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ABSTRACT
This paper studies how to deploy relay nodes into traditional wireless sensor networks with constraint 
aiming to simultaneously optimize two important factors; average energy consumption and average 
network reliability. We consider tackling this multi-objective (MO) optimization problem with three 
metaheuristics, which employ greatly different evolutional strategies, and aim at an in-depth analysis 
of different performances of these metaheuristics to our problem. For this purpose, a statistical 
procedure is employed to analyse the results for confidence, in consideration of two MO quality metrics; 
hypervolume and coverage of two sets. After comprehensive analysis of the results, it is concluded that 
NSGA-II provides the best performance.

1. Introduction

Recent years have witnessed significant advances in wireless 
sensor networks (WSNs), which have evolved in many areas 
due to their large applicability and development possibilities 
(Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002).

Traditional WSNs typically consist of sensor nodes (SNs) 
and a base station (BS) (L. Cheng, Wang, Wu, & Han, 2015). 
Generally, SNs are powered by batteries with energy limitations 
(Ma et al., 2011). In this regard, it is hard to get  balanced 
energy consumption in the whole network. To improve this 
situation, adding nodes with higher energy capacity, called 
relay nodes (RNs) has been considered in the literature (Hou, 
Yi Shi, Sherali, & Midkiff, 2005). The deployment of RNs has 
been employed to improve network properties, such as net-
work connectivity and lifetime maximization (Xu, Hassanein, 
Takahara, & Wang, 2010).

In most approaches, the RN deployment problem (RNDP) 
is studied without any physical limitations. However, in reality, 
there may be forbidden regions or lower bounds on internode 
distances in most deployment regions-we cannot deploy nodes 
anywhere we want. Thus, we propose a more practical situation, 
the constrained RNDP (CRNDP). The CRNDP is an NP-hard 
optimization problem (X. Z. Xiuzhen Cheng, Narahari, Simha, 
Maggie Xiaoyan Cheng, & Liu, 2003), which cannot be solved 
with conventional methods. Instead, some works assume 
non-conventional methods, such as heuristics (Misra, Majd, 
& Huang, 2014). For RNDP or CRNDP, heuristics provide one 
unique solution, while metaheuristics usually show a good 
behaviour solving this kind of problem, providing a set of 
trade-off solutions, which provides the network designer more 
possibilities to deploy the network. Moreover, metaheuristics 
are used to solve a wide variety of problems (Gou, Wang, & Luo, 
2015; Kang & He, 2013; Nandy, Yang, Sarkar, & Das, 2015; Rauf 
& A. Aleisa, 2015; Wei, Wang, Li, Zou, & Yang, 2015; Yazdani, 
Naderi, & Mousakhani, 2015).

This paper studies CRNDP with lower bounds on internode 
distances constraint by using metaheuristics, aiming to opti-
mize some important factors in the industry. Our contribution 
can be summarized as follows:

By introducing a practically lower bounds distances con-
strained framework for WSNs, we conduct an MO research 
on CRNDP, optimizing average energy consumption (AEC) 
of the sensors and average network reliability (ANR), which 
are two important factors in the industry.

Three approaches are studied for solving CRNDP. One is an 
improved MO Particle Swarm Optimizer (MOPSO) (Sierra & 
Coello, 2005), which is based on Pareto dominance and the use 
of a crowding factor to filter out the list of available leaders. The 
second one is Archive-Based hYbrid Scatter Search (AbYSS) 
(Nebro et al., 2008), which follows the scatter search structure, 
but uses mutation and crossover operators from evolutionary 
algorithms. Moreover, we include one additional standard algo-
rithm NSGA-II (K. Deb, Pratap, Agarwal, & Meyarivan, 2002), 
which belong to EC. Although these algorithms show good 
performance in many optimization problems, they employ 
greatly different evolutional strategies. The behaviour they 
perform on CRNDP is deeply studied.

We compare these metaheuristics with a widely accepted 
statistical methodology. The results acquired are analysed 
through two MO quality metrics: Hypervolume and coverage 
of two sets (Zitzler, 1999; Zitzler & Thiele, 1999).

The rest of this paper is organized as follows: In Section 
2, we discussed related work concerning CRNDP and meta-
heuristics methods applied to WSNs. Section 3 is devoted to the 
description of the WSN model and the definition of the prob-
lem we propose. The metaheuristics considered are detailed in 
Section 4. Section 5 discusses the experimental configuration. 
The results obtained are analysed in Section 6. The conclusion 
is given in the last section.
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2. Related Work

In this section, we describe the research on how to efficiently 
deploy RNs into traditional WSNs without and with con-
straints. By routing structures, RNDPs can be classified into 
single-tiered and two-tiered. In the single-tiered RN deploy-
ment, SN forwards packets received from other sensor nodes 
or RNs. In the two-tiered RN deployment, SNs forward only 
their own sensed information to an RN or a base station (BS).

First, previous works on single-tiered RN deployment are 
analysed. Cheng et al. (X. Cheng, Du, Wang, & Xu, 2008) guar-
anteed global connectivity by placing a minimum of RNs in 
single-tiered WSN with heuristics. Han et al. (Han, Cao, Lloyd, 
& Shen, 2010) optimized the fault-tolerance in single-tiered 
network considering sensors with adjustable transmission 
radius with heuristics. Lanza-Gutierrez and Gomez-Pulido 
(Lanza-Gutierrez & Gomez-Pulido, 2015) studied how to use 
two MO variable neighbourhood search algorithms to deploy 
RNs into single-tiered WSN with the objective of optimizing 
average energy consumption and average sensitivity area of 
the network.

