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ABSTRACT
This paper considers the problem of scheduling n independent jobs in g-stage hybrid flow shop 
environment. To address the realistic assumptions of the proposed problem, two additional traits 
were added to the scheduling problem. These include setup times, and the consideration of maximum 
completion time together with total tardiness as objective function. The problem is to determine 
a schedule that minimizes a convex combination of objectives. A procedure based on hybrid the 
simulated annealing; genetic algorithm and local search so-called HSA-GA-LS are proposed to handle 
this problem approximately. The performance of the proposed algorithm is compared with a genetic 
algorithm proposed in the literature on a set of test problems. Several performance measures are 
applied to evaluate the effectiveness and efficiency of the proposed algorithm in finding a good quality 
schedule. From the results obtained, it can be seen that the proposed method is efficient and effective.

1. Introduction

Scheduling is an important tool for manufacturing and engi-
neering, where it can have a major impact on the productivity of 
a process. One of the most applied and recognized scheduling 
problem is hybrid flow shops (HFS), in which each job has to 
go through multiple stages with parallel machines instead of a 
single machine. The parallel machines at each stage are added 
for the objective of increasing productivity as well as flexibility. 
Ruiz and Vázquez-Rodríguez (2010) described the HFS prob-
lem in its “standard” form. This paper investigates an HFS prob-
lem in standard form with an additional feature to include setup 
times. The importance and applications of scheduling models 
with explicit considerations of setup times (costs) have been 
discussed in several studies (i.e. Andrés, Albarracı́n, Tormo, 
Vicens, & Garcı́a-Sabater, 2005; Chang, Hsieh, & Wang, 2003). 
The setup times considered in this problem are classified into 
two types: (1) sequence-independent setup time (SIST); and (2) 
sequence-dependent setup times (SDST) (Naderi, Zandieh, & 
Roshanaei, 2008). Allahverdi, Gupta, and Aldowaisan (1999), 
Allahverdi, Ng, Cheng, and Kovalyov (2008) provided a com-
prehensive review of the literature on scheduling problems 
involving setup times (costs). Also, Jungwattanakit, Reodecha, 
Chaovalitwongse, and Werner (2008) and Kurz and Askin 
(2003) introduced the mathematical model of the HFS prob-
lem with sequence-dependent setup times.

The aim of scheduling is to assign jobs to the machines at the 
corresponding stages and determine the processing sequences 
on the machines so that one or some selected objectives are 
optimized. According to just-in-time concept, production 
managers should consider more than one criterion in sched-
uling problems. Therefore, simultaneous minimization of two 
conflicted objective functions that are maximum comple-
tion time (makespan or Cmax) and total tardiness (T̄). In fact, 
minimizing the makespan and the total tardiness will lead to 

increase internal and external efficiency respectively. The prob-
lem is configured as a bi-objective model, which is a sub-class 
of the multi-objective models.

The HFS scheduling problem is a strongly NP-hard prob-
lem (Ruiz & Maroto, 2006). In the literature of multi-objective 
HFS scheduling problem, different approaches of heuristics 
and meta-heuristics have been applied to solve these problems. 
Two types of solution methods are prevalent in scheduling: (1) 
develop a solution method that searches a set of non-domi-
nated solutions; (2) develop a solution method to find a good 
quality schedule for convex sum of objectives. In the former, 
the set of Pareto optimal (or efficient) solutions is generated 
for the decision-maker, who then selects the most preferred 
among the alternatives. The inconveniences here are that the 
generation process is usually computationally expensive and 
sometimes in part, at least, difficult. On the other hand, it is 
hard for the decision-maker to select from a large set of alterna-
tives. In the latter, a good quality schedule is generated for the 
decision-maker. Therefore, the aim of this paper is to develop 
a solution method for the proposed problem to find a good 
quality schedule. Now, some related research briefly reviewed.

