
IntellIgent AutomAtIon & Soft ComputIng, 2017
http://dx.doi.org/10.1080/10798587.2017.1280262

A Lightweight Approach to Access to Wireless Network without Operating System
Support

Yonghua Xionga,b,d, Jinhua Shea,b,c and Keyuan Jiangd

aSchool of Automation, China university of geosciences, Wuhan, China; bHubei key laboratory of Advanced Control and Intelligent Automation
for Complex Systems, Wuhan, China; cSchool of engineering, tokyo university of technology, Hachioji, tokyo, Japan; dDepartment of Computer
Information technology & graphics, purdue university northwest, Hammond, uSA

ABSTRACT
Wireless network is crucial for the Mobile Transparent Computing (MTC), in which a mobile device
without any Operating System (OS) support needs to load the demanded OSes and applications
through accessing the wireless network connection. In this paper, a lightweight approach based on
the Boot Management System (BMS) was proposed to ensure the wireless network connection before
booting OS. In BMS, the Virtual File System (VFS) technology was used to drive the wireless network
card and establish a stable network connection. A prototype of the BMS was tested on ARM11 hardware
platform and the results demonstrate the validity of the BMS.

1. Introduction

As a new kind of computing method, transparent computing
(TC) was proposed first in Zhang (2004) that provides users
with resources and services, including operating systems and
applications, from a server anywhere and anytime through any
type of computing clients. In TC, all services and resources are
stored in servers on a distributed network and when an applica-
tion is called, an invisible computer may responds to a client’s
need by unobtrusively calling up a corresponding service from
a fixed or mobile device nearby.

MTC is the development of TC with special concern on
mobile equipment. While portable mobile devices are easy to
carry around, their hardware resources and energy are limited
(Lima, Leeb, & Jai-Hoon Kim, 2013). Taking these character-
istics into consideration, all the resources including OSes and
applications are stored and managed in remote servers and the
clients are left to be almost bare hardware without any operat-
ing systems or applications being installed in advance. That is,
all resources are accessed by clients through wireless networks
in MTC. This not only lowers the requirement for the storage
of a mobile device, but also improves the security of the system
to some extent (Zhang, Wang, & Xu, 2013).

As all resources are accessed through wireless networks, it
is essential for MTC to connect to servers before an operating
system starts. The system based on virtual machines virtualizes
network resources and disks, and have been widely used in PCs
(Wang, Von Laszewski, Chen, Tao, & Kunze 2010). Generally, the
system uses the virtual support at Intel VT (Intel Virtualization
technology) hardware level and the XEN virtualization technol-
ogy to run an OS for a client in a virtual machine. By means of
calling up virtual disks and a network driver in a device model
in the client space of the management domain, it assigns the
requests of the access of client space and network I/O to serv-
ers over the network so as to run multiple operating systems

remotely from one computer. On the other hand, full virtual-
ization generates additional computational loads largely, and
leads to the result that the overall system performance is much
lower than the performance of the PCs in the system. To solve
this problem, a TC system was proposed based on a lightweight
virtual machine (Zhou, Zhang, Hao, et al., 2012). It only virtu-
alizes network equipment, thus reduces the computational load.

Since the above virtual-machine-based methods only con-
sider the situation with wired network connection, they are not
suitable for mobile devices as mobile devices are connected to the
network through wireless means, such as WIFI, GPRS and 3G.
Addressing this problem, a meta-OS was developed for mobile
devices (Zhang & Zhou, 2007). It rewrites a wireless network
driving program in the recovery partition and uses Meta-OS
to manage it. This technique implements online upgrade of OS
and seamless migration of all configurations. However, in this
method, the whole meta-OS is stored in the local storage, which
requires large amounts of hardware resources. However, mobile
devices are limited with hardware resources.

In this study, we developed a BMS using the VFS that not
only solves the above problem, but also simplifies the system
development by devising a uniform method to drive wireless
equipment. The driving source codes for the wireless network
devices in our approach only needs a little or even no change,
so it is directly compiled to modules and stored in the VFS,
ready for the dynamic calling of network device drivers. By
this way, the wireless network equipment is able to connect to
the server without OS for loading resource including OSes and
application from the server, and thus realize remote boot. We
do experiments in an ARM11 hardware platform, and the result
shows the approach works well to achieve the goal.

The rest of the paper is organized as follows: Section 2
explains the concept of mobile transparent computing, and out-
lines the related work in this research field. Section 3 describes
the design of BMS. Section 4 we present the implementation

© 2017 tSI® press

KEY WORDS
BmS; mobile transparent
computing; Wireless network
driver; Virtual file system

CONTACT Yonghua Xiong xiongyh@cug.edu.cn

mailto: xiongyh@cug.edu.cn
http://www.tandfonline.com

2 Y. XIONG ET AL.

and verification of this method. Concluding remarks and future
work are given in Section 5.