Next, we give a review of previous works on two-tiered RN 
deployment. Xu et al. (Xu et al., 2010) discussed the impacts 
of random node deployment on connectivity and lifetime in 
two-tiered WSN. Peiravi et al. (Peiravi, Mashhadi, & Hamed 
Javadi, 2013) proposed a clustering method using a genetic 
algorithm in homogeneous two-tiered WSN, optimizing the 
network lifetime with different delay values. Azharuddin and 
Jana (Azharuddin & Jana, 2015) intended to minimize the 
number of RNs and maximize network connectivity by using 
a genetic algorithm, in two-tiered WSN.

All of the above approaches concern RN deployment 
with no constraints. It implies that the RNs can be deployed 
anywhere. However, in practice, there may be some physical 
limits on the RNs deployment. For a single-tiered network, 
Misra et al. (Misra, Majd, & Huang, 2011) deployed min-
imum RNs into two-tiered WSN by ensuring connectivity, 
with a constraint that RNs were limited to place at a subset of 
candidate positions. By reaching out along this constrained 
approach, Misra et al. (Misra et al., 2014) ensure connectivity 
and survivability by deploying a minimum number of RNs 
in energy-harvesting single-tiered WSN. The candidate loca-
tions with the energy harvesting potential are pre-specified. 
Perez et al. (Perez, Labrador, & Wightman, 2011) employed 
an MO evolutionary algorithm to optimize both the energy 
cost and the number of routers in single-tiered WSN. Nigam 
et al. (Nigam & Agarwal, 2014) proposed a branch-and-cut 
algorithm to place the minimum number of RNs at a subset 
of candidate locations in single-tiered WSN, ensuring the sen-
sors communicated with the sink node within a pre-specified 
delay bound. Yang et al. (Yang, Misra, Fang, Xue, & Zhang, 
2012) studied the two-tiered CRNDP with heuristics, under 
both connectivity and survivability requirements, which 
means intend to deploy the minimum number of RNs into 
the pre-specified WSN.

Differing from the approaches described before in a few 
aspects, our approach studies the problems of single-tiered 
CRNDP. As described above, several works explored this prob-
lem (Misra et al., 2011, 2014; Nigam & Agarwal, 2014; Perez 
et al., 2011). However, there are some significant differences 
between the study of ours and those of the related literature’s. 
First, the studies of the literature mainly focus on improving 

the performance of the network via reasonable deployment 
of the minimum number of RNs, which are placed in some 
pre-specified candidate locations. However, we study how to 
place some fixed number RNs in WSN where the deployment 
space is continuous, i.e. there are countless possible candidate 
positions for an RN to be deployed at. Moreover, in our study, 
there is the minimum Euclidean distance between any pair of 
nodes. Second, in (Misra et al., 2011, 2014; Nigam & Agarwal, 
2014), they studied single-objective CRNDP by heuristics. Our 
problem is MO and methods are metaheuristics. Although 
Perez et al. (Perez et al., 2011) studied an MO CRNDP with a 
metaheuristic, their optimization objectives and method used 
are different with ours.

3. System Models and Problem Formulation

In this section, we first describe the single-tiered architecture 
for WSN applied in the CRNDP. Next, we introduce the energy 
model and lifetime model considered in detail. Finally, we for-
mally define the problem in this paper.

3.1. Network Model

We assume that the network on a two-dimensional sensing 
field of size lx ×    ly(lx>0, ly>0) is composed of three types of 
devices: One BS, Ns SNs and Nr RNs, as depicted in Figure 1. 
Only SNs are powered by batteries and the reminders have an 
unlimited power supply. SNs with sensitivity radius rs sense the 
environment, generate data, and immediately transmit the data 
to the BS simultaneously, starting at time t = 1 ∊ τ (set of time 
periods, τ = {0, 1, 2, ⋯}). The BS is the only connection point 
of the WSNs to the outside. Any two devices can communicate 
if they are at a Euclidean distance lower than communication 
radius rc. All SNs are in the same energy charge initially. If a 
SN runs out of energy, it cannot be linked. For the sake of the 
simplicity, a perfect synchronization is assumed among all the 
devices and we consider S-MAC as the medium access pro-
tocol (Ye, Heidemann, & Estrin, 2002). The routing protocol 
based on shortest path, for all the devices, is provided by SPFA 
algorithm (Fanding, 1994). To reduce interference in practice, 
the minimum Euclidean distance d for any pair of devices is 
more than dmin.

Figure 1.  Wireless sensor network
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3.2. Energy Model

We employ the energy model as discussed in (Konstantinidis, 
Yang, & Zhang, 2008), to simulate the energy cost of these 
devices. In this model, the packets’ sending is the most expen-
sive task of the energy expenditure. To this end, we ignore the 
energy cost by receiving, processing and sensing tasks.

The number of packets relayed by the sensor and the pack-
ets generated by the sensing mission of the sensor decide the 
number of information packets Pi(t) sent by a sensor i, with 
i ∊ Ss(t), for t > 0 and t ∊ τ. The information packet is generated 
by a sensor per time unit. Thus, we get

 

Where Ss(t) is the set of sensor coordinates with an energy 
charge more than 0 at time t > 0 ∊ τ, Ss(t) ⊆ Ss, Ss is the set of 
initial sensor coordinates and �s

j,i(t) is 1, if i ∊ Ss(t) is in the 
minimum path between j ∊ Ss(t) and the collector node at t > 0.

