

Taylor & Francis

Check for updates

Z-Numbers and Type-2 Fuzzy Sets: A Representation Result

R. A. Aliev^{a,b} and Vladik Kreinovich^c

^aMBA Department, Azerbaijan State University of Oil and Industry, Baku, Azerbaijan; ^bDepartment of Computer Engineering, Near East University, Lefkosa, North Cyprus; ^cDepartment of Computer Science, University of Texas, El Paso, USA

ABSTRACT

Traditional [0; 1] based fuzzy sets were originally invented to describe expert knowledge expressed in terms of imprecise "fuzzy" words from the natural language. To make this description more adequate, several generalizations of the traditional [0; 1] based fuzzy sets have been proposed, among them type-2 fuzzy sets and Z-numbers. The main objective of this paper is to study the relation between these two generalizations. As a result of this study, we show that if we apply data processing to Z-numbers, then we get type-2 sets of special type —that we call monotonic. We also prove that every monotonic type-2 fuzzy set can be represented as a result of applying an appropriate data processing algorithm to some Z-numbers.

1. Z-Numbers and Type-2 Fuzzy Sets: Formulation of the Problem

Need for motivation

In this paper, we formulate —and answer —a question about the relation between Z-numbers and type-2 fuzzy sets; two generalizations of traditional fuzzy sets. To understand why this question is important, let us first recall why we need fuzzy sets, —both traditional and generalized —in the first place. This need comes from the need to formalize expert knowledge.

Need for the description of expert knowledge in computer-understandable terms

In many application areas, we rely on human expertise; when we want to fly to a conference, we rely on a pilot; when we get sick, we go to a doctor, etc.

Some experts are better than others. In the ideal world, we should all be served by the best experts; every plane should be controlled by the most skilled pilot, and every patient should be treated by the best medical doctor. In practice, however, a few best doctors cannot cure all the patients, and a few most skilled pilots cannot navigate all the planes.

It is therefore important to design computer-based systems that will incorporate the knowledge and skills of the best experts and thus, help other experts make better decisions. For that, we need to describe the expert knowledge in computer-understandable terms.

Need for fuzzy logic

Some of the experts' knowledge is precise and thus, easy to describe in computer-understandable terms. For example, one can easily describe, in such terms, a medical doctor's recommendation that any patient with a body temperature of 38 °C or higher will be given a dose of aspirin proportional to his/ her body weight.

KEYWORDS Z-number; type-2 fuzzy set; extension principle

However, many expert rules are not that precise. For example, instead of specifying a 38 °C threshold, a medical doctor may say that a patient with a high fever be given aspirin — without explicitly specifying what "high fever" means.

Rules and statements using such imprecise "fuzzy" words from the natural language like "high" are ubiquitous in our knowledge. To describe such knowledge in precise terms, Lotfi Zadeh invented a special technique that he called *fuzzy logic*; see, e.g. Klir & Yuan (1995), Nguyen & Walker (2006) and Zadeh (1965). According to this technique, to describe the meaning of each imprecise term like "high", we ask the expert to describe, for each possible value x of the corresponding quantity (e.g. temperature) the degree $\mu(x) \in [0, 1]$ to which this value can be characterized by this term, so that 0 means absolutely not high, 1 means absolutely high, and intermediate values mean somewhat high. One way to get each value $\mu(x)$ is ask an expert to indicate his/her degree by a point on a scale — e.g. on a scale from 0 to 10. If an expert marks 37.9 °C as corresponding to 7 on this scale, then we describe his/her degree of 37.9 °C being "high" by the ratio 7/10.

A function assigning, to each possible value x, the corresponding degree $\mu(x)$, is known as a *membership function* or, alternatively, as a *fuzzy set*.

Comment

Note that, in general, the quantity *x* does not need to be number valued; alternatively, its values can be, e.g. vectors.

Need for "and" and "or" operations

Many expert rules involve several conditions. For example, since some efficient fever-lowering medicines increase blood pressure, a medical doctor may recommend the corresponding medicine if the fever is high *and* the blood pressure not high.

