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ABSTRACT
In this paper, we research the optimization problems with multiple Z-number valued objectives. 
First, we convert Z-numbers to classical fuzzy numbers to simplify the calculation. A new dominance 
relationship of two fuzzy numbers based on the lower limit of the possibility degree is proposed. Then 
according to this dominance relationship, we present a multi-objective evolutionary algorithm to 
solve the optimization problems. Finally, a simple example is used to demonstrate the validity of the 
suggested algorithm.

1. Introduction

Since 2011, the concept of Z-number has been introduced by L. 
A. Zadeh (2011); it has been widely used to describe the uncer-
tain phenomena in the real world. The researchers’ passion for 
studying Z-numbers has not been reduced. It is intuitive and 
adaptive to describe the uncertain information by Z-number 
in the decision problem. Based on the fact that the randomness 
occurs in optimization problems, Aliev et al. (2015) proposed 
the study of Z-number based linear programming (Z-LP) 
model to solve real world problems. Utilizing differential evo-
lution optimization and the arithmetic of Z-number intro-
duced by Aliev, Alizadeh and Huseynov (2015), they suggest 
the method of solving Z-LP problems. However, it is difficult to 
operate on two Z-numbers. A method of converting Z-number 
to classical fuzzy number is presented by Kang et al. (2012). 
In a multi-objective optimization problem, the degree of satis-
faction with the objective function values plays a significance 
role. Due to the different weights of the objective functions for 
the decision-maker, F. A. Lootsma (1997) points out that we 
can control the computational process by weighted degrees 
of satisfaction. A non-dominated sorting genetic algorithm II 
(NSGA-II) is provided by Deb et al. (2002). Specifically, that is 
a fast non-dominated sorting approach with presented com-
putational complexity. After that, Sun and Gong (2013) find 
a novel method of effectively solving interval multi-objective 
optimization problems (IMOPs). They give the definition of the 
lower limit of the possibility degree, which is used to describe 
a dominance relation of IMOPs. Then uses this dominance 
relationship to correct the sorting of NSGA-II, so as to obtain 
better results.

The paper is organized as follows: In the following Section, 
we will recall some related definitions and concepts and intro-
duce a method of converting a Z-number to a classical fuzzy 
number. In the third Section, we will present a new dominance 
relationship of two fuzzy numbers based on the lower limit 
of the possibility degree. Then, a multi-objective evolutionary 

algorithm to solve the optimization problems with multiple 
Z-number valued objectives will be studied. More details of 
the computing process will be given in a related example. 
Conclusions will be made in the final Section.

2. Preliminaries

A fuzzy set Ã on R is characterized by a membership function 
𝜇Ã:R → [0, 1]. For each fuzzy set,Ã the α-level set is denoted by [
Ã
]𝛼

=
{
x ∈ R:𝜇Ã(x) ≥ 𝛼

}
 or each � ∈ (0, 1]. [The support of Ã 

is defined as; supp
(
Ã
)
, where supp 

(
Ã
)
=
{
x ∈ R:𝜇Ã(x) > 0

}
].  

We denote the 0-level set as the closure of supp
(
Ã
)
, i.e., [

Ã
]0

= cl
(
supp

(
Ã
))
.

Definition 2.1 (Chang & Zadeh, 1996): A fuzzy set Ã is said 
to be a fuzzy number if the following conditions are satisfied:

(1)  ̃A is normal, i.e., there exists an x0 ∈ R such that 
𝜇Ã

(
x0
)
= 1;

(2)  ̃A is an upper semi-continuous function;
(3)  ̃A is convex,

i.e.,𝜇Ã

(
𝜆x1 + (1 − 𝜆)x2

) ≥ min
{
𝜇Ã

(
x1
)
,𝜇Ã

(
x2
)}

 for
all x1, x2 ∈ R and � ∈ (0, 1);

(4)   The 0-level set 
[
Ã
]0is compact.