Then, at time t > 0, the energy expenditure suffered by a 
sensor i is

 

Where amp is energy cost per bit of the power ampli-
fier (amp>0), k is information packet size in bits, ‖⋅‖ is the 
Euclidean distance between two devices, �si (t) is the variable, 
which provides the next device in the minimum path, α is 
path loss exponent (α ∊ [2, 4]) and βis the transmission quality 
parameter (β > 0). This equation simulates extra cost due to 
packet loss. Finally, at time t, the residual energy of a sensor 
i, is shown as;

 

where ELi(t) is the residual energy of sensor i, and i.e. is the 
initial energy of a sensor.

3.3. Lifetime Model

We define the lifetime as the number of time units. The network 
stop works when the energy of any sensor turns to be zero. To 
this end, the lifetime of the network is;

 

where lt is the lifetime and |.| is the cardinal of the set.

3.4. Problem Formulation

The average energy consumption (AEC) of the sensors faec, over 
the network lifetime, is formulated as;

 

where Ns, the number of initial sensors, is the cardinal of Ss, lt 
and EPi(t) are given by (4) and (2), respectively.

The average network reliability (ANR) is fanr, which presents 
the probability of the information transmitting from the sensor 
node to the base station. That is,

 

(1)Pi(t) = 1 +
∑

j∈{Ss(t)−i}

𝜅s
j,i(t) t > 0,

(2)EPi(t) = Pi(t) ⋅ amp ⋅ k ⋅ ||i − �si (t)||� ⋅ �

(3)
ELi(t) =

{
ELi(t − 1) − EPi(t) if t > 0

i.e. if t = 0

(4)lt = |{t > 0 ∈ 𝜏∕ELi = 0
}| i ∈ Ss

(5)faec =

∑lt

t=1

�∑
i∈Ss

EPi(t)
�

Ns ⋅ lt
,

(6)
fanr =

1

Ns

∑
i∈Ss

ri

where fanr ∈ [0, 1] and ri is the reliability of the sensor i, defined 
in (B. Deb, Bhatnagar, & Nath, 2003) as;

 

where edpsi is the number of disjoint paths between i and 
the sink node, hi,s

k
 is the number of hops in kth disjoint path 

between both devices, and err is the local channel error. The 
disjoint paths are calculated through Max-flow method pro-
posed by Ford and Fulkerson (Ford & Fulkerson, 1956).

The fanr is the complementation of the fanr. That is,
 

This way, CRNDP is defined as an NP-hard MO problem, 
where given a traditional wireless sensor network, i.e. a set of 
sensors Ss(t) and a sink node, the objective is to deploy a set 
of RNs Sr to

This is equivalent to;
 

subject to
 

and
 

where Sa is the set of all nodes coordinates (including SNs, RNs 
and the BS), Sr is the set of router coordinates, ∀r ∊ Sr,r = (x, y) 
where x ∊ [0, lx] and y ∊ [0, ly].

4. Multi-objective Optimization Algorithms

The MO metaheuristics considered to solve the CRNDP are 
introduced in this section. It is impossible to solve these NP-hard 
optimization problems with exact techniques. Approximation 
algorithms are often applied to solve this kind of problem. 
The Evolutionary Algorithms (EAs) play an important role in 
approximation algorithms (Bhattacharyya & Goswami, 2007; 
Johnston, 2008; Li & Liu, 2015; Liu, Wang, & Cheung, 2009; Xue, 
Zhong, Ma, & Cao, 2015). In our approach, one standard genetic 
algorithm NSAG-II is considered. This algorithm encodes its 
individuals as chromosomes and belongs to sub branch of EAs. 
Next, we consider MOPSO, an improved MO optimization algo-
rithm developing from standard particle swarm optimization 
(PSO). Finally, AbYSS, a MO algorithm employing scatter search 
template, is also taken into account. This algorithm searches the 
resolution space in a systemic way. These algorithms employ 
greatly different evolutional strategy, but they all show good 
performance in many optimization problems.

Before detailed description of these algorithms, we con-
sider the same encoding for all the metaheuristics. The rep-
resentation is defined as: Every chromosome is composed of 
Nr genes. A gene is the two-dimension-coordinate of an RN, 
i.e. ri = (xi, yi), ri ∊ Sr, xi ∊ [0, lx], yi ∊ [0, ly].

(7)ri = 1 −

edpsi∏
k=1

(
1 − (1 − err)h

i,s
k

)
,

(8)fanr =
1

Ns

∑
i∈Ss

(
1 − ri

)

(9)min(faec), max(fanr)

(10)min
(
faec , fanr

)
,

(11)

⎧⎪⎨⎪⎩

m =
�
x1, y1

�
∀m ∈ Sa, x1 ∈ [0, lx], y1 ∈ [0, ly]

n =
�
x2, y2

�
∀n ∈ Sa, x2 ∈ [0, lx], y2 ∈ [0, ly]

d(m, n) ≥ dmin

(12)z = (x, y) ∀z ∈ Sr , x ∈ [0, lx], y ∈ [0, ly]
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Three kinds of mutation strategies contain; uniform muta-
tion, non-uniform mutation and no mutation at all. To this end, 
MOPSO subdivides the swarm to three parts (of equal size). 
Each sub-part of the swarm will adopt a different mutation 
scheme, respectively. The concept of ε-dominance adopted in 
this algorithm is used to fix the size of the external archive that 
contains the non-dominated solutions. A decision vector x1 is 
said to ε-dominance a decision vector x2 for some ε>0 if: fi(x1)/
(1 + ɛ) ≤  fi(x2), ∀i = 1, ..., m and fi(x1)/(1 + ɛ) < fi(x2), for at least 
one i = 1, ..., m. In order to perform the flight of each particle, the 
changes to the velocity vector are formulated in the following way:

 

Where W = random (0.1, 0.5), C1, C2 = random (1.5, 2.0), and r1, 
r2=random (0.0, 1.0). The pseudocode is shown in Algorithm 2.