Ideally, we should consider all possible pairs (x; y) of temperature and blood pressure, and for each such pair, elicit, from the expert, his/her degree that the corresponding "and"

condition is satisfied. However, in practice, there are a large number of such combinations, so it may not be possible to ask the expert's opinion about all of them. This is especially true if we take into account that sometimes, expert rules include three, four (and even more) conditions —in this case, asking the expert about all such combinations is plainly impossible.

In such situations, since we cannot elicit the expert's degree of confidence about a composite statement A & B, we have to estimate this degree based on the known degree of confidence a and b in the components statements A and B. In our example, A is the statement that x is a high temperature, and B is the statement that y is not high blood pressure.

The corresponding estimate depends only on *a* and *b*, so it has the form $f_{\backslash}(a, b)$ for an appropriate algorithmic function f_{\backslash} . This function is known as an "*and*" *operation* or a *t-norm*. Similarly, to estimate the experts degree of confidence in a statement $A \lor B$, we need an $\backslash or$ " *operation* $f_{\vee}(a, b)$; "or" operations are also known as *t-conorms*.

The corresponding operations should satisfy some reasonable properties. For example, since $A \otimes B$ is equivalent to $B \otimes A$, it makes sense to require that the "and" operation provide the same estimate for both expressions — i.e., that it be commutative: $f_1(a, b) = f_1(b, a)$. Similarly, since $A \otimes (B \otimes C)$ is equivalent to $(A \otimes B) \otimes C$, the "and" operation must be associative, etc.

The simplest operations that satisfy all these properties are $f_{(a, b)} = \min(a, b)$ and $f_{(a, b)} = \max(a, b)$. These operations are among the most widely used in applications of fuzzy techniques (Klir & Yuan, 1995; Nguyen & Walker, 2006; Zadeh, 1965).

Processing fuzzy data: Zadeh's extension principle

In case of precise rules, we use the values of the inputs $x_1 \dots x_n$ to determine the values of the desired quantity *y* e.g. the value of the parameter that describes the appropriate control. Let us denote the corresponding algorithmic function by $y_1 f(x_1 \dots x_n)$. Computing the corresponding values *y* is an important part of data processing.

If instead of measured values, we use expert estimates, then instead of the values x_i of the corresponding quantities X_p , we have fuzzy sets $\mu_i(x_i)$ that describe our knowledge about these quantities. In such situations, it is desirable to come up with a similar description for the possible values y of the desired quantity Y.

A number *y* is a possible value of the quantity *Y* if there exists a tuple of values $x_1 \dots x_n$ for which $y = f(x_1 \dots x_n)$ and each x_i is a possible value of the corresponding quantity X_i . For each number x_i , the degree to which this number is a possible value of the quantity X_i is equal to $\mu_i(x_i)$. Thus, if we use the min "and" operation, the degree to which x_1 is a possible value of X_1 and X_2 is a possible value of X_2 , etc., is equal to min $(\mu_1(x_1) \dots \mu_n(x_n))$.

The condition $y = f(x_1 \dots x_n)$ is either absolutely true (i.e., has degree 1) or absolutely false (degree 0). Thus, the degree to which each x_i is a possible value of X_i and $y = f(x_1 \dots x_n)$ is equal to min $(\mu_1(x_1) \dots \mu_n(x_n))$ when $y = f(x_1 \dots x_n)$ and to 0 otherwise.

The phrase "there exists a tuple" means that either the corresponding property holds for one tuple, or for another tuple, etc. If we use the simplest max "or" operation, then the degree $\mu(y)$ to which *y* is a possible value of *Y* takes the following form:

$$\mu(y) = \max\{\min(\mu_1(x_1)...(\mu_n(x_n)): y = f(x_1...x_n)\}\}$$

This formula —first proposed by Zadeh— extends functions from real numbers to fuzzy inputs and is thus known as *Zadeh's extension principle* (Klir & Yuan, 1995; Nguyen & Walker, 2006; Zadeh, 1965).

Comment

In describing the degree of confidence $\mu(y)$, in principle, we can use a different "and" operation, e.g. the algebraic product $f_i(a, b) = a \cdot b$.