As we all know the α-level sets of a fuzzy number Ã are 
non-empty bounded closed intervals for all � ∈ [0, 1]. Hence, 
we can write as 

[
Ã
]0

=
[
ÃL(𝛼), ÃR(𝛼)

]
. And let F be the set of 

all fuzzy numbers on R.
Notice that the real number a ∈ Rcan be embedded in F by 

defining a fuzzy number ã as;

Definition 2.2: Let Ã be a fuzzy number, if there is a x such that 
𝜇Ã

(
x
)
= 1, Ã is called a regular fuzzy number. In addition, a 

trapezoidal fuzzy number, denoted by Ã = ⟨a, b, c, d;1⟩, where 

𝜇ã(x) =

{
1, if x = a ;

0, otherwise.
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a ≤ b ≤ c ≤ d, has α-level 
[
Ã
]𝛼

=
[
a + 𝛼(b − a), d − 𝛼(d − c)

]
, 

� ∈ [0, 1]. And if b = c, we say that Ã is a triangular fuzzy num-
ber. If there is no x such that 𝜇Ã

(
x
)
= 1, Ã is called an irregular 

fuzzy number. Furthermore, an irregular trapezoidal fuzzy num-
ber Ã is represented by Ã = ⟨a, b, c, d;𝛼⟩, where α is the largest 
membership degree.

Using the extension principle by Zadeh (1975), we can 
respectively denote the addition and scalar multiplication of 
any two fuzzy numbers Ã and B̃ as follows:

And

for any x ∈ R and � ∈ R. On the other hand, we also can get the 
following expressions by the α-level set of the fuzzy numbers:
 

and

for all Ã, B̃ ∈ F, x ∈ R and � ∈ R.

Definition 2.3 (Zadeh, 2011): A Z-number has two components, 
denoted as Z =

(
Ã, B̃

)
, which describes a value of a real-valued 

uncertain variable X. The first component,Ã, is a restriction on X, 
which is allowed to take. The second component, B̃, is a measure 
of reliability of Ã. Let Z denote the set of all Z-numbers.

Definition 2.4: If the fuzzy numbersÃ and B̃ of a Z-number 
are discrete fuzzy numbers, we say that Z-number is a discrete 
Z-number. Similarly, if Ã and B̃ are continuous fuzzy numbers, 
we say that Z-number is a continuous Z-number.

Definition 2.5: LetZ =
(
Ã, B̃

)
 be a Z-number and � ∈ R, the sca-

lar multiplication�Z can be defined 𝜆Z = 𝜆
(
Ã, B̃

)
=
(
𝜆Ã, 𝜆B̃

)
.

Definition 2.6: Consider the following optimization problems 
with multiple Z-numbered valued objective functions:

(ZMOP) min f (X) =
(
f (1)(X), f (2)(X),… , f (r)(X)

)
 

where the objective functions f(k) f (k):Ω ∈ Rn
→ Z are Z-number 

value functions for k = 1,···, r, and Ω ∈ Rn is said to be the fea-
sible set.

Now we will introduce a method proposed by Deb et al. 
(2002) of converting a Z-number to a regular fuzzy number. Let 
Z =

(
Ã, B̃

)
 be a Z-number where Ã is a trapezoid fuzzy num-

ber and B̃ is a triangular fuzzy number. Furthermore, denoted 
𝜇Ã:T ⊆ R → [0, 1] and 𝜇B̃:T ⊆ R → [0, 1] are the membership 
functions of fuzzy number Ãand B̃, respectively. The detailed 
steps are as follows:

Step 1 Transform the second part of Z-number into a crisp 
number with the centroid method. Consider

(1)𝜇Ã+B̃(x) = sup
x1,x2:x1+x2=x

min
{
𝜇Ã

(
x1
)
,𝜇B̃

(
x2
)}

𝜇
𝜆×Ã(x) = 𝜇

𝜆Ã(x) =

{
𝜇

(
x

𝜆

)
, if 𝜆 ≠ 0 ;

0, if𝜆 = 0 .