Algorithm 2: MOPSO

1.      Set the swarm population Pt empty and set the set 
of leaders, Lt, empty. The set of leaders is composed 
of non-dominated solutions. Pt and Lt have the 
same maximum size.

2.      Initialize the population Pt, i.e. the position and the 
speed of each individual are randomly generated.

3.     Evaluate Pt. The non-dominated particles found in 
Pt are introduced into Lt. If the size of Lt exceeds the 
maximum list size, the crowding factor is used to 
decide what leaders to keep over generations.

4.     Use ε-dominance to save leaders from Lt to archive 
εArc, which contains the non-dominated solutions 
that will be reported by the algorithm.

5.    Update the xpbest of the Pt.
6.    While g<gmax.
7.    For each particle.
8.    Select the global best solution xgbest by means of a 

binary tournament based on the crowding value of 
the leaders Lt.

9.    Compute the speed of the particle by Equation (14).
10.    Compute the new position of the particle.
11.    Separate the population into three equal parts and 

execute three kinds of mutation strategies on them, 
respectively.

12.    Update the xpbest of the particle.
13.    End for.
14.    Evaluate Pt. The non-dominated particles found in 

Pt are introduced into Lt.
15.     Use ε-dominance to save leaders from Lt to archive 

εArc.
16.    Set g=g+1.
17.    End while.

4.3. Archive-Based hYbrid Scatter Search (AbYSS)

This algorithm was proposed by Antonio et al. (Nebro et al., 
2008) as a multiple algorithm based on scatter search tem-
plate. It first adapts the well-known scatter search template for 
single-objective optimization to the MO domain. This algo-
rithm follows the scatter search structure, but uses mutation 
and crossover operators from evolutionary algorithms. AbYSS 
also uses typical concepts from the MO field, such as Pareto 
dominance, density estimation, and an external archive to store 
the non-dominated solutions. The flow path is as depicted in 
Algorithm 3.

(14)
vi(t) = Wvi(t − 1) + C1r1(xpbesti − xi(t)) + C2r2(xgbest − xi(t))

4.1. Non-dominated Sorting Genetic Algorithm (NSGA-II)

Deb et al. (K. Deb et al., 2002) proposed this algorithm, which 
is one of the most efficient and famous MO evolutionary algo-
rithms. NSGA-II maintains a population Pt of size N at generation 
t. Qt, keeping the same size with Pt, is the offspring population 
of Pt. The characteristic feature of NSGA-II is that it employs a 
fast non-dominated sorting and crowding-distance estimation 
process for ranking the population into different fronts.

Based on the features above, the authors defines an elit-
ist crowded-comparison operator to guide the evolutionary 
process. i and j are two possible solutions of an optimization 
problem. irank and jrank are the sorting of i and j. If idis and jdis 
are the crowding distance of i and j, the crowded-comparison 
operator ≥ n is defined as:

 

Which means i dominates j if one of the conditions stands. The 
outline of NSGA-II is described in Algorithm 1.

Algorithm 1: NSGA-II

1.     Initially, Qt and Pt are empty.
2.    N individual in Pt are randomly generated.
3.      While not stop condition (A number of iterations 

are performed).
4.       Pt and Qt are combined into a new set called Rt, 

whose size is 2 N.
5.    Rt is sorted into non-dominated fronts F by fast 

non-dominated sort.
6.    Set Pt empty and set i=1.
7.    While |Pt|+|Fi|≤N. |.| is the cardinal of the set.
8.        Employ crowding-distance-assignment process on 

Fi.
9.    Set Pt=Pt∪Fi and i=i+1.
10.    End while.
11.    If |Pt|<N then sort Fi by  ≥  n defined in Equation 

(13) and set Pt=Pt∪Fi[1:N-|Pt|].
12.   Set Qt empty.
13.    While |Qt|≤N.
14.    Select two individuals, p1 and p2, from Pt via binary 

tournament.
15.     p1’ and p2’ are generated by simulated binary cross-

over and the probability of crossover is cross.
16.    Two new individuals, p1” and p2”, are generated 

from p1’ and p2’ through polynomial mutation, and 
the probability of mutation is mut.

17.    Set Qt=Qt∪p1” ∪p2”.
18.    End while.
19.    Set t=t+1.
20.    End while.

4.2. A New Multi-Objective Particle Swarm Optimization 
(MOPSO)

This algorithm was proposed by Margarita et al. (Sierra & 
Coello, 2005) as an improved version of the multiple objective 
particle swarm optimization algorithm (MOPSO). MOPSO is 
characterized by using a crowding factor in order to establish 
a second discrimination criterion (additional to Pareto dom-
inance). This criterion is also adopted to decide what leaders 
to keep over generations when the maximum list size has been 
exceeded. Other important features are the use of three kinds 
of mutation strategies and ε-dominance.

(13),i ≥n j if ((irank < jrank)or((irank = jrank)and(idis > jdis)))
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5.1. Performance Measures

We employ two complementary measures to evaluate the trade-
off fronts produced by the metaheuristics to CRNDP.

Hypervolume (HV): This metric calculates the portion of 
the objective space covered by members of a non-dominated 
set of solutions F. Mathematically, for each solution i ∊ F, a 
hypercube μi is constructed with a reference point ω and the 
solution i as the diagonal corners of the hypercube. Then, the 
HV of F is the union of all its hypercubes. That is,

 

Coverage of two sets (CTS): This metric is based on the dom-
inance concept. Let X1, X2 be two sets of phenotype decision 
vectors. The function CTS maps the ordered pair (X1, X2) to 
the interval [0, 1]. That is,

 

5.2. Strategy and Data-set Used

In our approach, we perform 30 independent runs for each 
algorithm and experiment, being 30 runs a widely accepted 
value to reach statistical conclusions (William & Hays, 1975). 
As stop condition, we assume several criteria in order to study 
the convergence of the algorithms. Accordingly, we assume 
50,000, 100,000, 200,000, 300,000, 400,000 and 500,000 
evaluations.