Jungwattanakit et al. (2008), Jungwattanakit, Reodecha, 
Chaovalitwongse, and Werner (2009) considered the flexi-
ble flow shop with unrelated parallel machines and sequence 
- and machine -dependent setup times, release date and due 
date constraints to minimize a convex sum of makespan and 
the number of tardy jobs. They proposed the genetic algorithm 
(GA), simulated annealing (SA) and tabu search (TS) to find 
the near-optimal schedule for the problem. Davoudpour and 
Ashrafi (2009) considered the SDST HFS problems with iden-
tical parallel machines, and release date to minimize a weighted 
sum earliness, tardiness and completion time of jobs. They pro-
posed a greedy randomized adaptive search procedure to solve 
this problem. Mousavi, Zandieh, and Yazdani (2012) considered 
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the problem of scheduling n independent jobs in HFS environ-
ment with SDST to minimize the makespan and total tardiness. 
They developed a meta-heuristic based on SA/local search along 
with some basic improvement procedures to minimize convex 
combination of the makespan and total tardiness. Pargar and 
Zandieh (2012) investigated the HFS problems with SDST and 
learning effect of setup times for minimizing weighted sum of 
makespan and total tardiness. They proposed a novel meta-heu-
ristic approach called water flow-like algorithm. Sheikh (2013) 
investigated a multi-objective flexible flow shop scheduling 
problem with limited time lag between stages and due win-
dows. They formulated the problem by a mixed integer linear 
programming model with the objectives of maximizing the total 
profit gained from scheduled jobs and minimizing deviation 
from the due date. A GA procedure designed to solve this model 
efficiently. Tadayon and Salmasi (2013) investigated group 
scheduling in the flexible flow shop scheduling problem with 
release time and eligibility. They considered objectives as the 
minimization of the sum of the completion time of groups and 
the minimization of sum of the differences between the comple-
tion time of jobs and the delivery time of the group containing 
that job. A mathematical model and several meta-heuristic algo-
rithms based on the particle swarm optimization (PSO) algo-
rithm proposed to heuristically solve the problem. Behnamian 
and Zandieh (2013) proposed a novel hybrid meta-heuristic 
that hybridized the PSO, SA and variable neighborhood search 
(VNS) to solve the HFS scheduling with SDST and position-de-
pendent learning effects. They considered objectives as tardiness 
and earliness penalties as objective function.

It can be seen that the GA and SA have been used in many 
studies to solve the HFS scheduling. According to the best of 
our knowledge, a method based on a hybrid of GA and SA 
has never been investigated in bi-objective HFS with SDST 
scheduling problems in the literature up to now. In this paper, 
a hybrid of GA proposed by Jungwattanakit et al. (2008), SA 
proposed by Mousavi et al. (2012) and local search is pro-
posed to solve scheduling problem. The proposed algorithm 
and the details of it are explained in Section 2. The rest of the 
paper is organized as follows: Section 3 presents the computa-
tional results and numerical comparisons. Finally, Section 4 is 
devoted to conclusion and future works.

2. Proposed Hybrid Genetic Simulated Annealing

2.1. Genetic Algorithm and Simulated Annealing

A genetic algorithm developed by Holland (1975) is an iterative 
heuristic based on Darwin’s evolutionary theory about “sur-
vival of the fittest and natural selection.” Genetic algorithms are 
efficient, flexible, “intelligent” probabilistic search algorithms. 
They mimic the evolution process of biological organisms in 
nature. Genetic algorithms simulate the evolution process by 
generating an initial population of individuals (called chromo-
somes) and applying genetic operators on the fittest of those 
individuals in each reproduction cycle. A chromosome is repre-
sented by a string of numbers called genes. Each chromosome 
in the population is evaluated according to some fitness meas-
ure. Certain pairs of chromosomes (parents) are selected on the 
basis of their fitness. Each of these pairs combines to produce 
new chromosomes (offspring) and some of the offspring are 
modified. A new population is then formed replacing some of 
the original population by an identical number of offspring.

