, 2011).

This paper is organized as follows:  Section 2  presents a 
brief introduction to SfM algorithms, its fundaments, variants, 
benefits and problems. In Section 3, we present the basis of 
Geometric Algebra, its representations and operators. Section 4 
presents the bio-inspired intelligent algorithm used in order to 
compute the Essential matrix. Section 5  presents the develop-
ment of the proposed algorithm. Section 6 shows a comparison 
between the proposed algorithm and a classic approach with a 
couple of experiments, while Section 7 is devoted to conclusion 
and future work.

2. Structure from Motion

As we mentioned in the introduction, if the epipolar restric-
tion holds, then the cameras satisfy the pinhole camera model 
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(Ma et al., 2004). This model is given by (2.1), where Kf contains 
the focal length f, and Π

0
 stands for the canonical projection 

matrix, g is the rigid transformation that contains R (rotation) 
and T (translation) of the camera with respect to the world 
coordinate, and finally X represents a homogeneous tridimen-
sional point whose dimensional image is �x.

In the previous model, X is related to x for the so-called ideal 
perspective projection, but this is never the case due to the 
intrinsic parameters of the camera. In order to fix the model, 
we substitute Kf for K = KsKf, where Ks contains the intrin-
sic parameters of the camera. The matrix K is the so-called 
Calibration matrix.

Figure 1 shows a general scheme for epipolar geometry, 
where the euclidian point X is projected over two images. In 
this case, x1and x2 are related by the Equation (2.2). Then, as 
shown in Hartley & Zisserman (2003) and Ma et al. (2004) it 
is easy to reach (2.3), where T̂ represents the screw symmetric 
matrix of the vector T. Notice that the Essential matrix E = T̂R
, contains the movement that relates two images of the same 
point.

Although, in  Equation (2.3), it is needed that the cameras 
satisfy the pinhole camera model (i.e. the cameras have to be 
calibrated), we can work with an uncalibrated version of the 
epipolar restriction, and this is shown in  Equation (2.4), where c  
is the so-called Fundamental matrix.

Structure from Motion (SfM), as we already mentioned, are 
a family of algorithms whose goal is to find the Fundamental 
matrix or the Essential matrix from a set of correlated points 
(or structures). The way of computing these matrices are the 
main difference between the algorithms. In the first instance, 
consider two-frame SfM, where F can be understood as a bifo-
cal tensor of a weak perspective. There are several implemen-
tations, for example, we can use the eight-points algorithm or 
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RANSAC as is described in Hartley & Zisserman (2003) and 
(Ma et al., 2004), with an excellent runtime, but not very good 
accuracy as is shown in Arana-Daniel et al. (2014).

Other variants use a factorization method or constrictions 
based in lines and planes (the last one is called Constrained 
SfM) (Szeliski, 2010), where line-based techniques need a tri-
focal tensor in order to do 3D reconstruction. Plane-based 
techniques often perform poorly since the algebraic error does 
not correspond to the meaningful re-projection errors. In a 
second instance, we can also find Three-frame and n-frame 
SfM (Hartley & Zisserman, 2003), that use trifocal and  
n-focal tensors respectively, this improves the accuracy, but with 
a high computational cost. Finally other variants use iterative
algorithms as Bundle Adjustment (Szeliski, 2010) or Extended
Kalman Filter, (Civera, Davidson, & Martínez Montiel, 2011),
or Sequential Monte Carlo methods (Qian & Chellappa, 2004),
whose performances are in function to their computational cost.

In the present work, we propose a SfM algorithm based in 
the object mapping paradigm (Thrun, 2002), i.e. an algorithm 
of SfM that can work with maps where the objects are rep-
resented by geometric entities. In order to compare the pro-
posal and its advantages, we present a classic SfM algorithm in 
Algorithm 1, which is used in  Section 6 to compare accuracy 
and runtime with our proposal.

Algorithm 1: Classic Structure from motion Algorithm
Require: Correspondences of images, Calibration matrix.
Ensure: Rotation and translation between images.
1: use correspondences to calculate the Fundamental matrix F (using 

RAnSAC).
2: Calculate the Essential matrix with E = KTFK.
3: Discompose E = T̂ R on its singular values E = UΣV

T (to extract the 
movement). 