2. Background and Related Works

This section explains the concept of MTC, and outlines the
related work in this research field.

2.1. Mobile Transparent Computing (MTC)

TC provides a new kind of computing model that is composed
of servers and clients. But different from other computing mod-
els, TC allows a device to choose and run applications under
multiple OSes. The OSes and applications are stored as resource
in Web servers and the application computing is performed
in the client. This reduces the server load and accelerates the
response speed. TC separates the storage, operation, and man-
agement logically or physically. This ensures the computing to
be a personalized service that is unconscious and controllable
for clients.

MTC is an extension of TC by applying the technologies
of TC to solve the problem in mobile computing by making
use of the characteristics of mobile devices (Huang, Wu, &
Xiong, 2014; Xiong, Huang, Wu, & She, 2014). The structure
of the MTC is shown in Figure 1. MTC has the following
characteristics:

• Remote storage and local computing
In MTC, mobile devices do not have any OSes and applica-

tions pre-installed. Only some boot managers are pre-installed
in them. When a client submits required services through the
interface provided by a mobile device, the pre-installed com-
munication protocol and task manager in the mobile device
automatically loads the corresponding resource from the trans-
parent server, perform calculations locally, and saves the cal-
culation results and data on the server.

• Support of multiple OSes
Clients can select any OSes (for example, Android, Linux

QT), tools, and applications that are available to their mobile
devices.

• Dynamic loading of resources
Clients can check the list of available resources on the net-

work. The resources are loaded into a mobile device only when
the client needs them.

In MTC, a mobile device only needs a small amount of space
to store the management program. So, a mobile device can be
made very small. This allows a small CPU to complete a variety
of functions, and reduces the cost of hardware. A terminal only
accesses different OSes in the servers and runs applications in
its memory when necessary, it completes, in fact, a virtual com-
puting (Schaffer, Averitt, Hoit, et al., 2009; Wannous & Nakano,
2010). Mobile devices are connected with servers through a
wireless network, thus computing is ubiquitous.

2.2. Related Works

A considerable number of studies have been made on PC-based
TC. OSes are dynamic loaded and run on the clients. So, the
connection and the protocol of network are the key to perform-
ing TC. The MRBP (multi-OS remote booting protocol) pro-
tocol was proposed in Zhang, Xu, Wei, Yang, and Zhou (2008)
and Schmelzer, von Suchodoletz, Schneider, et al. (2011) that

supports multiple OSes for remote boot. It defines the operat-
ing environment of clients before the start of an OS, and a file
download protocol-APTP (active program transfer protocol).
While the MRBP protocol supports Linux and Windows 98
OSes, it does not support the remote boot of Windows 2000/
XP. A remote boot protocol-MRBP2 (Yang & Zhang, 2006)
was devised to solve this problem. It supports the dynamical
loading and running of different OSes including Windows for
a terminal from a server through Ethernet. According to this
protocol, different OSes in the server are downloaded to and
run in a client through the OSPM (OS pre-boot mechanism)
mechanism and the SFTP (sector based file transfer protocol).

In addition, lots of effort has been made to develop new
protocols that may support TC. iSCSI (Internet small com-
puter system interface) (Baekjae, Sejin, & Woojoong, 2008) is
a new protocol developed by the IETF (Internet engineering
task force). It converts the data of the small computer system
interface (SCSI) to network packets over IP networks. PXE
(pre-boot execution environment) (Jinhui, Ke, & Fang, 2011;
Tiago & Paulo, 2010) was developed by Intel. It works in a C/S
network model. It allows a workstation to download images
over the network from a remote server, and supports the boot
of an OS on the workstation over the network. iSCSI and PXE
are widely used protocols that implement TC.

The above methods and protocols for TC have been suc-
cessfully applied to PCs. However, they are not suitable for
mobile devices, for the distinctive characteristics when com-
pared with PCs. That are, the storage space is quite limited,
and the processing capacity is very low. And most impor-
tantly, the access that mobile devices connect to transparent
server is wireless networks. So, the PC-based TC is hardly
available to MTC. The primary problem we have to consider
in MTC is how we can connect mobile devices to the network
before the boot of OS.