However, we do not have much choice with the "or" operation. Indeed, if instead of $f_v(a, b) = \max(a, b)$, we use, e.g. the algebraic sum $f_v(a, b) = a + b - a \cdot b$, then the "or" combination of infinitely many degrees will lead to a meaningless $\mu(y) = 1$ for all *y*.

Type-2 fuzzy sets and Z-numbers

The traditional [0; 1]-based fuzzy techniques are based on the implicit assumption that an expert can always describe his/her degree of confidence in a statement by a number. In practice, this may be difficult; an expert may be able to meaningfully distinguish between 7 and 8 on a 0 to 10 scale, but hardly any-one can differentiate between, say 7.0 and 7.1 on this scale. In other words, instead of selecting a single number, an expert may be more comfortable selecting several numbers —maybe with the degree to which each of these numbers describes his/her opinion.

So, for each value *x*, the expert describes, for each possible degree μ , a degree $d(x, \mu)$ to which μ is a reasonable degree of *x* being high. Thus, the degree $\mu(x)$ characterizing the expert's opinion about the value *x* is no longer a number; it is itself a fuzzy set. Membership functions that assign such a fuzzy set to each value *x* are known as *type-2* fuzzy set; see, e.g. (Mendel, 2001; Mendel & Wu, 2010; Nguyen, Kreinovich, & Zuo, 1997).

Another generalization of the traditional fuzzy sets is related to the fact that experts are often not 100% confident in their degrees. So, in addition to eliciting a degree $\mu(x)$, it makes sense to also elicit the degree v(x) to which the expert is certain in his/ her evaluation. The corresponding pairs ($\mu(x)$, v(x)) is known as a *Z*-number, after L. Zadeh (Aliev, Huseynov, Aliyev, & Alizadeh, 2015; Zadeh, 2011).

Comment

Note that this is one possible definition of a Z-number; different formalization of the original Zadeh's idea of a Z-number may lead to slightly different definitions. For example, in (Lorkowski, Aliev, & Kreinovich, 2014), we used a single degree v(x) = const to describe the expert's degree of confidence for all *x*. In this paper, we consider a more general definition, in which we allow the degrees v(x) to depend on *x*.

Main question: What is the relation between Z-numbers and type-2 fuzzy sets?

For both generalizations, instead of a single value $\mu(x)$, we have degrees describing to what extend different degrees are possible. In other words, while the meanings of two extensions are different, from the purely mathematical viewpoint, these two extensions seem similar. So what is the relation between the two extensions?

What we do in this paper?

In this paper, we explain the relation between Z-numbers and type-2 fuzzy sets. Specifically, we prove that if we apply data processing to Z-numbers, then we get type-2 fuzzy sets of a special type, —which we will call *monotonic*, and that, vice versa, every monotonic type-2 fuzzy set can be represented as

a result of applying some data processing algorithm to appropriate Z-numbers.

2. The Result of Applying Data Processing to Z-Numbers is a Monotonic Type-2 Fuzzy Set

Need to consider the result of applying data processing to Z-numbers. In the usual Zadeh's extension principle, when we apply the data processing algorithm $y = f(x_1 \dots x_n)$, we assume that for each *i* and for each possible value x_i of the quantity X_p we know the degree $\mu_i(x_i)$ to which this value x_i is possible.

In the Z-number case, in addition to each degree $\mu_i(x_i)$, we also know the degree $v_i(x_i)$ to which the expert is confident in the degree $\mu_i(x_i)$. How will this additional information affect the result of data processing?

Need to consider "and" and "or" operations for Z-numbers

In our derivation of Zadeh's extension principle, we used the "and" and "or" operations —namely, min and max. To extend Zadeh's extension principle to Z-numbers, it is therefore necessary to extend the usual "and" and "or" operations to Z numbers.

How to extend "and" operations to Z-numbers

Let us assume that the expert's degree of confidence in a statement *A* is *a* and the expert's degree of confidence in this estimate is v_a . Let us also assume that the expert's degree of confidence in a statement *B* is *b* and the expert's degree of confidence in this estimate is v_b .