4: use W =

⎛⎜⎜⎝

0 −1 0

1 0 0

0 0 1

⎞⎟⎟⎠
 or WTdefined on (Hartley & Zisserman, 2003) to 

extract the movement with T̂ = VWΣV
T and R = UW−1VT.

5: Select the correct movement from the forth possible answers (Due to the 
use of W or WT as is shown on (Hartley & Zisserman, 2003)).

3. Conformal Geometric Algebra

Geometric Algebra (GA) represents a family of associative 
algebras constructed over a quadratic space with a special 
product called Geometric Product. GA is a mathematical 
framework where we can find embedded concepts from lin-
ear, tensor, and quaternion algebras and other precious tools 
(for a deeper introduction we recommend Perwass (2009)). 
We use Geometric Algebra of type �p,q, which has an algebraic 
signature 

(
p, q

)
.

Conformal Geometric Algebra is a pseudoeuclidian GA 
that use a conformal transformation to span the euclidian 
space, this is denoted by ℝn

→ ℝ
n+1,1. In order to apply it to ℝ3 

with basis 
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Minkowski plane with basis 
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}
 that possess the proper-

ties described on (3.1). We can also define a new basis called 
null basis with (3.2), and finally describe the representation of 
a tridimensional euclidian point xe in CGA constructed over 
ℝ

4,1 denoted �
4,1

, in (3.3).
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Figure 1. epipolar geometry.
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The elements of GA are called multivectors, and for every 
instance we find two representations; the Inner Product Null 
Space (IPNS) representation and the Outer Product Null Space 
(OPNS) representation. The basic geometric entities of CGA 
are listed in Table 1, where r represents the radius of a sphere, 
n and d represent the parameters of the Hesse normal form, n 
and m are the Plücker coordinates of a line, s1 to s4 are spheres 
and x1 to x4 are conformal points.

One of the advantages of CGA is that we are able to use 
operators over all the geometric objects in CGA. In gen-
eral, every transformation can be expressed like (3.4), where 
X ,X �

,H ∈ �
4,1

 and σ is a scalar parameter to ensure the bijec-
tion between the null cone and ℝ3.

In rigid transformations, the parameter σ = 1. Rotations are 
represented by the so-called rotors defined in (3.5), where 
n represents the dual entity of the rotation axis and θ is the 
angle of rotation. Translations are represented with translators 
described in (3.6), where t is the euclidian translation. Finally 
we can describe how these operators are used in (3.7).

We can use both equations into a single operator called motor, 
we denote such operator in (3.8). This final equation represents 
the rigid movement and can be applied on every entity of the 
algebra.

4. Bio-Inspired Intelligence Algorithm

Bio-inspired intelligence algorithms have been a very impor-
tant tool for complex problems resolution. Particle Swarm 
Optimization (PSO) (Eberhart & Shi, 2001) is an evolutionary 
algorithm based in the observation of bird flocks and insect 
swarm behaviours that provides high convergence speed. The 
PSO algorithm consists of an interactive adaptation of a set of 
multidimensional vectors called particles. These particles com-
municate information with each other to find a better candidate 
solution for an objective function.

Nowadays, we can find many variants of the PSO algorithm 
that intent to alleviate the premature convergence problem in 
the original PSO. In this work,   this new proposed algorithm 
called Bio-inspired Aging Model Particle Swarm Optimization 
(BAM-PSO) (Hernandez-Vargas et al., 2014)  has been proven 
to solve the mentioned problem and improve the accuracy 
results obtained with other PSO variants.
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The BAM-PSO algorithm is an evolutionary computation 
algorithm based in the Aging Leader and Challengers (ALC-
PSO) algorithm (Chen et al., 2013). The basic idea in both algo-
rithms is to include an aging process, in the case of BAM-PSO 
this is extended to each particle in the swarm. ALC-PSO uses 
a linear aging model. BAM-PSO proposes to use a bio-inspired 
aging model.