TNOS (Zhang & Zhou, 2007) was proposed for MTC by
focusing on the mobile feature. It reformed Android from the
hardware layer to the application layer, constructed a Meta-OS
in the recovery partition, and ported the drivers of wireless
network cards into the Meta-OS. TNOS features the security
and the integrity of the OS, because the Meta-OS can directly
upgrade the OS in a mobile device in an online fashion and
perform seamless migration of system configuration. However,
this method is only applicable to upgrade Android. And the
upgraded Android destroys the recovery partition, and makes
the Meta-OS not available anymore. The Pre-OS was presented
in Huang et al. (2014) to solve this problem. The Pre-OS runs
in the BootLoader layer, and ports the drivers of wireless net-
work devices in it so as to manage them. It initializes hardware
devices and connects wireless network devices to the networks
without OS environment, and then loads the resources for the
boot of required OS. Although this method accomplishes
MTC, the implementation is very complicated.

Specially, when compared with TNOS and Pre-OS, BMS
has obvious advantages. For TNOS, the upgraded Android will
destroy the recovery partition, and make the Meta-OS una-
vailable. But, in BMS, there is no such problem, the OS will
be upgraded without destroying the recovery partition and
the BMS can be used again. In Pre-OS, the versatility of the
method is poor and the programs in a mobile device have to
be ported after the replacement of network equipment. While
in BMS, different kinds of WNC drivers can be compiled to
drive modules and added to the VFS, and the driver will be
loaded dynamic if needed.

INTELLIGENT AUTOMATION & SOFT COMPUTING 3

When it comes to the application of VFS technology,
there have existed several related researches. A mobile dis-
tributed short file sharing system was created by Nikolaos
and Dimitris (2004). It uses the NFS (Network File System)
protocol that is a method of sharing documents on the
Internet to share and transfer files like on the client’s local
hard disk. An information management architecture named
as NLI-enabled (natural language interface) was designed
by Zhoua (2007) to lead to improve efficiency and effec-
tiveness of managing information on mobile devices. A
flexible intermediate library named Stampi was proposed
by Tsujita (2007) to realize seamless remote MPI-I/O
(Mechanism Provided Parallel-Input/Output) operations on
interconnected computers. And a parallel virtual file system
(PVFS) was supported in the remote MPI-I/O mechanism
for data-intensive applications. The above applications have
not considered the characteristics of MTC; therefore it is
difficult to extend them into MTC.

3. Design of BMS

The BMS, with the C/S architecture, was designed to pro-
vide mobile devices with transparent computing services. In
which, the server are to provide mobile clients with a variety of
resources and services over the wireless network. And a mobile
device does not need to install any OSes or applications in
advance. All the resources that a client required are loaded to
it through the module of wireless network driver that provided
by the BMS remotely.

3.1. Framework of BMS

In order to drive the wireless network card of the mobile device
and load the needed OS and applications as required, the BMS
was designed in a hierarchical mechanism. The structural dia-
gram of the system is shown in Figure 2. It is divided into four
layers; the hardware layer, the network layer, the remote start
layer, and the management layer.

AP of WIFI

Operating systems

Applications

Public
data

User
data

User
data

Hardware devices

Boot
 operating

system

Device
driver

Transparent
computing server

Mobile devices

Figure 1. Structure of mtC.

Mobile device

Hardware
device

I/O

Firmware Bootloader

Boot operating system

User interface

Remote boot

Extension module

SFV Wireless
network model

Boot management

NFS
protocal

Layer 1

Layer 2

Layer 3

Layer 4

Server

Boot service

Resource management

I/O
control

User
management

Software
resource

Wireless network
management

Figure 2. Diagram of Structure of BmS System.

4 Y. XIONG ET AL.

transparent server, etc. The network layer is a bridge between
the client and the server. It is mainly responsible for finding an
appropriate server and connecting to it after the mobile device
is launched. It provides connection service for the remote start
layer when loading an OS in a real time fashion.

• Remote start layer (Layer 3)
The remote start layer is mainly responsible for the remote

loading of the resources, OSes and applications. After a client
connects to the network, the remote start module automatically
finds a server on the network and loads resources. The BMS
catches the I/O request packages it into NFS formatted pack-
ets, and then sends it to the server. When the server receives a
message, it extracts the request, answers it, and then compiles
the result into a response message and sends it back to the
client. The client recompiles the message and finds the result.
The process is shown in Figure 3.

• Management layer (Layer 4)
The management layer is primarily responsible for the client

interaction. According to the client’s selection, it carries out
necessary initialization, and then forwards the client’s selected
information to the remote start layer. The remote start layer
loads the resources of OSes and services according to the
information. In addition, the management layer contains an
extensible module for the use of dynamically adding functions
required by clients and to reduce the influence of the adding
operation on other modules.