(2)
[
Ã + B̃

]𝛼
=
[
Ã
]𝛼

+
[
B̃
]𝛼

=
[
ÃL(𝛼) + B̃L(𝛼), ÃR(𝛼) + B̃R(𝛼)

]

�
𝜆Ã

�𝛼
= 𝜆

�
Ã
�𝛼

=

⎧⎪⎨⎪⎩

�
𝜆ÃL(𝛼), 𝜆ÃR(𝛼)

�
, if 𝜆 > 0 ,

{0}if𝜆 = 0 ,�
𝜆ÃR(𝛼), 𝜆ÃL(𝛼)

�
, if 𝜆 < 0 ,

subject toX ∈ Ω

where R denotes an algebraic integration.
Step 2 Impose the weight of the second part of Z-number upon 
the first part. The weighted Z-number can be defined by Zα and 
its membership function is 𝜇Ã𝛼 (x) such that 𝜇Ã𝛼 (x) = 𝛼𝜇Ã(x) 
for x ∊ T.
Step 3 Convert the irregular fuzzy number to a regular fuzzy 
number. The converted regular fuzzy number is;

It is noteworthy that a Z-number Z has a corresponding regular 
fuzzy numberZ̃ by the above method.

3. Multi-objective Evolutionary Algorithm

We need to solve the problem of comparing two Z-numbers 
in the process of solving ZMOP. There is a ranking method 
of discrete Z-numbers in (Aliev & Huseynov, 2014). In this 
section, we will suggest an approach to ranking of continu-
ous Z-numbers, then introduce a multi-objective evolution-
ary algorithm (MOEA) to solve ZMOP. It is well known that 
directly comparing Z-numbers is very complex, we can convert 
a Z-number to a regular fuzzy number in the first place. Then 
we define a new relationship of two fuzzy numbers.

Definition 3.1: Let Ãand B̃ be fuzzy numbers, we denote w
(
Ã
)

and w
(
B̃
)
 respectively are the width of 

[
Ã
]𝛼

=
[
ÃL(𝛼), ÃR(𝛼)

]
 and [

B̃
]𝛼

=
[
B̃L(𝛼), B̃R(𝛼)

]
, i.e.,

For each � ∈ [0, 1]. We say thatp
(
Ã ≽ B̃

)
 is a possibility degree 

of Ã ≽ B̃, where

Proposition 1 p
(
Ã ≽ B̃

)
+ p

(
⊖B̃ ≽ Ã

)
= 1.

Definition 3.2 (Sun & Gong, 2013): We say that γ is the 
lower limit of the possibility degree of if p

(
Ã ≽ B̃

)
 and only if 

p
(
Ã ≽ B̃

) ≥ 𝛾, where γ ∈ [0.5, 1]. That is to say, Ã is larger than 
or equal to B̃ with the possibility degree not less than γ.
The lower limit of the possibility degree makes the comparison 
of fuzzy numbers more flexible and elaborate, and it overcomes 
the shortcoming that two fuzzy numbers cannot be compara-
ble. Appropriately increasing the value of γ can make Ã is larger 
than or equal to B̃ more credible.

Definition 3.3 (Sun & Gong, 2013): Let X1 and X2 be two dif-
ferent solutions, we say that X1 dominates X2 with the possibility 
degree not less than γ if and only if for all i ∈ {1, 2,… , r} we 
have p

(
f (i)

(
X2

)
≽ f (i)

(
X1

)) ≥ 𝛾 and there is a k ∈ {1, 2,… , r}
such that p

(
f (i)

(
X2

)
≽ f (i)

(
X1

))
> 0.5 , denoted as X1 ≺γ X2. If 

neither X1 nor X2 mutually dominates with the possibility degree 
not less than γ, then X1 and X2 are non-dominated with the 
possibility degree not less than γ, denoted as X1||

�
 X2.

