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ABSTRACT
Traditional [0; 1] based fuzzy sets were originally invented to describe expert knowledge expressed in 
terms of imprecise “fuzzy” words from the natural language. To make this description more adequate, 
several generalizations of the traditional [0; 1] based fuzzy sets have been proposed, among them type-
2 fuzzy sets and Z-numbers. The main objective of this paper is to study the relation between these 
two generalizations. As a result of this study, we show that if we apply data processing to Z-numbers, 
then we get type-2 sets of special type —that we call monotonic. We also prove that every monotonic 
type-2 fuzzy set can be represented as a result of applying an appropriate data processing algorithm 
to some Z-numbers.

1.  Z-Numbers and Type-2 Fuzzy Sets: Formulation 
of the Problem

Need for motivation

In this paper, we formulate —and answer —a question about 
the relation between Z-numbers and type-2 fuzzy sets; two 
generalizations of traditional fuzzy sets. To understand why 
this question is important, let us first recall why we need fuzzy 
sets, —both traditional and generalized —in the first place. 
This need comes from the need to formalize expert knowledge.

Need for the description of expert knowledge in 
computer-understandable terms

In many application areas, we rely on human expertise; when 
we want to fly to a conference, we rely on a pilot; when we get 
sick, we go to a doctor, etc.

Some experts are better than others. In the ideal world, we 
should all be served by the best experts; every plane should be 
controlled by the most skilled pilot, and every patient should 
be treated by the best medical doctor. In practice, however, a 
few best doctors cannot cure all the patients, and a few most 
skilled pilots cannot navigate all the planes.

It is therefore important to design computer-based sys-
tems that will incorporate the knowledge and skills of the best 
experts and thus, help other experts make better decisions. 
For that, we need to describe the expert knowledge in com-
puter-understandable terms.

Need for fuzzy logic

Some of the experts’ knowledge is precise and thus, easy to 
describe in computer-understandable terms. For example, one 
can easily describe, in such terms, a medical doctor’s recom-
mendation that any patient with a body temperature of 38 °C 
or higher will be given a dose of aspirin proportional to his/
her body weight.

However, many expert rules are not that precise. For exam-
ple, instead of specifying a 38 °C threshold, a medical doctor 
may say that a patient with a high fever be given aspirin — 
without explicitly specifying what “high fever” means.

Rules and statements using such imprecise “fuzzy” words 
from the natural language like “high” are ubiquitous in our 
knowledge. To describe such knowledge in precise terms, Lotfi 
Zadeh invented a special technique that he called fuzzy logic; 
see, e.g. Klir & Yuan (1995), Nguyen & Walker (2006) and 
Zadeh (1965). According to this technique, to describe the 
meaning of each imprecise term like “high”, we ask the expert 
to describe, for each possible value x of the corresponding 
quantity (e.g. temperature) the degree μ(x) ∊ [0, 1] to which 
this value can be characterized by this term, so that 0 means 
absolutely not high, 1 means absolutely high, and intermedi-
ate values mean somewhat high. One way to get each value 
μ(x) is ask an expert to indicate his/her degree by a point on a 
scale — e.g. on a scale from 0 to 10. If an expert marks 37.9 °C 
as corresponding to 7 on this scale, then we describe his/her 
degree of 37.9 °C being “high” by the ratio 7/10.

A function assigning, to each possible value x, the corre-
sponding degree μ(x), is known as a membership function or, 
alternatively, as a fuzzy set.

Comment
Note that, in general, the quantity x does not need to be number 
valued; alternatively, its values can be, e.g. vectors.

Need for “and” and “or” operations

Many expert rules involve several conditions. For example, 
since some efficient fever-lowering medicines increase blood 
pressure, a medical doctor may recommend the corresponding 
medicine if the fever is high and the blood pressure not high.

Ideally, we should consider all possible pairs (x; y) of tem-
perature and blood pressure, and for each such pair, elicit, 
from the expert, his/her degree that the corresponding “and” 
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condition is satisfied. However, in practice, there are a large 
number of such combinations, so it may not be possible to ask 
the expert’s opinion about all of them. This is especially true 
if we take into account that sometimes, expert rules include 
three, four (and even more) conditions —in this case, asking 
the expert about all such combinations is plainly impossible.

In such situations, since we cannot elicit the expert’s degree 
of confidence about a composite statement A&B, we have to 
estimate this degree based on the known degree of confidence 
a and b in the components statements A and B. In our example, 
A is the statement that x is a high temperature, and B is the 
statement that y is not high blood pressure.