At the beginning, all resources of OSes, applications, data,
etc. are stored in the server and shared by all clients. A client
can choose any necessary applications to install. As time went
by, the data (client programs, data and applications) that pro-
duced by different clients with different OSes, will be updated
to the server as private data, which can only be changed by
the same user authentication. The server allocates storage
space and permission for each client. A client is free to access
resources within the permission.

3.2. Wireless Network Driver

A wireless network driver plays an important role in MTC.
It is a key to determining whether or not a client can con-
nect to the server. The result of porting the driver to the BMS
directly determines the rate and accuracy of packet transmis-
sion. In this study, a Marvell 8,686 wireless card is used. The
Marvell 88w8686 is a low-cost, low-power highly-integrated
IEEE 802.11a/b/d MAC/Baseband, designed to support IEEE
802.11a or 802.11 g payload data rates 6, 9, 12, 18, 24, 36, 48,
and 54 Mbps, as well as 802.11b data rates of 1, 2, 5.5, and
11Mbps. Its structure is shown in Figure 4. The MAC (media
access control) and PHY (physical layer) are implemented by
the hardware and software of a wireless network card (WNC),
respectively. A MAC protocol processing chip was designed
based on IEEE 802.11 standard. It processes data received
from a radio frequency module to a required format, converts
packets received from the driver to 802.11 standard packets,
and sends them to the front end of the radio frequency mod-
ule. The structure is divided into a WNC, a driver of the card,
firmware, and the management of the WNC configuration.
The firmware is the basic control system of the WNC. It imple-
ments the control and management of the network card based
on the MAC chip. The firmware completed the bottom, the
most complex transport/delivery module function, provided a

First, after mobile devices powers up, the u-boot is one kind
of Bootloader in Layer 1 that runs and initializes the hardware.
Then the management system starts to runs and displays the
list of the available OSes stored in server and prompts user
to choose through the user interaction interface where differ-
ent keys correspond to different OSes in Layer 4. Once user
chooses one OS, BMS will load the kernel and VFS images of
the OS into RAM for running. The VFS is the main part of
Layer 2 and it will start to run after the kernel boots for achiev-
ing configuring the wireless network card, searching server
and connecting to the server. After the completion of all these
preparations, the VFS hands over the right of system control
to NFS in Layer 3. Obtaining the permission of system control,
the main process of the NFS will run to find a server on the
network and load concerned resources that are necessary for
completing the booting of the OS.

• Hardware layer (Layer 1)
The hardware layer provides the foundations of the network

connection and program execution for a client and the server.
After the device is turned on, a curing program initializes all
hardware, for example, setting the frequency of the system
clock, the address of memory, etc., to prepare the runtime
environment of programs.

• Network layer (Layer 2)
The virtual file system was used in the network layer to

supervise and control the wireless module. It is responsi-
ble for scanning the available wireless network, configuring
the parameters of a wireless network and connecting to the

I/O request

Client Server

Run

Pause

Hand I/O reponse

Hand I/O request

I/O response

Run

Figure 3. the Remote Request process.

Wireless Network Configuration

Hardware

MAC and PHY Management

Driver

Wireless network card
derver

SDIO driver

Firmware

Figure 4. Wireless network Card Driver Structures.

INTELLIGENT AUTOMATION & SOFT COMPUTING 5

protocol, and the management procedure, etc., to the environ-
ment without an operating system. And even though all these
needed drivers were successfully ported, all the tasks have to be
done again if a network device or a mobile device is replaced.
This is a waste of efforts and not practical. To solve this prob-
lem, we introduce the concept of the virtual file system. A Linux
file system is divided into two layers, the upper layer is the
virtual file system layer, and the lower is the real file system
(RFS) layer (for example, NFS, ext2, ext3, etc.). Other func-
tional layers and the file system send communication requests
to the VFS layer. The VFS unifies the calling interface for the
system accessing files. When applications or other functional
layers call the interface of the VFS, the function of the VFS
interface calls the function of the RFS, which is the function
to really read or write files.

The VFS links available file systems to a single tree, which
displays all file systems as an entity. Any type of a file system
is assembled into a proper directory in the tree structure. The
system can only see the latest file in the entity.

The VFS slightly modifies the wireless network driver
according to the hardware features, and then compiles it as a
driver module but not a program in the kernel. When the BMS
starts up, it detects the hardware device of the network card and
searches for the corresponding driver. Then, it checks the VFS.
If it finds the corresponding driver in the VFS, then it loads the
driver into the memory dynamically and connects the WNC to
the network. It is able to compile a variety of commonly used
WNC drivers to drive modules and add them to the VFS using
the BMS to dynamic load hardware drivers from the VFS. This
makes it possible to support a variety of WNCs. Since drivers
are dynamically loaded, unused network card drivers do not
consume the resources of the limited memory. So, it is con-
venient to use the VFS to execute scripts, manage the wireless
network, and complete the connection to the server.