The data-set we used in this paper is proposed in (Lanza-
Gutierrez & Gomez-Pulido, 2015). We configure this common 
framework for studying the CRNDP. The scenarios in our 
experiment are composed of three sizes: 100 × 100, 200 × 200, 
300 × 300.

This WSNs model considers some parameters as stated pre-
viously. It is assumed that α = 2, β = 1, k = 128 KB, rs = 15 m, 
rc=30  m and amp  =  100 pJ/bit/m2, from (Konstantinidis & 
Yang, 2011) and the dmin is 0.1  m in the WSN model. Too 
many RNs imply that the network overhead will increase. Thus, 
in this approach, we do not include more than 20% of these 
devices regarding the number of sensors as (Lanza-Gutierrez 
& Gomez-Pulido, 2015) did. The number of routers, which 
we will add to optimize the network, is shown in Table 1. In 
addition, Table 1 also shows the value of the fitness functions 
without including RNs (Nr=0).

5.3. Parameters Settings

Before conducting experiments, all the parameters of the algo-
rithms are configured. In the NSGA-II algorithm, possible val-
ues of mut are defined as mut={m|m=0.05∙i, i∊ n}, n=1,2,..19. 
And cross is divided into cross={c│c=0.05∙i, i∊ n}, n=1,2,…19. 
Then, the configurations of NSGA-II parameters are derived as 

(15HV = volume(

|F|⋃
i=1

�i)

(16)CTS(X1,X2) =

|
{
x2 ∈ X2;∃x1 ∈ X1:x1 ≻− x2

}
|

|X2|

Algorithm 3: AbYSS

1.    Set the population Pt empty.
2.    Use diversification method to generate the set Pt’ 

including N initial solutions. N is the population 
size.

3.    Each solution in Pt’ is passed to the improvement 
method. Then the solution set Pt” is generated. The 
improvement method is mainly based on a poly-
nomial mutation operator to improve the quality 
of the solution.

4.    The solutions in Pt” are inserted to Pt.
5.    While not stop condition.
6.    The reference sets RefSet1 and RefSet2 are built 

based on Pt. RefSet1 contains the best quality solu-
tions from Pt, while RefSet2 are filled with solutions 
promoting diversity.

7.    Use subset generation method to generate subset 
Ps based on RefSet1 and RefSet2. The subset genera-
tion method is mainly based on a binary crossover 
operator.

8.    While |Ps|>0.
9.    For each individual ps in Ps.
10.    ps’, an improved individual, is generated by using 

improve method to work on ps.
11.    Use reference set update method to decide whether 

ps’ should be added to RefSet1 or RefSet2 or archive 
or be discarded. archive is the external archive for 
storing a record of the non-dominated individuals 
found during the search process.

12.    End for.
13.    Use subset generation method to regenerate subset 

Ps.
14.    End While.
15.   Set Pt empty.
16.    The individuals in RefSet1 are inserted to Pt.
17.    The best n individuals from archive are inserted to 

Pt, according to the crowding distance.
18.    The diversification and improvement methods are 

used to produce new solutions for filling up the set 
Pt. The value of n is the minimum of the size of the 
archive and half of the size of Pt.

19.    Increment t.
20.    End While.

5. Experimental Strategy

In this section, several questions arise: What quantitative meas-
ures should be employed to present the quality of the results so 
that the metaheuristics used to CRNDP can be compared in a 
meaningful way? What is the outcome of a MO metaheuris-
tics regarding a set of runs? What data-set will be used to test 
our problem and algorithms? How can the parameters of the 
metaheuristics, regarding the CRNDP, be set appropriately? 
We treat these problems in the following:

Table 1. experimental Cases Considered.

Test rs rc Ns

Fitness (Nr =0) Referencfaec Reference f
anr

Experiment cases (Nr)faec f
anr

best worst best worst
100×100 15 30 15 0.1036 0.02851 0.054 0.098 0.0051 0.027 1,2,3
200×200 15 30 57 0.2288 0.06701 0.10 0.23 0.026 0.067 1,2,4,6,9
300×300 15 30 128 0.3488 0.1421 0.13 0.35 0.045 0.15 2,4,6,12,18,24
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the solutions obtained in MO metrics instead of showing the 
optimization results of the industrial parameters.

6.1. Analysis based on HV Metric

Initially, we evaluate the quality of the MO algorithms based on 
the metric of HV. As is shown in Table 2, Table 3 and Table 4,  
“lx  ×  ly-rc(Nr)” means there are Nr RNs being deployed in a 
two dimensional areas with size lx × ly and the communication 
radius of rc. The data included in the tables are the average HV 
(HV) and the interquartile range (IQR) for each algorithm, test 
case and stop evaluation. The best ones for each test case and 
stop evaluation have a grey background.

NSGA-II seems to provide the best performance among 
the algorithms. Since our experiments are dealing with some 
stochastic analyses with MO metaheuristics so as to show some 
results with confidence, the following statistical analyses are 
employed through this approach.