The corresponding estimate depends only on a and b, so it 
has the form f\(a, b) for an appropriate algorithmic function 
f\. This function is known as an “and” operation or a t-norm. 
Similarly, to estimate the expert’s degree of confidence in a 
statement A ∨ B, we need an \or”operation f∨(a, b); “or” oper-
ations are also known as t-conorms.

The corresponding operations should satisfy some reasona-
ble properties. For example, since A & B is equivalent to B & A, 
it makes sense to require that the “and” operation provide the 
same estimate for both expressions — i.e., that it be commuta-
tive: f\(a, b) =  f\(b, a). Similarly, since A & (B &C) is equivalent 
to (A & B) & C, the “and” operation must be associative, etc.

The simplest operations that satisfy all these properties are 
f\(a, b)  = min (a, b) and f∨(a, b)  = max (a, b). These operations are 
among the most widely used in applications of fuzzy techniques 
(Klir & Yuan, 1995; Nguyen & Walker, 2006; Zadeh, 1965).

Processing fuzzy data: Zadeh’s extension principle

In case of precise rules, we use the values of the inputs x1 ... xn 
to determine the values of the desired quantity y e.g. the value 
of the parameter that describes the appropriate control. Let us 
denote the corresponding algorithmic function by y   f(x1 ... xn). 
Computing the corresponding values y is an important part of 
data processing.

If instead of measured values, we use expert estimates, then 
instead of the values xi of the corresponding quantities Xi, we have 
fuzzy sets μi(xi) that describe our knowledge about these quan-
tities. In such situations, it is desirable to come up with a similar 
description for the possible values y of the desired quantity Y.

A number y is a possible value of the quantity Y if there 
exists a tuple of values x1 ...  xn for which y =  f(x1 ... xn) and each 
xi is a possible value of the corresponding quantity Xi. For each 
number xi, the degree to which this number is a possible value 
of the quantity Xi is equal to μi(xi). Thus, if we use the min “and” 
operation, the degree to which x1 is a possible value of X1 and X2 
is a possible value of X2, etc., is equal to min (μ1(x1) .... μn(xn)).

The condition y  = f(x1 ... xn) is either absolutely true (i.e., 
has degree 1) or absolutely false (degree 0). Thus, the degree to 
which each xi is a possible value of Xi and y  = f(x1 ... xn) is equal 
to min (μ1(x1) .... μn(xn)) when y  = f(x1 ... xn) and to 0 otherwise.

The phrase “there exists a tuple” means that either the cor-
responding property holds for one tuple, or for another tuple, 
etc. If we use the simplest max “or” operation, then the degree 
μ(y) to which y is a possible value of Y takes the following form:

This formula —first proposed by Zadeh— extends functions 
from real numbers to fuzzy inputs and is thus known as Zadeh’s 
extension principle (Klir & Yuan, 1995; Nguyen & Walker, 2006; 
Zadeh, 1965).

�(y) = max{min(�
1
(x

1
)...(�n(xn)):y = f (x

1
...xn)}.

Comment
In describing the degree of confidence μ(y), in principle, we 
can use a different “and” operation, e.g. the algebraic product 
f\(a, b)  = a ⋅ b.

However, we do not have much choice with the “or” opera-
tion. Indeed, if instead of f∨(a, b) = max (a, b), we use, e.g. the 
algebraic sum f∨(a, b) = a + b - a ⋅ b, then the “or” combination 
of infinitely many degrees will lead to a meaningless μ(y) = 1 
for all y.

Type-2 fuzzy sets and Z-numbers

The traditional [0; 1]-based fuzzy techniques are based on the 
implicit assumption that an expert can always describe his/her 
degree of confidence in a statement by a number. In practice, 
this may be difficult; an expert may be able to meaningfully 
distinguish between 7 and 8 on a 0 to 10 scale, but hardly any-
one can differentiate between, say 7.0 and 7.1 on this scale. In 
other words, instead of selecting a single number, an expert 
may be more comfortable selecting several numbers —maybe 
with the degree to which each of these numbers describes his/
her opinion.

So, for each value x, the expert describes, for each possible 
degree μ, a degree d(x, μ) to which μ is a reasonable degree of 
x being high. Thus, the degree μ(x) characterizing the expert’s 
opinion about the value x is no longer a number; it is itself a 
fuzzy set. Membership functions that assign such a fuzzy set to 
each value x are known as type-2 fuzzy set; see, e.g. (Mendel, 
2001; Mendel & Wu, 2010; Nguyen, Kreinovich, & Zuo, 1997).