3.4. Management of Wireless Network

It is essential for the MTC that the wireless network is con-
nected stable. The management of the wireless network has
two phases: Search for the network when a client starts, and
the access to the RFS in the server.

When the BMS at the client side starts, it searches a server
on the network based on the client’s requirement. The BMS
first wakes up a wireless network equipment device, which is
inactive in default. Then, it uses wireless tools to search hot
spots of the network. If it detects a target server, then it config-
ures a wireless network account and a password and connects
to the server. A failure at any places in the process of network
connection results in the break of the network connection.
This forces a restart of the mobile device and a repeat of the
connection process. Since this is not convenient to clients, we
built a function of detecting the state of network execution in
the wireless network management module. Note that every step
in the network connection returns a value (0: true, 1: false). We
use the function to detect the execution result at each step. If
an error occurs at a step, then the function repeats the step
itself until success. It allows us to just repeat the failure step
but not the whole access process. So, it saves the startup time
and improves clients’ satisfaction.

The BMS loads the sources for the boot of an OS from a
remote server. Then, it passes the authorization of system
administration to the RFS to complete the boot process.
The BMS life cycle usually ends at this point. Note that the

physical interface for above layer, and offered a programming
interface for next layer.

When an SDIO (secure digital input and output) interface
of a WNC is connected to the system, the CPU first sees the
SDIO bus, and then the network card chip. An SDIO driver is
a bridge between a client and the WNC driver. The program of
the WNC driver is basically the official source. We made some
necessary modifications so as to build it as a module in the
BMS. This allows us to add different kinds of driver modules
for network cards in the BMS, and to find the corresponding
driver number if necessary. This ensures the one-to-one rela-
tionship between a card and a driver. A program of a WNC
driver mainly contains the initialization of the card, and send-
ing and receiving of packets.

The initialization of a network card is mainly to check the
existence of a network card, fill device structure, and register
the card:

• Detect the existence of a network card based on the char-
acteristics of its hardware, and call the driver program.

• Detect the I/O address and interrupt of the card, and
call request_irq and request_region to register the base
address of I/O and the interrupt of the card.

• A hardware device adds its own hardware frame in
front of the header of packets, and then sends the data.
The driver programs use the hard_header method.
The length of the hardware frame head is filled in dev-
>hard_header_len. The protocol layer calls hard_header
before sends a packet, and reserves a storage space for
the hardware frame at the beginning of packets. The
hard_header method calls skb_push and then fills in the
hardware frame.

• Use the wifi_setup method to set the equipment device
structure members for wireless network equipment.

Packets are sent using the following procedure. According
to the OSI seven-layer protocol, when data are sent from the
application layer, packets are delivered from the top layer to
the bottom one based on the network protocol, and a frame
head is added to the packet at each layer. Finally, packets are
delivered to the network interface using the dev_quene_xmit
method. The network interface passes packets to the hardware
device of the network cart that carries out the physical trans-
mission of packets.

Packets are received as follows: When a network card
receives a packet, it sends a hardware interrupt request to the
BMS. The BMS uses a driver to receive packets. To handle an
interrupt, first, the BMS determines the hardware types of the
WNC, and the length of a packet frame head based on the
frame control bits. Next, it prepares a buffer, sk_buff and saves
the packets read from the hardware device in it. Then, it fills
in the sk_buff: skb - > dev = dev, judges the type of the frame
protocol and fills in skb: skb - > protocol = hotns (). After it
sets the pointer skb - > mac.raw to the data in the hardware
device, it discards the hardware frame head. Finally, the BMS
calls the netif_rx method to send the data to the protocol layer
for processing.

3.3. Virtual File System

The virtual file system works on the network layer. It was intro-
duced in BMS to simplify the implementation. As it is really
difficult to port the WNC drivers, includes the SDIO inter-
face driver, the network card driver, the stack of the network

6 Y. XIONG ET AL.

(CPU: S3C6410, 533 MHz; DDR2 memory: 256 MB; NAND
flash memory: 2 GB; wireless module: Marvell@ 88W8686).
The OK6410-B is a highly-integrated board that designed for
the use in mobile devices, such as a mobile phone, a PDA, a
video camera, etc.

The wireless module Marvell 88W8686 integrates a radio
frequency wireless transceiver that operates in both, 2.4 GHz
and 5 GHz, a physical layer, a media access controller, and
an ARM processor. The wireless network module supports
standard industrial SDIO interfaces and uses IEEE 802.11 b
network standard. Data are transferred at the rate of 54 Mbps
with WEP encryption.