Then, the expert's degree of confidence in a composite statement A & B is $f_{(a, b)}$. If we use the simplest possible "and" operation $f_{(a, b)} = \min(a, b)$, then this degree is equal to min (a; b).

What is the expert's degree of confidence in the estimate $\min(a;b)$? This estimate makes sense only if both estimates *a* and *b* make sense. In other words, an expert is confident in the combined estimate $\min(a; b)$ if the expert is confident in the estimate *a* and confident in estimate *b*. So, the expert's degree of confidence in the combined estimate $\min(a; b)$ can be obtained by applying the "and" operation to the degrees of confidence v_a and μ_b in both estimates; $f_{\langle}(\mu_a, \mu_b)$. In particular, if we use the min "and" operation, we get the degree min (v_a, v_b) .

Comment

The degrees v_a and v_b are usually viewed as subjective probabilities, with the "and" operation $f_i(a, b) = a \cdot b$. In general, this is OK, but as we will see, the choice of the algebraic product "and" operation leads to meaningless 0 values for the results of data processing —similar to the fact that the use of the algebraic sum leads to meaningless 1 for the usual Zadeh's extension principle. To avoid such meaningless values, in this paper, we use the min "and" operation.

How to extend "or" operations to Z-numbers

What about the "or" operation? What is the expert's degree of confidence in the corresponding estimate $f_v(a, b) = \max(a, b)$? At first glance, by analogy, it may seem that we get $\max(v_a, v_b)$, but a more detailed analysis shows that this is a wrong formula. Indeed, an expert is confident in the combined estimate $\max(a; b)$ if the expert is confident in the estimate *a* and confident in

estimate *b*. So, similar to the case of the "and" operations, the expert's degree of confidence in the combined estimate min(*a*; *b*) can be obtained by applying the "and" operation to the degrees of confidence v_a and μ_b in both estimates; $f_{\setminus}(\mu_a, \mu_b)$. In particular, if we use the min "and" operation, we get the degree min (v_a, v_b) —the same degree as for the "and" operation.

Now, we are ready to describe a natural way to generalize Zadeh's extension principle to Z-numbers.

How to generalize Zadeh's extension principle to Z-numbers: Formulation of the problem

Let us now consider the case when all the inputs to a data processing algorithm $y = f(x_1 \dots x_n)$ are Z-numbers, i.e., that for each input *i* and for each possible value x_i of the *i*-th quantity X_i , we know not only the expert's degree of confidence $\mu_i(x_i)$ that xi is a possible value of Xi, but also the expert's degree of confidence $v_i(x_i)$ in this estimate.

Based on this information, what can we say about the possible values *y* of the desired quantity *Y*?

How to generalize Zadeh's extension principle to Z-numbers: Seemingly natural approach and its limitations

In line with the above description of "and" and "or" operations for Z-numbers, for each tuple $x_1 \dots x_n$ for which $y = f(x_1 \dots x_n)$, the resulting value y is possible with degree min $(\mu_1(x_1) \dots \mu_n(x_n))$, and the expert's confidence in this estimate is equal to min $(v_1(x_1) \dots v_n(x_n))$.

In principle, we could do what we did when we derived Zadeh's extension principle, and for each *y*, simply combine the estimates corresponding to all the tuples $x_1 \dots x_n$ for which $y = f(x_1 \dots x_n)$. As a result, we would get the same degree $\mu(y)$ as in the traditional [0; 1] based fuzzy case, but the problem is that the expert's confidence in this estimate would then be equal to

$$v(y) = \min\{\min(v_1(x_1)...(v_n(x_n)): y = f(x_1...x_n)\}.$$

Since some of the degrees $v_i(x_i)$ may be very low, we will get the degree v(y) very low —or even equal to 0. This means that the expert's confidence in the degree $\mu(y)$ is very low.

It makes no sense to produce an estimate $\mu(y)$ in which the expert is not confident at all. Thus, we need to modify our approach.