Each particle in the swarm has a velocity vij and a posi-
tion xij, and they are defined respectively, in Equations (4.1) 
and (4.2), where i is the ith-particle of the swarm, j is the 
jth- element of dimension problem, t is the iteration counter, 
w represents the inertial weight factor (constant), and R2 are 
random, normalized and uniformly distributed values, c1and 
c2 represent the social and cognitive parameter respectively, 
xij(t) is the particle ij-position for the iteration t; xij(t + 1) is 
the particle ij-position for t + 1 iteration, vij(t) is the particle 
ij-velocity for t iteration; pij(t) represents the local best position 
for ij-particle in iteration t, and L is the leader that holds the 
best solution found by the swarm at iteration t

Finally, BAM-PSO includes a measure of premature conver-
gence kj in jth-dimension defined in (4.3), where D is the 
number of the dimension of the problem, kmin is the mini-
mum deviation allowed, and p̄j is the mean of all particles in 
jth-dimension.

5. Structure from Motion Usign BAM-PSO and CGA

The SfM algorithms based in a bifocal tensor present low accu-
racy and they are strongly dependent of the exact image corre-
lation. The object mapping approach is the idea of representing 
objects with a set of geometric entities, and allows compacts 
and rich information maps. CGA is a suitable framework to 
represent geometric entities, and recently, mapping algorithms 
have been developed in this mathematical framework (López-
Gonzáles, Arana-Daniel, & Bayro-Corrochano, 2013).

Using the CGA mathematical framework combined with a 
modern technique of evolutionary computation (BAM-PSO), 
it is possible to find a suitable SfM algorithm that works with 
object maps. In order to achieve that, we have to develop the 
objective function that allows us to find the rigid transforma-
tion of an object, represented with various entities of CGA.

To establish a search space for BAM-PSO, we need to define 
first the parameters in the rigid transformation represented 
with the M versor described on (5.1), where T stands for the 
translator, and Rx, Ry and Rz are rotors that represent the rota-
tion in the x, y and z axis respectively.

In order to operate M, let us define θx, θy and θz as the rota-
tion angles of Rx, Ry and Rz respectively; and tx, ty and tz as 
the euclidian translation on T. Therefore, the search space is 
defined in (5.2).
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Table 1. geometric entities of CgA.
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restriction for the proposal, we cannot parallelize it to the entity 
level, another way to say it is that we cannot optimize the move-
ment of an object with any of these entities independently.

Then, for an object represented with multiple entities, we 
can argue that with more entities, we get better accuracy. 
Using points and spheres we are giving strong information 
about translation and with lines and planes, information about 
rotation.

Consider again the circle, between two circles, we can easily 
find the translation between their centres, and for the rotation 
we have exactly the same solution of the planes that contain 
those circles. Then, we have two solutions for a general rigid 
transformation. This part is important for the proposal because 
we have an entity that contributes with strong information 
about translation and rotation.

Finally, using the Root of the Mean Squared Error (RMSE), 
we can obtain a suitable objective function described on (5.5).

where Ωk
t  represents the kth-entity of an object in the time 

t. Then the objective function optimizes M constructed in χ
search space, with the parametric difference between the actual 
entity and an estimated one, for an object represented for q
entities, each one with a different number of h parameters.

6. Experiments and Results

In order to proof the proposal and to extend the previous 
results including circles between the geometric entities used, 
we present two representative experiments that show the 
quality of the applications that can be developed. In the first 
instance, we summarize some important particularities of the 
implementation. We are going to compare the proposed SfM 
algorithm with a classic two-frame SfM algorithm, both of 
them need previous data that depends of other algorithms; in 
the first place, the proposal needs a previous mapping, in the 
second, Classic SfM needs an exact correspondence algorithm. 
For a fair comparison, these two processes were performed in 
a supervised way.