A mobile device without any OSes and applications
installed in advance, that only is equipped with the BMS to
launch a management program. The OSes of Linux QT and
Android 2.3, as well as clients’ data are stored in the server
that is responsible for the management and maintenance of
data. All clients’ required data are loaded from the server
through wireless networks. Computational results are stored
in the server.

We tested the performance of the BMS at the side of a sin-
gle client and at that of the server. First, we ran multiple OSes
(Linux and Android) in a client’s mobile device, and then ran
applications to verify the validity of the BMS. Besides, we also
tested the performance of the wireless network during the boot
of the OSes and the execution of applications, and analyzed the
experimental results.

configuration information for the wireless connection is saved
in the BMS. The ending of the BMS life cycle results in the break
of the wireless network connection. To solve this problem, we
do not quit the BMS after it passes the authorization of system
administration to a RFS. Instead, we keep it as a directory of
the RFS. This ensures that the process of authorization trans-
mission does not break the network connection and that the
OS starts up smoothly.

4. Implementation and Verification

In this section, a prototype of the BMS was built based on
OK6410-B ARM11 hardware platform. In order to evaluate
the proposed BMS, we conducted two sets of experiments: The
remote booting of multiple operating systems and the perfor-
mance testing of the wireless network connection.

The construction of testbed is shown in Figure 5. The server
for TC is a PC (CPU: Intel I5-3470, 3.20 GHz; memory: 1 GB;
OS: Ubuntu 12.04). It provides the services of the TFTP (triv-
ial file transfer protocol), the PORTMAP and the NFS. The
clients are mobile devices that based on OK6410-B boards

Figure 5. Diagram of Construction of the testbed.

Figure 6. test of Remote Boot of oSes: (a) list of Available oSes and (b) Boot Result of linux oS.

Table 1. Comparison of Start-up time.

Local booting Remote booting
linux Qt 26.50 s 72.17 s
Android 2.3 68.00 s 175.07 s

INTELLIGENT AUTOMATION & SOFT COMPUTING 7

boot are shown in Table 1. It is clear from the table that the
start-up time of remote boot is much longer than that of local
boot.

We then analyzed the start-up process in detail. The pro-
cess is divided into three stages: BMS boot, connection to the
server, and start-up of the RFS. The time distribution of the
start-up time for the two OSes is shown in Figure 7. Clearly,
the start-up of the RFS spends most of the start-up time. In
this stage, the BMS searches for file systems, loads required
resources to the local device, and then pass the authorization
of system administration to the RFS. Note that the Linux file
system is only about 70 MB. The time is mainly spent to load
the required resources over the wireless network. So, it is pos-
sible to shorten the start-up time by optimizing the file systems
and reducing the required resources for the start-up. In fact,
the test results show that the start-up time of the remote boot
is in the acceptable range. Repeating the test showed that the
start-up time is quite stable.

The above test results show that the BMS is effective to drive
a wireless network and to implement MTC.

4.2. Test of Performance of Wireless Network
Connection

Resources are different for an OS at different stages in the
start-up process. This makes the transmission rate (TR) of the
network changes at different stages. We measured the TR of
the wireless network during the start-up process. The results
for Linux QT and Android 2.3 are shown in Figures 8 and 9.

As shown in Figure 8, at the beginning (0–31 s), the BMS
initializes the hardware device, configures the wireless network,
and searches for available transparent server. It gives little effect
on the TR of the network, because it mainly deals with the
local device in this period. The client loaded resources from
the server from 32 s. The maximum TR was 4 Mbps. But that
TR was only used for a very limited period. It is clear that it
is possible to shorten the start-up time by increasing the TR.

Our system used a TL-WDR4900 router that has the max-
imum TR of 450 Mbps. The transmission performance was
good in an LAN. The use of WEP encryption in the experi-
ments reduced the TR of the wireless connection. We found
that, if we connected an 802.11n client to an 802.11n router,
the TR was less than 54 Mbps even signals were very strong.
This is because that the highest TR for WEP (Wired Equivalent
Privacy) or WPA (Wi-Fi Protected Access) is 54 Mbps accord-
ing to IEEE 802.11n standard. To improve the TR, we need to
use WPA2 for the router or not use any encryption.

Figure 9 shows the measured result of the TR for playing music
under Linux QT. The TR was 3.2 Mbps when the music data was

4.1. Test of Remote Boot of OSes

We first demonstrate the effectiveness of the BMS for MTC.
We load the BMS in the flash with a fixed address in a client’s
mobile device. Considering that both of Android 2.3 and Linux
QT are not only open-source systems but also used popularly,
we chose them as the example of experimental OSes so that
the proposed method is of more scalability and commonality.
When we turned the device on, the BMS initialized the hard-
ware devices, displayed a list of the available OSes (Figure 6(a)),
and waited for the client choosing one to start up. The boot
result of Linux QT is shown in Figure 6(b) .