Comment

1

The above formula shows that to compute the v-degrees, we do not have much of a choice in selecting an "and" operation. Indeed, if instead of min, we use, e.g. the algebraic product "and" operation $f_i(a, b) = a \cdot b$, then by taking the product of infinitely many degrees corresponding to infinitely many tuples, we will have a meaningless value $\mu(y) = 0$ always, even if —as we propose in the following text —we do not consider tuples with small value $v_i(x_i)$.

How to generalize Zadeh's extension principle to Z-numbers: Analysis of the problem

We do not want to have an estimate with degree of confidence 0. Let us therefore select the desired degree of confidence v > 0, and let us try to come up with an estimate $\mu(y)$ for which the expert's degree of confidence $\mu(y)$ is at least as large as this threshold value: $v(y) \ge v$.

In other words, the minimum of the degrees of confidence corresponding to different tuples $x_1 \dots x_n$ must be at least μ . This is equivalent to saying that all these degrees of confidence must be at least μ . In other words, we should only consider tuples $x_1 \dots x_n$ for which min $(v_1(x_1) \dots v_n(x_n)) \ge v$. This inequality, in its turn, is equivalent to requiring that $v_i(x_i) \ge v$ for each *i*. Thus, we arrive at the following definition.

How to generalize Zadeh's extension principle to Z-numbers: Result

Let us assume that for each input i and for each possible value x_i of the ith quantity X_i we know the expert's degree of confidence $\mu_i(x_i)$ that x_i is a possible value of X_i , and the expert's degree of confidence $v_i(x_i)$ in this estimate. Then, for each value $v \in [0, 1]$, we compute

 $\mu_{v}(y) = \max\{\min(\mu_{1}(x_{1})...\mu_{n}(x_{n})): y = f(x_{1}...x_{n}) \\ \text{and } v_{i}(x_{i}) \ge v \text{ for all } i\}$

The function that assigns, to each $v \in [0, 1]$, the corresponding value $\mu_v(y)$, is the result of applying the data processing algorithm to Z-numbers —i.e., it is the desired extension of Zadeh's extension principle to Z-numbers. Let us describe this in precise terms.

Definition 1. By a Z-number, we mean a mapping that assigns, to every element x of a universal set, two numbers mu(x) and v(x) from the interval [0, 1]. We will say that;

 $\mu(x)$ is the expert's degree of confidence that x is a possible value, and

v(x) is the expert's degree of confidence in the estimate $\mu(x)$.

Definition 2. Let $F: U_1 \times ... \times U_n \rightarrow U$ be a function, and for each i = 1 ... n let X_i be a Z-number defined on the universal set U_i . By the result $f(X_1 ... X_n)$ of applying the function $f(x_1 ... x_n)$ to the Z-numbers $X_1 ... X_n$, we mean a function that assigns, to each $v \in [0, 1]$, the value

$$\mu_{v}(y) = \max\{\min(\mu_{1}(x_{1})...\mu_{n}(x_{n})): y = f(x_{1}...x_{n}) \text{ and } v_{i}(x_{i}) \ge v \text{ for all } i\}.$$

Comment

This is the desired extension of Zadeh's extension principle to Z numbers.

In effect, the result of applying data processing to **Z-numbers is a type-2 fuzzy set**. Let us recall that we get a type-2 fuzzy set if instead of a single value $\mu(x)$, we get a function that assigns to each value $\mu \in [0, 1]$, a degree $d(\mu, x) \in [0, 1]$.

Here, we have exactly this situation; to each value v, we assign, a degree $\mu_v(x)$. Thus, from the purely mathematical viewpoint, the result of applying data processing to Z-numbers is a type-2 fuzzy set.

Can every type-2 fuzzy number be so represented?

We have shown that the result of applying data processing to Z-numbers is a type-2 fuzzy set. A natural question is; can every type-2 fuzzy number be thus represented?

In the following text, we will prove that this is not the case; namely, that the type-2 fuzzy sets, which are obtained as a result of applying data processing to Z-numbers have an additional property —that we will call monotonicity.