Another generalization of the traditional fuzzy sets is related 
to the fact that experts are often not 100% confident in their 
degrees. So, in addition to eliciting a degree μ(x), it makes sense 
to also elicit the degree v(x) to which the expert is certain in his/
her evaluation. The corresponding pairs (μ(x), v(x)) is known 
as a Z-number, after L. Zadeh (Aliev, Huseynov, Aliyev, & 
Alizadeh, 2015; Zadeh, 2011).

Comment
Note that this is one possible definition of a Z-number; differ-
ent formalization of the original Zadeh’s idea of a Z-number 
may lead to slightly different definitions. For example, in 
(Lorkowski, Aliev, & Kreinovich, 2014), we used a single degree 
v(x) = const to describe the expert’s degree of confidence for 
all x. In this paper, we consider a more general definition, in 
which we allow the degrees v(x) to depend on x.

Main question: What is the relation between Z-numbers 
and type-2 fuzzy sets?

For both generalizations, instead of a single value μ(x), we have 
degrees describing to what extend different degrees are possi-
ble. In other words, while the meanings of two extensions are 
different, from the purely mathematical viewpoint, these two 
extensions seem similar. So what is the relation between the 
two extensions?

What we do in this paper?

In this paper, we explain the relation between Z-numbers and 
type-2 fuzzy sets. Specifically, we prove that if we apply data 
processing to Z-numbers, then we get type-2 fuzzy sets of a 
special type, —which we will call monotonic, and that, vice 
versa, every monotonic type-2 fuzzy set can be represented as 
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a result of applying some data processing algorithm to appro-
priate Z-numbers.

2.  The Result of Applying Data Processing to 
Z-Numbers is a Monotonic Type-2 Fuzzy Set

Need to consider the result of applying data processing to 
Z-numbers. In the usual Zadeh’s extension principle, when we 
apply the data processing algorithm y = f(x1 ... xn), we assume 
that for each i and for each possible value xi of the quantity Xi, 
we know the degree μi(xi) to which this value xi is possible.

In the Z-number case, in addition to each degree μi(xi), we 
also know the degree vi(xi) to which the expert is confident in 
the degree μi(xi). How will this additional information affect 
the result of data processing?

Need to consider “and” and “or” operations for 
Z-numbers

In our derivation of Zadeh’s extension principle, we used the 
“and” and “or” operations —namely, min and max. To extend 
Zadeh’s extension principle to Z-numbers, it is therefore nec-
essary to extend the usual “and” and “or” operations to Z 
numbers.

How to extend “and” operations to Z-numbers

Let us assume that the expert’s degree of confidence in a 
statement A is a and the expert’s degree of confidence in this 
estimate is va. Let us also assume that the expert’s degree of 
confidence in a statement B is b and the expert’s degree of 
confidence in this estimate is vb.

Then, the expert’s degree of confidence in a composite state-
ment A&B is f\(a, b). If we use the simplest possible “and” oper-
ation f\(a, b) = min (a, b), then this degree is equal to min (a; b).

What is the expert’s degree of confidence in the estimate 
min(a;b)? This estimate makes sense only if both estimates a 
and b make sense. In other words, an expert is confident in the 
combined estimate min(a; b) if the expert is confident in the 
estimate a and confident in estimate b. So, the expert’s degree of 
confidence in the combined estimate min(a; b) can be obtained 
by applying the “and” operation to the degrees of confidence va 
and μb in both estimates; f\(μa, μb). In particular, if we use the 
min “and” operation, we get the degree min (va, vb).

Comment
The degrees va and vb are usually viewed as subjective proba-
bilities, with the “and” operation f\(a, b) = a ⋅ b. In general, this 
is OK, but as we will see, the choice of the algebraic product 
“and” operation leads to meaningless 0 values for the results of 
data processing —similar to the fact that the use of the algebraic 
sum leads to meaningless 1 for the usual Zadeh’s extension 
principle. To avoid such meaningless values, in this paper, we 
use the min “and” operation.

How to extend “or” operations to Z-numbers

What about the “or” operation? What is the expert’s degree of 
confidence in the corresponding estimate f∨(a, b) = max (a, b)? 
At first glance, by analogy, it may seem that we get max (va, vb), 
but a more detailed analysis shows that this is a wrong formula. 
Indeed, an expert is confident in the combined estimate max(a; 
b) if the expert is confident in the estimate a and confident in 

estimate b. So, similar to the case of the “and” operations, the 
expert’s degree of confidence in the combined estimate min(a; 
b) can be obtained by applying the “and” operation to the 
degrees of confidence va and μb in both estimates; f\(μa, μb). In 
particular, if we use the min “and” operation, we get the degree 
min (va, vb) —the same degree as for the “and” operation.