After the start-up of the device, we used the device to run
some applications through MTC, such as Microsoft Office,
multimedia data, and network applications. We felt that the
applications were run just like they were in the client’s local
memory. All data was easy to reload when the device restarted
or the client replaced the device with a new one. Since the client
does not need to care about the location of the storage of the
OS and applications, and data that produced in the computing
are stored in the server; it is safe and easy to manage.

We also tested Android 2.3 OS and the same applications,
the test results are as good as those of the Linux.

The start-up time of an OS is defined to be the time period
from the switch-on of the device to the display of the desktop.
The test results of the start-up time for the remote and local

Figure 7. Distribution of Start-up time at Different Stages: (a) linux Qt (b) Android 2.3.

Figure 8. tR of Wireless network During Start-up process of linux Qt.

Figure 9. tR of Wireless network During Start-up process of Android 2.3.

8 Y. XIONG ET AL.

Jinhua She received his B.S. degree in engineering
from Central South University, Changsha, China in
1983, and his M.S. and Ph.D. degrees in engineering
from the Tokyo Institute of Technology, Tokyo, Japan
in 1990 and 1993, respectively. In 1993, he joined the
School of Engineering, Tokyo University of
Technology, Tokyo, where he is currently a professor.
His research interests include the application of con-
trol theory, repetitive control, process control,

Internet-based engineering education, and robotics.

Keyuan Jiang received his B.S. degree in computer
science from Southeast University, Nanjing, China in
1982, his M.S. in biomedical engineering from
Shanghai JiaoTong University, Shanghai, China in
1985, and his Ph.D. degrees in biomedical engineer-
ing from Vanderbilt University, Nashville, USA,
respectively. He joined the Department of Computer
Information Technology & Graphics of Purdue
University Northwest, where he is currently a profes-

sor and the Department Head. His research expands from bioinformat-
ics, mining healthcare social media, and clinical research and healthcare
information technology.

References
Baekjae S., Sejin P., & Woojoong L. (2008). Enhancing robustness of an

iSCSI-based File system in wireless networks. In Proc. of the IEEE
conference on Computer Systems Architecture (pp. 1–7). Hsinchu.

Huang S.Z., Wu M., & Xiong Y.H. (2014). Mobile transparent computing
to enable ubiquitous operating systems and applications. Journal of
Advanced Computational Intelligence and Intelligent Informatics, 18,
2014, 32–40.

Jinhui L., Ke Z., & Fang Z. (2011). Network center’s highly-efficient
management solutions based on intel PXE-based remote cloning
system. In Proc. of the IEEE International Conference on Advanced
Computer Control (ICACC) (pp. 408–411). Harbin.

Lima S.H., Leeb B.H., & Jai-Hoon Kim J.H. (2013). Voluntary disconnected
operations for energy efficient mobile devices in pervasive computing
environments. Intelligent Automation & Soft Computing, 19, 39–49.

Nikolaos M., & Dimitris K. (2004). Designing an NFS-based mobile
distributed filesystem for ephemeral sharing in proximity networks.
In Proc. of 2004 4th Workshop on Applications and Services in Wireless
Networks (pp. 225–231). Boston.

Schaffer H.E., Averitt S.F., & Hoit M.I., Peeler, A., Sills, E.D., and Vouk,
M.A. (2009). NCSU’s virtual computing lab: A cloud computing
solution. Computer, 42, 2009, 94–97.

Schmelzer, S., von Suchodoletz, D., & Schneider, G., Weingaertner, D.,
de Bona, L.C.E., and Carvalho, C. (2011). Universal remote boot and
administration service. In Proc. of the IEEE conference on Network
Operations and Management Symposium (LANOMS) (pp. 1–6). Latin
American.

Tiago C., & Paulo S. (2010). Integration of PXE based desktop solutions
into broadband access networks. In Proc. of 2010 IEEE International
Conference on Network and Service Management (CNSM) (pp. 182–
189). Niagara Falls.

Tsujita Y. (2007). Remote MPI-I/O on a parallel virtual file system using
a circular buffer for high throughput. Journal of International Journal
of Computers and Applications, 29, 2007, 291–299.

Wang L., Von Laszewski G., Chen D., Tao J., & Kunze M. (2010). Provide
virtual machine information for grid computing. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 40,
1362–1374.

Wannous, M., & Nakano, H. (2010). NVLab, a networking virtual web-
based laboratory that implements virtualization and virtual network
computing technologies. IEEE Transactions on Learning Technologies,
3, 129–138.