First, we consider the Kolmogorov–Smirnov–Lilliefor’s 
(Lilliefors, 1967) and Shapiro–Wilk’s (Villasenor Alva & 
Estrada, 2009) tests in order to analyse whether results come 
from a normal distribution. In this regard, the following 
hypothesis is presented: H0: results follow a normal distribution 
and H1: the opposite. We consider in this work a confidence 
level of 95% (i.e. p-value under 0.05). In all the cases, we get 
the p-values more than 0.05. Therefore, the assumption of H0 
fails and the median is the average value. The median is writ-
ten simply as M. Thus, the results do not follow the Gaussian 
distribution and the samples are independent.

Next, we consider the Wilcoxon-Mann-Whitney’s (Mann & 
Whitney, 1947) test to study if some significant differences are 
shown among the algorithms. In this test, we have following 

configs={(a,b)|a∊ mut, b∊ cross}. After that, each configuration 
of the parameter is conducted by 30 independent runs, con-
sidering a reduced stop condition (10,000 evaluations). Then, 
assuming the best HV metric as the quality indicator, the con-
figuration, which provides the best performance on average is 
mut=0.1 and cross=0.9. By employing the same configuration 
method, the crossover probability in AbYSS is 0.95 and the 
mutation probability is 1/Nr as the algorithm is proposed. The 
mutation probability in MOPSO is 1/Nr proposed by the algo-
rithm and the ɛ is 0.0075 as (Sierra & Coello, 2005) did for 
simplicity. Note that the reference points, “Reference faec” and 
“Reference fanr”, assumed to calculate the HV are also shown 
in Table 1. These values were obtained experimentally where 
best and worst are the best and the worst value of a fitness 
function, respectively. As population size, N, the same habitual 
value of 100 individuals is assumed for NSGA-II and MOPSO. 
However, AbYSS whose individuals are generated systemati-
cally is a structured strategy, and its size of population is 20 but 
size of archive is 100.

6. Performance Evaluation

The advantages provided by the addition of RNs to traditional 
WSNs has been analysed in many literatures (X. Cheng et al., 
2008; Misra et al., 2011; Lanza-Gutierrez & Gomez-Pulido, 
2015; Yang et al., 2012). Therefore, we chiefly address the 
CRNDP based on the data-set with MO metaheuristics in this 
section. In the simulation experiment, JDK 1.7 is employed 
to code the simulation process. We acquire the optimization 
results about the industry parameters; AEC of SNs and ANR. 
However, due to the space limitations, we focus on using some 
classical statistical analysis methods to analyse the quality of 

Table 2. HV  and IQR: 100 × 100, 200 × 200, 300 × 300 tests (nSgA-II).

Test(Nr) 50,000 100,000 200,000 300,000 400,000 500,000
100×100–30 (1) 0.1059 0.0108 0.1113 0.0001 0.1114 0.0000 0.1114 0.0000 0.1114 0.0000 0.1114 0.0000 
100×100–30 (2) 0.5101 0.0348 0.5265 0.0025 0.5280 0.0000 0.5282 0.0000 0.5283 0.0000 0.5283 0.0000 
100×100–30 (3) 0.8976 0.0120 0.8988 0.0107 0.9002 0.0123 0.9006 0.0124 0.9007 0.0124 0.9070 0.0000 
200×200–30( 1) 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 
200×200–30 (2) 0.1317 0.0009 0.1317 0.0009 0.1318 0.0009 0.1318 0.0009 0.1318 0.0009 0.1318 0.0009 
200×200–30 (4) 0.3399 0.0099 0.3416 0.0123 0.3418 0.0122 0.3421 0.0122 0.3423 0.0125 0.3427 0.0119 
200×200–30 (6) 0.5541 0.0161 0.5620 0.0119 0.5672 0.0074 0.5690 0.0066 0.5741 0.0063 0.5746 0.0060 
200×200–30 (9) 0.8721 0.0197 0.8897 0.0201 0.9056 0.0004 0.9088 0.0018 0.9127 0.0035 0.9239 0.0020 
300×300–30 (2) 0.0829 0.0019 0.0835 0.0009 0.0840 0.0002 0.0848 0.0001 0.0848 0.0001 0.0848 0.0001 
300×300–30(4) 0.1943 0.0111 0.1989 0.0081 0.2003 0.0090 0.2006 0.0093 0.2013 0.0105 0.2014 0.0105 
300×300–30 (6) 0.2760 0.0057 0.2829 0.0020 0.2841 0.0033 0.2844 0.0033 0.2847 0.0036 0.2848 0.0038 
300×300–30 (12) 0.4737 0.0450 0.4859 0.0485 0.5012 0.0401 0.5093 0.0395 0.5123 0.0381 0.5135 0.0391 
300×300–30 (18) 0.6720 0.0268 0.7015 0.0246 0.7232 0.0136 0.7359 0.0019 0.7427 0.0025 0.7495 0.0064 
300×300–30 (24) 0.8199 0.0210 0.8489 0.0141 0.8843 0.0029 0.8951 0.0095 0.9072 0.0048 0.9120 0.0030 

Table 3. HV  and IQR: 100 × 100, 200 × 200, 300 × 300 tests (mopSo).