Monotonicity property

When the value v increases, fewer and fewer tuples $(x_1 \dots x_n)$ satisfy the inequalities $v_i(x_i) \ge nu$. Thus, the maximum in the definition of $\mu_v(y)$ is over a smaller set of values —and, is thus, in general, smaller. In other words, if v < v', then $\mu_v(x) \le \mu'_v(x)$.

In this paper, we will call type-2 fuzzy sets with this property monotonic; a natural question. We started with a question of whether every type-2 fuzzy number can be represented as a result of applying data processing to Z-numbers. We have shown that this is not the case, by proving that a type-2 fuzzy numbers obtained as a result of applying data processing to Z-numbers is always monotonic.

A natural next question is; can every monotonic type-2 fuzzy set be represented as a result of applying data processing to Z-numbers? Our —positive —answer to this question is provided in the next section.

3. Every Monotonic Type-2 Fuzzy Set can be Represented as a Result of Applying Data Processing to Z-Numbers

Definition 3. We say that a type-2 fuzzy number $d(y, \mu)$ is monotonic if $\mu < \mu'$ implies $d(y, \mu) \ge d(y, \mu')$.

Representation Theorem. Every monotonic type-2 fuzzy set $d(y, \mu)$ can be represented as a result of applying an appropriate data processing algorithm $y = f(x_1 \dots x_n)$ to some *Z*-numbers $X_1 \dots X_n$.

Proof. Let us assume that we have a monotonic type-2 fuzzy set $d(y, \mu)$, where y takes all the values from some universal set, and $\mu \in [0, 1]$. To construct the desired representation, we will take n = 1 and

$$U_1 = U \times [0, 1]$$

Each element $x_1 \in U_1$ is thus a pair $x_1 = (x_{11}, x_{12})$, where $x_{11} \in U$ and $x_{12} \in [0, 1]$. Let us take the following data processing algorithm,

$$f(x_1) = f((x_{11}, x_{12})) = x_{11}$$

And let us take the following Z-number,

$$\mu_1(x_1) = \mu_1(x_{11}, x_{12}) = d(x_{11}, x_{12}),$$

And

$$v_1(x_1) = v_1(x_{11}, x_{12}) = x_{12}.$$

For this selection, since n = 1, the result $f(X_1)$ of applying the selected function $f(X_1)$ to the selected Z-number X_1 takes the form

$$\mu_{v}(y) = \max\{\mu_{1}(x_{1}): f(x_{1}) = y \text{ and } v_{1}(x_{1}) \ge v\}$$

By our choice of the data processing function $f(x_1)$, the condition $f(x_1) = y$ means that $x_{11} = y$. Thus $x_1 = (x_{11}, x_{12}) = (y, x_{12})$. Similarly, the condition $v_i(x_i) \ge v$ means that $x_{12} \ge v$, and the value $\mu_1(x_1)$ is equal to $d(y, x_{12})$.

Hence, $\mu_{v}(y)$ is the maximum of all the values $d(y, x_{12})$ corresponding to all possible values $x_{12} \ge v$.

Since the type-2 fuzzy set is monotonic, the largest possible value $\mu_v(y)$ of $d(y, x_{12})$ is attained when x_{12} is the smallest possible, i.e., when $x_{12} = v$. Therefore, this largest value $\mu_v(y)$ is equal to d(y, v). Thus, indeed, the given monotonic type-2 fuzzy set can be represented as the result $f(X_1)$ of applying the data processing algorithm $f(x_1)$ to the Z-number X_1 . The theorem is proven.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by the National Science Foundation grant number [HRD-0734825, HRD-1242122]; (Cyber-ShARE Center of Excellence) [grant number DUE-0926721], and by an award "UTEP and Prudential Actuarial Science Academy and Pipeline Initiative" from Prudential Foundation.

Notes on contributors

Rafik A. Aliev was born in Aghdam, Azerbaijan, 1942. He received Ph.D. and Doctorate degrees from the Institute of Control Problems, Moscow, Russia, in 1967 and 1975, respectively. His major fields of study are decision theory with imperfect information, arithmetic of Z-numbers, fuzzy logic, soft computing and control theory. He is a professor and the Head of the Department of the joint MBA Program between the Georgia State University (Atlanta, GA, USA) and the

Azerbaijan State University of Oil and Industry (Baku, Azerbaijan), and a Visiting Professor with the University of Siegen, (Siegen, Germany) and with Near East University, (Nicosia, North Cyprus). He is also an invited speaker in Georgia State University, (Atlanta, GA).