A previous calibration of the camera has been done with 
Zhang method (Zhang, 2000). The map for the proposed 
method was constructed using a stereo camera system 
Bumblebee 2 BB2–08S2 from Point Grey through Triclops 
Stereo SDK. Both algorithms were programmed in MATLAB 
platform although it is not the fastest language; we assume the 
time of comparison is useful. The first experiment was done 
in an Intel i7-2,600 processor with 8 GB of RAM and the sec-
ond one in an Intel i7-4,770 processor with 16 GB of RAM. 
Finally, let us define an error to compare both algorithms in 
(6.1), where xt represents an euclidian point that belongs to a 
rigid object in the time t and H is a homogeneous transforma-
tion constructed with the found movement on each algorithm.

6.1. First experiment

Consider the images in Figure 2, we have three different scenes 
(a), (b) and (c) with a human body, let’s define five objects; 1: 
Head and trunk, 2: Right arm, 3: Left arm, 4: Right leg and 5: 
Left leg. In the (d) image we present the map of entities with all 
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The search space will be bounded for the first three parameters 
by [�,−�]. Every element and operator of CGA can be repre-
sented in a computer with an array of 32 spaces; to get a better 
management of the computing resources, we can parameterize 
each geometric entity Ω. In this case, we can find another vir-
tue of CGA, in the IPNS representation we can easily extract 
the parameter of almost all the geometric entities as  shown 
in Table 2.

Table 2 shows that in the IPNS representation, the extrac-
tion of parameters is easily performed. The case of the point 
and  sphere, is almost trivial extracting a euclidian point and 
a radius in the case of the sphere. The plane is extracted using 
the Hesse normal form with four parameters, and for the line 
is used a normalized Plücker coordinates with six parameters.

In order to extract the parameters of a 3D circle, let us define 
the circle with a euclidian point c that represents the circle cen-
tre, r is a radius and for the inclination we can use the parame-
ters of the plane that contain the centre of the circle. In this way, 
we can obtain C → {c, r, n, d} with eight parameters. To get 
these parameters we use (5.3) published in Hitzer (2005), con-
structed with three points contained in the circle, these points 
are solutions to the Equation (5.4), for the plane we expand 
the circle with C* ∧ e∞. An alternative to use these parameters, 
we can represent the circle like a multi-entity object with three 
points, this is not a unique representation of the circle, but 
for the goal to obtain the rigid transformation, it works faster.

The circle entity carries strong information of its motion, i.e. 
the rigid transformation between two circles (local rotation and 
translation) has just two possible solutions. To understand this, 
consider first the case of the point. Between two points there is 
only one possible translation, but the point itself is ambiguous 
to rotations, then, for a general rigid transformation between 
two points, we have infinite solutions. This does not mean that 
the points are useless for motion estimation, but we need more 
of them to have a better understanding of the motion. We mean 
with more points we have a stronger assumption.

The case of the line is similar to the one of the point, for 
example, between two lines we can always calculate a rotation 
(with just two solutions), but if we include translations in a 
general rigid motion, we get infinite possible rigid transforma-
tions between them, i.e. the line is ambiguous to translations. 
The case of spheres is the same of the point, ambiguous with 
rotations, and the plane is ambiguous to translations.

As we can see, points, spheres, lines and planes have ambi-
guities for general rigid transformations and if we try to cal-
culate it, we will get infinite solutions. For the BIA, it means 
that we get infinite equal local minima. This issue is a strong 
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Table 2. parameters extraction in CgA.
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Circle  C → {c, r, n, d}
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6.2. Second experiment

In this second experiment consider the images in Figure 3 as 
the input images to our algorithms. Let us define the objects 
like; 1: Head and trunk; 2: Right arm, 3: Left arm, 4: Thigh, 5: 
Shin, 6: Front wheel and 7: Back wheel. Figure 4 represents 
the map for the proposed algorithm, where object 1 is repre-
sented with three spheres, objects 2 to 5 are represented with 
two points and one line, and objects 6 and 7 are represented 

the scenes included, where object 1 is represented with three 
spheres, objects 2 to 5 are represented with two points and one 
line. It is important to notice how geometric entities represent 
structures and offer more information than cloud points, but 
the map is still compact in memory. In Table 3, we show the 
results.

Note that for all the results on Table 3, the proposed SfM has 
a significant better accuracy, but the classic SfM wins always 
in runtime.