Definition 3.4: Let Z1, Z2 ∈ () and Z̃1, Z̃2 are respectively the
corresponding regular fuzzy numbers by the method by Deb  

(3)𝛼 =
∫ x𝜇B̃(x)dx

∫ 𝜇B̃(x)dx
,

(4).𝜇Z̃(x) = 𝜇Ã

�
x√
𝛼

�
, x ∈

√
𝛼T .

w
(
Ã
)
= ÃR(𝛼) − ÃL(𝛼),w

(
B̃
)
= B̃R(𝛼) − B̃L(𝛼),

p
(
Ã ≽ B̃

)
= ∫

1

0

max

{
1 −max

{
B̃R(𝛼) − ÃL(𝛼)

w
(
Ã
)
+ w

(
B̃
) , 0

}
, 0

}
d𝛼
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et al. (2002). If Z̃1 ≺𝛾
Z̃2, we say that Z1 ≺γ Z2; and if Z̃1||𝛾 Z̃2 , 

we say that Z1||�Z2 .

Definition 3.5 (Sun & Gong, 2013): Let X∗

�
 be a feasible solution 

of (ZMOP), i.e., X∗

�
∈ Ω. We say that X∗

�
 is a γ-Pareto optimal 

solution of (ZMOP), if there exists no X ∊ Ω such that X ≺
𝛾
X∗

𝛾
;  

the set of all γ-Pareto optimal solutions is called a γ-Pareto opti-
mal set, denoted by γ-PS(f).

Theorem 3.1 (Sun & Gong, 2013): Let γ1,γ2 ∈ [0.5,1], if γ1≥γ2, 
then X∗

𝛾2
⊆ X∗

𝛾1
.

The MOEA based on the lower limit of the possibility 
degree is obtained by associating the dominant relationship 
with NSGA-II in (Chang & Zadeh, 1996). The main idea is 
as follows: First we realize the population evolves by using 
the canonical form of NSGA-II. Then, substituting the dom-
inant relationship based on the lower limit of the possibil-
ity degree for the traditional Pareto dominant relationship. 
When we compare different evolutionary individuals, we can 
get non-dominated solutions with different order values. The 
detailed process is as follows:

Step 1 Initialize a species P(0), which size is N. Set evolution-
ary generation t = 0 and set the lower limit of the possibility 
degree γ.

Step 2 In order to obtain progeny population Q(t) of the same 
magnitude, we need the tournament of size 2 for genetic 
manipulations (selection, crossover and mutation).

Step 3 Use symbol R(t) to represent the result of combining 
P(t) with Q(t).

Step 4 Sort the individual in the population R(t) by the pro-
posed dominance relation based on the lower limit of the possi-
bility degree. Calculate the crowded degree of individuals with 
the same ranking value.

Step 5 Select the dominance of top N individuals to constitute 
the next generation of populationP(t + 1).

Step 6 Judge whether the termination condition is met. If yes, 
put out the feasible solution X∗

�
. If not, let t =  t + 1, and go 

back to step 2.
Example 3.1 Let us consider the following optimization 
problem:

where

min f
(
x1, x2

)
=
(
f (1)

(
x1, x2

)
, f (2)

(
x1, x2

))

subject to x1, x2 ≥ 0,
.

f (1)
(
x1, x2

)
= (Z1x1 + Z2)

2 + (Z1x2 + Z3)
2;

f (2)
(
x1, x2

)
= (Z1x1 + Z3)

2 + (Z1x2 + Z4)
2,

Let Z1 =
(
Ã1, B̃1

)
, Z2 =

(
Ã2, B̃2

)
, Z3 =

(
Ã3, B̃3

)
and 

Z4 =
(
Ã4, B̃4

)
, where

Apparently Ã1, Ã2, Ã3 and Ã4 are trapezoid fuzzy numbers, B̃1, 

B̃2, B̃3 and B̃4 are triangular fuzzy numbers.
To simplify the calculation, we convert Z-numbers into regu-

lar fuzzy numbers. At the first step, we should convert the second 
part into a crisp number by (3)

At the second step, add the weighted of the second part to the first 
part.