Dr. Aliev is a regular Chairman of the International Conferences on Applications of Fuzzy Systems and Soft Computing, International Conferences on Soft Computing and Computing with Words, and World Conferences on Intelligent Systems for Industrial Automation. He is an Editor of the Journal of Advanced Computational Intelligence and Intelligent Informatics (Japan), an Associate Editor of the Information Sciences journal, a member of the Advisory board of the International Journal of Information Technology and Decision Making, member of Editorial Boards of International Journal of Web-based Communities (The Netherlands), Iranian IEEE Systems journal, Journal of Fuzzy Systems (Iran), International Journal of Advances in Fuzzy Mathematics (Italy), and International Journal "Intelligent Automation and Soft Computing." He was awarded USSR State Prize in field of Science (1983), Lifetime Achievement Award (2014), and International Fuzzy Systems Association fuzzy fellow award (2015).

Vladik Kreinovich received an MS in Mathematics and Computer Science from St. Petersburg University, Russia, in 1974, and a Ph.D. from the Institute of Mathematics, Soviet Academy of Sciences, Novosibirsk, in 1979. From 1975 to 1980, he worked with the Soviet Academy of Sciences; during this time, he worked with the Special Astrophysical Observatory (focusing on the representation and processing of uncertainty in radioastronomy). For most of the 1980s, he worked on error estimation and intelligent information processing for the National Institute for Electrical Measuring Instruments, Russia. In 1989, he was a visiting scholar at Stanford University. Since 1990, he has worked in the Department of Computer Science at the University of Texas at El Paso. In addition, he has served as an invited professor in Paris (University of Paris VI), France; Hong Kong; St. Petersburg, Russia; and Brazil.

His main interests are the representation and processing of uncertainty, especially interval computations and intelligent control. He has published six books, eleven edited books, and more than 1,000 papers. Vladik is a member of the Editorial Board of the International Journal "Reliable Computing" (formerly "Interval Computations") and several other journals. In addition, he is the co-maintainer of the international Web site on interval computationshttp://www.cs.utep.edu/ interval-comp.

Vladik is Vice President for Publications of IEEE Systems, Man, and Cybernetics Society; he served as President of the North American Fuzzy Information Processing Society 2012–14; is a foreign member of the Russian Academy of Metrological Sciences; was the recipient of the 2003 El Paso Energy Foundation Faculty Achievement Award for Research awarded by the University of Texas at El Paso; and was a co-recipient of the 2005 Star Award from the University of Texas System.

References

- Aliev, R.A., Huseynov, O.H., Aliyev, R.R., & Alizadeh, A.V. (2015). The arithmetic of Z -numbers. Singapore: World Scientific.
- Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. New Jersey: Prentice Hall, Upper Saddle River.
- Lorkowski, J., Aliev, R., & Kreinovich, V. (2014). Towards Decision Making under Interval, Set-valued, Fuzzy, and Z-number Uncertainty: A Fair Price Approach. Proceedings of the IEEE World Congress on Computational Intelligence WCCI'2014, Beijing, China, July 6–11, 2014.
- Mendel, J.M. (2001). Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River: Prentice-Hall.
- Mendel, J.M., & Wu, D. (2010). *Perceptual computing*. New York, NY: IEEE Press and Wiley.
- Nguyen, H.T., & Walker, E.A. (2006). A First Course in Fuzzy Logic. Boca Raton, Florida: Chapman and Hall/CRC.
- Nguyen, H.T., Kreinovich, V., & Zuo, Q. (1997). Interval-valued degrees of belief: Applications of interval computations to expert systems and intelligent control. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 5, 317–358.
- Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
- Zadeh, L.A. (2011). A note on Z-numbers. Inform Sciences, 181, 2923–2932.