Now, we are ready to describe a natural way to generalize 
Zadeh’s extension principle to Z-numbers.

How to generalize Zadeh’s extension principle to 
Z-numbers: Formulation of the problem

Let us now consider the case when all the inputs to a data 
processing algorithm y = f(x1 ... xn) are Z-numbers, i.e., that for 
each input i and for each possible value xi of the i-th quantity 
Xi, we know not only the expert’s degree of confidence μi(xi) 
that xi is a possible value of Xi, but also the expert’s degree of 
confidence vi(xi) in this estimate.

Based on this information, what can we say about the pos-
sible values y of the desired quantity Y?

How to generalize Zadeh’s extension principle to 
Z-numbers: Seemingly natural approach and its 
limitations

In line with the above description of “and” and “or” oper-
ations for Z-numbers, for each tuple x1  ...  xn for which 
y  =  f(x1  ...  xn), the resulting value y is possible with degree 
min (μ1(x1) ... μn(xn)), and the expert’s confidence in this esti-
mate is equal to min (v1(x1) ... vn(xn)).

In principle, we could do what we did when we derived 
Zadeh’s extension principle, and for each y, simply combine 
the estimates corresponding to all the tuples x1 ... xn for which 
y = f(x1 ... xn). As a result, we would get the same degree μ(y) as 
in the traditional [0; 1] based fuzzy case, but the problem is that 
the expert’s confidence in this estimate would then be equal to

Since some of the degrees vi(xi) may be very low, we will get 
the degree v(y) very low —or even equal to 0. This means that 
the expert’s confidence in the degree μ(y) is very low.

It makes no sense to produce an estimate μ(y) in which 
the expert is not confident at all. Thus, we need to modify our 
approach.

Comment
The above formula shows that to compute the v-degrees, we 
do not have much of a choice in selecting an “and” operation. 
Indeed, if instead of min, we use, e.g. the algebraic product 
“and” operation f\(a, b) = a  ⋅ b, then by taking the product 
of infinitely many degrees corresponding to infinitely many 
tuples, we will have a meaningless value μ(y) = 0 always, even 
if —as we propose in the following text —we do not consider 
tuples with small value vi(xi).

How to generalize Zadeh’s extension principle to 
Z-numbers: Analysis of the problem

We do not want to have an estimate with degree of confidence 
0. Let us therefore select the desired degree of confidence v > 0, 
and let us try to come up with an estimate μ(y) for which the 
expert’s degree of confidence μ(y) is at least as large as this 
threshold value: v(y) ≥ v.

v(y) = min{min(v
1
(x

1
)...(vn(xn)) : y = f (x

1
...xn)}.
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Monotonicity property

When the value ν increases, fewer and fewer tuples (x1 ... xn) 
satisfy the inequalities vi(xi) ≥ nu. Thus, the maximum in the 
definition of μv(y) is over a smaller set of values —and, is thus, 
in general, smaller. In other words, if v < v′, then �v(x) ≤ �

�

v(x).
In this paper, we will call type-2 fuzzy sets with this prop-

erty monotonic; a natural question. We started with a question 
of whether every type-2 fuzzy number can be represented as 
a result of applying data processing to Z-numbers. We have 
shown that this is not the case, by proving that a type-2 fuzzy 
numbers obtained as a result of applying data processing to 
Z-numbers is always monotonic.

A natural next question is; can every monotonic type-2 
fuzzy set be represented as a result of applying data process-
ing to Z-numbers? Our —positive —answer to this question 
is provided in the next section.

3.  Every Monotonic Type-2 Fuzzy Set can be 
Represented as a Result of Applying Data 
Processing to Z-Numbers

Definition 3. We say that a type-2 fuzzy number d(y,  μ) is 
monotonic if μ < μ′ implies d(y, μ) ≥ d(y, μ′).

Representation Theorem. Every monotonic type-2 
fuzzy set d(y, μ) can be represented as a result of applying an 
appropriate data processing algorithm y = f(x1 ... xn) to some 
Z-numbers X1 ... Xn.