At the last step, from (4), we convert the irregular fuzzy number 
to a regular fuzzy number.

It is easy to get Z̃1 = 1̃. Therefore, in order to find the feasible 
solution, the objective functions can be converted to the following 
form on the basis of Definition 3.4:

Apparently, we can use the MOEA to search for the feasible 
solution of optimization problems with fuzzy numbers. We set 
the lower limit of the possibility degree γ = 0.8. In conclusion, 
the 0.8-Pareto optimal solution (4.0021, 5.9999) is obtained by 
MOEA.

4. Conclusion

When humans communicate information, Z-numbers can be 
vivid to describe uncertain information. There are some works 
on optimization problems based on Z-numbers. Considering 
the fact that calculating Z-numbers is complex, in this paper, 
we have introduced a method of converting a Z-number to a 
fuzzy number. Then, we presented a new relationship of two 
fuzzy numbers based on the lower limit of the possibility degree 
combined with NSGA-II to propose MOEA to solve optimiza-
tion problems. An example provided in the paper has shown 
validity of the suggested arithmetic.

Ã1 = 1̃, B̃1 = 1̃;

Ã2 = ⟨−4.4689,−2.2388,−2.2337, 0; 1⟩, B̃2 = ⟨0, 0.2, 0.4; 1⟩;
Ã3 = ⟨−5.4776,−3.6555,−3.6544,−1.8275; 1⟩, B̃3 = ⟨0.1, 0.3, 0.5; 1⟩;
Ã4 = ⟨−5.1632,−3.8710,−3.8700,−2.5825; 1⟩, B̃4 = ⟨0.5, 0.6, 0.7; 1⟩.

𝛼
2
=

∫ x𝜇
B̃
2

(x)dx

∫ 𝜇
B̃
2

(x)dx
= 0.2, 𝛼

3
=

∫ x𝜇
B̃
3

(x)dx

∫ 𝜇
B̃
3

(x)dx
= 0.3,

𝛼
4
=

∫ x𝜇
B̃
4

(x)dx

∫ 𝜇
B̃
4

(x)dx
= 0.6

Z�

2 = ⟨−4.4689,−2.2388,−2.2337, 0; 0.2⟩,
Z�

3 = ⟨−5.4776,−3.6555,−3.6544,−1.8275; 0.3⟩,
Z�

4 = ⟨−5.1632,−3.8710,−3.8700,−2.5825; 0.6⟩.

Z̃2 =

�
−4.4689 ×

√
0.2,−2.2388 ×

√
0.2,−2.2337 ×

√
0.2, 0 ×

√
0.2; 1

�

= ⟨−1.9985,−1.0012,−0.9989, 0; 1⟩;
Z̃3 =

�
−5.4776 ×

√
0.3,−3.6555 ×

√
0.3,−3.6544 ×

√
0.3,−1.8275 ×

√
0.3; 1

�

= ⟨−3.0001,−2.0021,−2.0015,−1.0009; 1⟩;
Z̃4 =

�
−5.1632 ×

√
0.6,−3.8710 ×

√
0.6,−3.8700 ×

√
0.6,−2.5825 ×

√
0.6; 1

�

= ⟨−3.9994,−2.9985,−2.9977,−2.0004; 1⟩.

f (1)
(
x1, x2

)
= (Z̃1x1 + Z̃2)

2 + (Z̃1x2 + Z̃3)
2;

f (2)
(
x1, x2

)
= (Z̃1x1 + Z̃3)

2 + (Z̃1x2 + Z̃4)
2.
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