Figure 2. Input Images and map for the first experiment. Images (a), (b), and (c) are the Input Images for the Algorithms and (d) is the map with geometric entities, 
which Represent the objects on all the Input Images.

Table 3. Results of the first experiment.

Between (a) and (b) Between (b) and (c)

Proposed SfM Classic SfM Proposed SfM Classic SfM

Object Time (s) EH (m) Time (s) EH (m) Time (s) EH (m) Time (s) EH (m)
Head and truck 2.945 0.0031 2.1512 1.5112 4.1200 0.0015 1.987 1.561
Right arm 2.4531 0.124 2.2113 2.0021 2.513 0.2415 1.912 4.5124
left arm 4.3458 0.021 2.008 3.1240 4.125 0.1234 2.145 3.1564
Right leg 4.6521 0.124 1.984 4.5121 2.453 0.6124 2.004 2.1356
left leg 5.8412 0.013 2.1542 3.2135 3.412 0.0130 1.815 4.1254

Figure 3. Input Images for the Second experiment. note the presence of Circle Shapes in Several objects.

note: Bold values show the best results of time and error between the classic Sfm algorithm and the proposed Sfm algorithm.
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7. Conclusion and Future Work

As we have shown in the experimentation, the proposed algo-
rithm presents a novel method to use SfM with the object map-
ping paradigm. The use of bio-inspired intelligent algorithms 
over the suitable mathematical framework like CGA, allow us to 
accomplish an algorithm that overcomes the accuracy problem 
in Two-frame SfM algorithms. The proposed algorithm exhibits 
excellent results in the error, but it is slower than the classic one.

The principal improvement in comparison with Arana-
Daniel et al. (2014), is the inclusion of the circle entity, as we 
already said, the circle carries strong information about its 
motion, because it has information about the change in orien-
tation and translation, this property leads to a function with 
fewer local minima to optimize. Thanks to this property, we 
can obtain the result so accurate and fast for the front and back 
wheel in Table 4. Including this entity in a multi-entities object 
will improve the performance of the algorithm.

As future work, the present paper can be extended to other 
Geometric Algebras using the same objective function with 
new parametrization. We can also parallelize the BAM-PSO 
algorithm to get better times. In the case of the Classic SfM algo-
rithm, we can also parallelize the singular value decomposition, 
as is shown in (Luk, 1985), and compare again the algorithms.
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with one circle, in order to shown the strong assumption of 
using circles.

Table 4 shows the results of the second experiment. Finally, 
in Figure 5 we project the error in the second image, to present 
some intuition in the comparison.

In the same way like the first experiment, the proposed algo-
rithm presents results with better accuracy, and in this case,  
two of the objects have a better runtime. Actually, these two 
objects contain a circle, with this we can argue experimentally 
that the circle has  strong information of its motion. Moreover, 
the classic SfM in six of the cases has a better runtime.

In Figure 5, we have taken randomly one point in every 
object with the mark “*”, with this we can calculate the result 
between two images and we re-project the resultant point with 
“o”. Then the line in both images are the re-projection of the 
movement estimation error, where is easy to see how our pro-
posal presents a smaller error in comparison than the classic 
approach.

Figure 4. object map for the Second experiment.

Figure 5. Re-projection of the movement estimation error. (a) proposed Sfm, (b) Classic Sfm. the “*” mark Represents the Correct point and “o” mark Represents the 
estimated point with the Respect Algorithm. note how the proposal Represents Smaller errors in Comparison to the Classic Approach.

Table 4. Results of Second experiment.

Propose SfM Classic SfM

Object Time (s) EH (m) Time (s) EH (m)
Head and truck 2.1765 0.2450 1.5857 1.2879
Right arm 3.6910 0.1544 1.5333 1.5482
left arm 2.7572 0.0565 1.6499 2.1046
thigh 2.8906 0.0045 1.5291 3.2145
Shin 3.1729 0.1287 1.2430 2.846
front wheel 0.9612 0.0476 1.3456 0.5946
Back wheel 0.5579 0.1151 1.4691 0.7642

note: Bold values show the best results of time and error between the classic Sfm 
algorithm and the proposed Sfm algorithm.
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