Xiong Y.H., Huang S.Z., Wu M., & She J.H. (2014). A Novel resource
management method of providing operating system as a service for
mobile transparent computing. The Scientific World Journal, 4 2014,
1–12.

Yang, H.J., & Zhang, Y.X. (2006). A remote transparent computing boot
protocol MRBP2. Mini-Micro Systems, 27, 1657–1660.

Zhang, Y.X. (2004). Transparent computing: From concept to
implementation. Acta Electronica Sinica, 32, 169–174.

downloaded from the network, but it is less than the maximum
TR. Experimental results show that it had little effect on the use of
this kind of application even we increased the TR of the network.

5. Conclusion

This paper proposed a lightweight approach based on a boot
management system to access to wireless network without OS
support, which is a small system for the MTC to port wireless
network driver and manage the wireless network connection.
This system only needs a very limited modification of the
original source code of the drivers. It has some extra features
superior to others:

• It loads drivers dynamic if needed. Since there are sev-
eral kinds of WNC drivers compiled to drive modules
and added to the VFS, when the BMS starts up, it only
loads drivers needed into the memory dynamically from
the VFS.

• A new device is easily to be added to the system by com-
piling it to a module. The VFS encapsulates the calling
interface as a layer between the Linux kernel and devices.
As a result, it is easy to add a new device to the system
by slightly modifying the device driver and compiling it
as a driver module rather than a program of the kernel.

• It drives wireless devices and connects them to a server
automatically without an OS. Before the OS booting, the
BMS detects the hardware device of the network card,
loads the corresponding driver that can be found in the
VFS into the memory dynamically and achieves con-
necting the WNC to the network.

• Considering the features mentioned above, loading data
in MTC is easily implemented by the system.

On the other hand, the TR of the wireless network needs to
be improved. We also plan to examine the main factor that influ-
ences the TR of wireless networks, to shorten the start-up time,
and to improve the user satisfaction level in our future work.

Acknowledgment
This research was supported in part by the National Nature Science
Foundation of China under Grant No. 61202340, by the International
Postdoctoral Exchange Fellowship Program under Grant No. 20140011,
by the Fundamental Research Funds for the Central Universities, China
University of Geosciences (Wuhan), by the Hubei Provincial Natural
Science Foundation of China under Grant No. 2015CFA010, and by the
111 project under Grant B17040.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes on contributors

Yonghua Xiong received his M.S. and Ph.D. degrees in
engineering from Central South University, Changsha,
China in 2004 and 2009. He was a lecturer and then
an associate professor of the School of Information
Science and Engineering, Central South University
from January 2005 to August 2014. He joined the staff
of the China University of Geosciences in September
2014, where he is currently a professor of the School
of Automation. He has been in the Department of

Computer Information Technology & Graphics, Purdue University
Northwest, USA, as a post-doctor since January 2015. His research inter-
ests include computational intelligence, scheduling algorithms, and
cloud computing.

INTELLIGENT AUTOMATION & SOFT COMPUTING 9

Zhou Y.Z., Zhang Y.X., & Hao L., Xiong, N., and Vasilakos, A.V. (2012).
A bare-metal and asymmetric partitioning approach to client
virtualization. IEEE Transactions on Services Computing, 7, 2012,
40–53.

Zhoua, L. (2007). Natural language interface for information management
on mobile devices. Journal of Behaviour & Information Technology,
26, 197–207.

Zhang Y.X., & Zhou Y.Z. (2007). 4VP: A novel meta OS approach for
streaming programs in ubiquitous computing. In Proc. of the IEEE
International Conference on Advanced Information Networking and
Applications (pp. 394–403). Niagara Falls.

Zhang, X.J., Wang, Z.J., & Xu, F. (2013). Reliability evaluation of cloud
computing systems using hybrid methods. Intelligent Automation &
Soft Computing, 19, 165–174.

Zhang Y., Xu G., Wei L., Yang H., & Zhou Y. (2008). Method and computing
system for transparence computing on the computer network. U.S.
Patent 7,467,293[P]. 2008, 12–16

	Abstract
	1. Introduction
	2. Background and Related Works
	2.1. Mobile Transparent Computing (MTC)
	2.2. Related Works

	3. Design of BMS
	3.1. Framework of BMS
	3.2. Wireless Network Driver
	3.3. Virtual File System
	3.4. Management of Wireless Network

	4. Implementation and Verification
	4.1. Test of Remote Boot of OSes
	4.2. Test of Performance of Wireless Network Connection

	5. Conclusion
	Acknowledgment
	Disclosure statement
	Notes on contributors
	References