Test(Nr) 50,000 100,000 200,000 300,000 400,000 500,000
100×100–30 (1) 0.1107 0.0007 0.1110 0.0000 0.1113 0.0000 0.1113 0.0000 0.1113 0.0000 0.1113 0.0000 
100×100–30 (2) 0.4910 0.0029 0.5028 0.0251 0.5253 0.0018 0.5255 0.0018 0.5259 0.0011 0.5261 0.0014 
100×100–30 (3) 0.8429 0.0051 0.8559 0.0047 0.8783 0.0101 0.8850 0.0086 0.8951 0.0215 0.8976 0.0210 
200×200–30 (1) 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 
200×200–30 (2) 0.1275 0.0014 0.1283 0.0026 0.1293 0.0018 0.1299 0.0014 0.1304 0.0008 0.1307 0.0004 
200×200–30 (4) 0.2642 0.0246 0.2738 0.0148 0.2919 0.0163 0.2942 0.0178 0.2995 0.0075 0.3073 0.0018 
200×200–30 (6) 0.4045 0.0010 0.4288 0.0271 0.4565 0.0331 0.4579 0.0321 0.4627 0.0388 0.4685 0.0275 
200×200–30 (9) 0.6589 0.0204 0.6927 0.0272 0.6964 0.0250 0.7002 0.0201 0.7062 0.0185 0.7160 0.0167 
300×300–30 (2) 0.0804 0.0012 0.0811 0.0019 0.0817 0.0007 0.0818 0.0008 0.0818 0.0008 0.0818 0.0008 
300×300–30 (4) 0.1696 0.0205 0.1758 0.0172 0.1797 0.0146 0.1854 0.0051 0.1873 0.0043 0.1900 0.0082 
300×300–30 (6) 0.2359 0.0052 0.2382 0.0019 0.2400 0.0022 0.2416 0.0044 0.2493 0.0083 0.2508 0.0066 
300×300–30 (12) 0.3670 0.0119 0.3850 0.0167 0.3913 0.0096 0.3928 0.0083 0.3978 0.0139 0.4070 0.0307 
300×300–30 (18) 0.4856 0.0184 0.5069 0.0034 0.5259 0.0032 0.5459 0.0139 0.5513 0.0159 0.5528 0.0144 
300×300–30 (24) 0.5788 0.0161 0.6002 0.0280 0.6153 0.0197 0.6226 0.0097 0.6459 0.0343 0.6540 0.0419 
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three different cases, it is clear that which algorithm provides 
the best significant performance. First, for 100 × 100 scenario, 
we note that NSGA-II provides the best behaviour for reduced 
stop evaluations, while NSGA-II and AbYSS both perform 
greatly for a high number of evaluations. Then, for 200 × 200 
scenario, NSGA-II shows the best performance for all the stop 
evaluations, followed by MOPSO and AbYSS. However, AbYSS 
shows a better behaviour than MOPSO in a high number of 

hypotheses: H0: Mi is smaller than Mj or equal to Mj and H1: 
Mi is bigger than Mj (i=a,b,c, j=b,c, a is NSGA-II, b is MOPSO, 
c is AbYSS). We consider the p-values with a significance level 
of 0.05. Based on this test method, we compare the MO algo-
rithms for figuring out which one provides the best significant 
performance with each stop evaluation and test case.

Along with above-mentioned statistical procedure, the 
result of the percentage of test cases is depicted in Figure 2. In 

Table 4. HV  and IQR: 100 × 100, 200 × 200, 300 × 300 tests (AbYSS).

Test(Nr) 50,000 100,000 200,000 300,000 400,000 500,000
100×100–30 (1) 0.1111 0.0003 0.1112 0.0004 0.1114 0.0000 0.1114 0.0000 0.1114 0.0000 0.1114 0.0000 
100×100–30 (2) 0.5089 0.0324 0.5100 0.0336 0.5275 0.0006 0.5280 0.0001 0.5281 0.0000 0.5282 0.0001 
100×100–30 (3) 0.8463 0.0196 0.8736 0.0647 0.8890 0.0361 0.9132 0.0123 0.9135 0.0129 0.9137 0.0131 
200×200–30 (1) 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 0.0419 0.0000 
200×200–30 (2) 0.1306 0.0002 0.1309 0.0002 0.1312 0.0001 0.1313 0.0000 0.1314 0.0000 0.1314 0.0000 
200×200–30 (4) 0.3166 0.0023 0.3200 0.0003 0.3329 0.0172 0.3343 0.0158 0.3349 0.0168 0.3354 0.0159 
200×200–30 (6) 0.4896 0.0111 0.5048 0.0075 0.5150 0.0169 0.5182 0.0231 0.5286 0.0435 0.5292 0.0447 
200×200–30 (9) 0.7467 0.0200 0.7915 0.0442 0.8245 0.0461 0.8476 0.0499 0.8668 0.0155 0.8693 0.0198 
300×300–30 (2) 0.0813 0.0024 0.0831 0.0004 0.0836 0.0002 0.0836 0.0002 0.0836 0.0002 0.0836 0.0002 
300×300–30 (4) 0.1830 0.0114 0.1869 0.0150 0.1880 0.0147 0.1900 0.0137 0.1902 0.0135 0.1946 0.0053 
300×300–30 (6) 0.2626 0.0273 0.2651 0.0310 0.2725 0.0212 0.2754 0.0240 0.2782 0.0247 0.2784 0.0247 
300×300–30 (12) 0.4520 0.0467 0.4737 0.0485 0.4895 0.0435 0.4912 0.0433 0.4925 0.0449 0.4939 0.0473 
300×300–30 (18) 0.5828 0.0038 0.6132 0.0242 0.6277 0.0327 0.6392 0.0400 0.6431 0.0415 0.6529 0.0430 
300×300–30 (24) 0.7747 0.0425 0.7966 0.0213 0.8225 0.0182 0.8520 0.0384 0.8646 0.0368 0.8686 0.0327 

Table 5. Average CtS among the Algorithms for 100 × 100 Instances.