Proof. Let us assume that we have a monotonic type-2 fuzzy 
set d(y, μ), where y takes all the values from some universal 
set, and μ ∊ [0, 1]. To construct the desired representation, we 
will take n = 1 and

Each element x1 ∊ U1 is thus a pair x1 = (x11, x12), where x11 ∊ U 
and x12  ∊  [0,  1]. Let us take the following data processing 
algorithm,

And let us take the following Z-number,

And

For this selection, since n = 1, the result f(X1) of applying the 
selected function f(X1) to the selected Z-number X1 takes the 
form

By our choice of the data processing function f(x1), the condi-
tion f(x1) = y means that x11 = y. Thus x1 = (x11, x12) = (y, x12). 
Similarly, the condition vi(xi) ≥ v means that x12 ≥ v, and the 
value μ1(x1) is equal to d(y, x12).

Hence, μv(y) is the maximum of all the values d(y, x12) cor-
responding to all possible values x12 ≥ v.

Since the type-2 fuzzy set is monotonic, the largest possi-
ble value μv(y) of d(y, x12) is attained when x12 is the smallest 
possible, i.e., when x12 = v. Therefore, this largest value μv(y) 
is equal to d(y, ν). Thus, indeed, the given monotonic type-2 
fuzzy set can be represented as the result f(X1) of applying the 
data processing algorithm f(x1) to the Z-number X1. The the-
orem is proven.

U
1
= U × [0, 1]

f (x
1
) = f ((x

11
, x

12
)) = x

11

�
1
(x

1
) = �

1
(x

11
, x

12
) = d(x

11
, x

12
),

v
1
(x

1
) = v

1
(x

11
, x

12
) = x

12
.

�v(y) = max{�
1
(x

1
) : f (x

1
) = y and v

1
(x

1
) ≥ v}

In other words, the minimum of the degrees of confidence 
corresponding to different tuples x1  ... xn must be at least 
μ. This is equivalent to saying that all these degrees of 
confidence must be at least μ. In other words, we should only 
consider tuples x1 ... xn for which min (v1(x1) ... vn(xn)) ≥ v. 
This inequality, in its turn, is equivalent to requiring 
that vi(xi) ≥ v for each i. Thus, we arrive at the following 
definition.

How to generalize Zadeh’s extension principle to 
Z-numbers: Result

Let us assume that for each input i and for each possible value xi 
of the ith quantity Xi we know the expert’s degree of confidence 
μi(xi) that xi is a possible value of Xi, and the expert’s degree of 
confidence vi(xi) in this estimate. Then, for each value v ∊ [0, 1], 
we compute

The function that assigns, to each v ∊ [0, 1], the correspond-
ing value μv(y), is the result of applying the data processing 
algorithm to Z-numbers —i.e., it is the desired extension of 
Zadeh’s extension principle to Z-numbers. Let us describe this 
in precise terms.

Definition 1. By a Z-number, we mean a mapping 
that  assigns, to every element x of a universal set, two 
numbers mu(x) and v(x) from the interval [0, 1]. We will 
say that;

μ(x) is the expert’s degree of confidence that x is a possible 
value, and
v(x) is the expert’s degree of confidence in the estimate μ(x).

Definition 2. Let F: U1 × ... × Un → U be a function, and for 
each i = 1 ... n let Xi be a Z-number defined on the universal set 
Ui. By the result f(X1 ... Xn) of applying the function f(x1 ... xn) 
to the Z-numbers X1 ... Xn, we mean a function that assigns, to 
each v ∊ [0, 1], the value

Comment
This is the desired extension of Zadeh’s extension principle to 
Z numbers.

In effect, the result of applying data processing to 
Z-numbers is a type-2 fuzzy set. Let us recall that we get a 
type-2 fuzzy set if instead of a single value μ(x), we get a function 
that assigns to each value μ ∊ [0, 1], a degree d(μ, x) ∊ [0, 1].

Here, we have exactly this situation; to each value v, we 
assign, a degree μv(x). Thus, from the purely mathematical 
viewpoint, the result of applying data processing to Z-numbers 
is a type-2 fuzzy set.

Can every type-2 fuzzy number be so represented?

We have shown that the result of applying data processing to 
Z-numbers is a type-2 fuzzy set. A natural question is; can every 
type-2 fuzzy number be thus represented?

In the following text, we will prove that this is not the case; 
namely, that the type-2 fuzzy sets, which are obtained as a result 
of applying data processing to Z-numbers have an additional 
property —that we will call monotonicity.

�v(y) = max{min(�
1
(x

1
)...�n(xn)):y = f (x

1
...xn)

and vi(xi) ≥ v for all i}

�v(y) = max{min(�
1
(x

1
)...�n(xn)):y = f (x

1
...xn)

and vi(xi) ≥ v for all i}.
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