NSGAII 50,000 100,000 200,000 300,000 400,000 500,000 Average
MOPSO 100.00% 100.00% 100.00% 99.23% 97.90% 96.10% 98.87%
AbYSS 90.07% 85.19% 87.97% 86.09% 85.35% 85.09% 86.63%
Average 95.03% 92.59% 93.99% 92.66% 91.63% 90.60% 92.75%
mopSo
NSGAII 71.52% 70.25% 68.99% 69.75% 73.29% 73.78% 71.26%
AbYSS 75.50% 74.07% 72.15% 68.87% 70.06% 71.43% 72.01%
Average 73.51% 72.16% 70.57% 69.31% 71.68% 72.60% 71.64%
Abyss
NSGAII 89.70% 95.57% 91.77% 91.36% 90.68% 90.24% 91.55%
MOPSO 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Average 94.85% 97.78% 95.89% 95.68% 95.34% 95.12% 95.78%

(b) (a)

(c)

Figure 2.  Analyses of the p-values obtained in different scenarios
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usually perform a good behaviour solving this kind of prob-
lems, providing a set of trade-off solutions, which provides the 
network designer more possibilities to deploy the network. In 
this case, we assume several MO metaheuristics employing 
greatly different evolutional strategies to solve this problem. 
MOPSO is based on Pareto dominance and the use of a crowd-
ing factor to filter out the list of available leaders. AbYSS follows 
the scatter search structure, but uses mutation and crossover 
operators from evolutionary algorithms. Moreover, NSGA-II 
is a standard genetic algorithm. These metaheuristics are 
employed to optimize a data-set obtained from the literature, 
assuming three different scenarios. The results obtained are 
analysed considering two standard MO metrics; HV and CTS. 
Through a widely accepted statistical methodology, we con-
clude that AbYSS provides the similar behaviour as NSGA-II in 
the instances with a small number of RNs. However, NSGA-II 
shows the best performance for all instances and stop condi-
tions, and MOPSO is the last.

As future extensions of this work, it would be interesting to 
assume CRNDP to three-dimensional sensing field. In addi-
tion, other key fitness functions, more realistic constraints in 
industry and more different kinds of metaheuristics will be 
included in our further research.
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evaluations. Finally, for 300 × 300 scenario, NSGA-II still pro-
vides the best behaviour for all stop evaluations. AbYSS shows 
better performance than MOPSO for reduced stop conditions. 
However, AbYSS decreases its performance as same as MOPSO 
for a high number of evaluations. Based on these analyses, we 
conclude that NSGA-II is the best algorithm for all instances, 
followed by AbYSS, and the last one is MOPSO.

6.2. Analysis based on CTS Metric

In addition to HV, the CTS metric is employed to analyse 
the quality of the MO algorithms according to the size of the 
area. We calculated the value of this metric by considering 
the median Pareto fronts from previous 30 samples. First, for 
100 × 100 scenarios, Table 6 shows the average set coverage 
for each stop condition, providing AbYSS with the best behav-
iour on average, followed by NSGA-II. For 200 × 200 instances 
and 300 × 300 instances, as is shown in Table 5 and Table 7, 
NSGA-II performs an overwhelming superiority over the other 
algorithms, followed by AbYSS.

6.3. Comprehensive Evaluation

With the objective of solving CRNDP and according to two 
MO metrics used for algorithm evaluation, AbYSS provides 
the similar behaviour as NSGA-II in instances with a small 
number of RNs. However, NSGA-II shows an overwhelming 
performance in all instances and stop conditions. To this end, 
NSGA-II is the best algorithm for CRNDP, followed by AbYSS, 
and MOPSO is the most inefficient.

7. Conclusion

In this paper, we consider how to solve CRNDP with the objec-
tive of optimizing two important factors in industry; AEC of 
SNs and ANR. CRNPD is an NP-hard optimization problem 
proved in several literatures. We find many works assuming 
employing heuristics to this problem. However, metaheuristics 

Table 6. Average CtS among the Algorithms for 200 × 200 Instances.

NSGAII 50000 100,000 200,000 300,000 400,000 500,000 Average
MOPSO 100.00% 100.00% 100.00% 99.23% 97.90% 96.10% 98.19%
AbYSS 90.07% 85.19% 87.97% 86.09% 85.35% 85.09% 86.05%
Average 95.03% 92.59% 93.99% 92.66% 91.63% 90.60% 92.12%
mopSo
NSGAII 71.52% 70.25% 68.99% 69.75% 73.29% 73.78% 72.22%
AbYSS 75.50% 74.07% 72.15% 68.87% 70.06% 71.43% 71.61%
Average 73.51% 72.16% 70.57% 69.31% 71.68% 72.60% 71.92%
Abyss
NSGAII 89.70% 95.57% 91.77% 91.36% 90.68% 90.24% 91.30%
MOPSO 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Average 94.85% 97.78% 95.89% 95.68% 95.34% 95.12% 95.65%

Table 7. Average CtS among the Algorithms for 300 × 300 Instances.

NSGAII 50,000 100,000 200,000 300,000 400,000 500,000 Average
MOPSO 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
AbYSS 96.75% 99.83% 99.95% 100.00% 100.00% 99.95% 99.41%
Average 98.37% 99.92% 99.97% 100.00% 100.00% 99.97% 99.71%
MOPSO
NSGAII 71.81% 70.26% 75.60% 76.23% 77.40% 76.73% 74.67%
AbYSS 71.21% 73.09% 77.53% 78.29% 78.87% 79.36% 76.39%
Average 71.51% 71.67% 76.56% 77.26% 78.13% 78.04% 75.53%
AbYSS
NSGAII 87.43% 86.61% 85.91% 87.39% 87.55% 87.05% 86.99%
MOPSO 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Average 93.71% 93.31% 92.95% 93.70% 93.77% 93.53% 93.50%
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