Simulated annealing is introduced to combinational opti-
mization by Kirkpatrick (1983) in 1982. Simulated annealing 

is a neighborhood search approach designed to obtain a 
global optimum solution for combinatorial optimization 
problem. Simulated annealing starts with an initial solution 
and iteratively moves towards other existing solutions, while 
remembering the best solution found so far. In order to reduce 
the probability of getting trapped in local optima, simulated 
annealing accepts moves to inferior neighboring solution 
under the control of randomized scheme. More precisely, if a 
move from current solution S to another inferior neighboring 
solution S* results in a change ∆E = f(S*)–f(S) in the objective 
function value, the move is still accepted if R < exp (–∆E/T), 
where T is a control parameter, called temperature, and R is a 
uniform random number between interval (0, 1). Initially, the 
temperature T is high enough permitting many deteriorative 
moves to be accepted and it is lowered at a low speed of rate to 
a value so that inferior moves are approximately rejected. This 
algorithm investigates possible neighbors in each temperature 
sequentially and slowly in order to find the best solution.

2.2. The Proposed Algorithm

The proposed algorithm must seek to obtain effective and 
acceptable convex combination of objectives through the 
implementation of a simple method. Therefore, for  solutionx, 
the total objective function is given by Equation (1):
 

where � values are the weighting coefficients representing the 
relative importance of makespan and the total tardiness

The proposed algorithm is structurally similar to the basic 
simulated annealing and genetic algorithm, but additional fea-
tures have been proposed in the structure of algorithms. Now, 
the particular features of the proposed algorithm are described. 
In the initial simulated annealing, just a specific neighbor-
hood search structure (NSS) used to generate a neighborhood 
solution. The NSS remains constant during the execution of 
algorithm. In this paper suggested to NSS will be randomly 
selected from among several different structures at each iter-
ation procedure. This technique also has been proposed to 
generate offspring solutions through genetic operators. The 
important question can be expressed as follows: Why are sev-
eral neighborhood search structure, crossover and mutation 
operators introduced to select among alternatives randomly 
in each generation?

In response to this question, the main reason of the applica-
tion of this approach is that the algorithm is able to guide the 
search to another promising region through the types of moves 
(The algorithm is able to consider different search directions 
with the type of moves). This means that the features of several 
alternatives are applied to search space. Therefore, the perfor-
mance of algorithm with cited characteristic can be better. This 
corresponded to the concept of the diversification.

Although the genetic algorithm has gained many applica-
tions, it is reported that the traditional genetic algorithm often 
suffers from the trouble of premature convergence. The pro-
posed technique will help to avoid the premature convergence 
by the irregular selection among several alternatives.

The second feature is fitness function used in GA and SA. 
To prevail over the trap of dealing with different measure-
ment sizes of objective values, we normalize the value of each 

(1)
Total Objective Function = Minimizing f (x)

f (x) = � × f1(x) + (1 − �) × f2(x)

f1(x) = makespan f2(x) = total tardiness 0 ≤ � ≤ 1
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objective function by divided the minimum objectives with 
the actual objectives value. The normalized objectives can be 
obtained by Equation (2):

f1 and f2 are the lowest observed of makespan and total tar-
diness values respectively, which can be updated after each 
iteration, therefore, the function of GA and SA are chosen from 
Equation (3):

The third feature is the improvement step that performed on 
the accepted solution in SA. The last feature is local search in 
the end of proposed algorithm. In this section, two local search 
procedures are applied on best solution archived to improve 
the final solution.

2.3. The Structure of the Proposed Algorithm

Encoding
A scheme using integers is applied to display a solution. For 

example, one solution of a hypothetical problem with five jobs 
as [3 1 2 5 4] denotes that job 3 is processed first, and then job 
1, job 2, job 5, job 4 are processed successively. For determining 
the order of jobs, from the second stage to next, the first in first 
out (FIFO) rule has been used.
Initialization

•  Input parameters: Initial temperature (T0); Final tem-
perature (Tf); Number of stages for reach of T0 to Tf 
(N); The weighting coefficients (λ ∊  {0.25, 0.5, 0.75}); 
Number of initial population (np); Probability of cross-
over (Pc); Probability of mutation (Pm); Probability of 
reproduction (Pr).

•  Initialize an initial population randomly
•  Evaluate f1(xi) and f2(xi): Where f1(xi) is the makespan, 

f2(xi) is the total tardiness of solution ith in population.
•  Set T = T0; it = 1; q = 1; Archive(q) = {best solution in 

population}; f1 = min { f1(xi) i = 1, 2, .., np}, f2 = min { 
f2(xi) i = 1, 2, …, np}.

While T > Tf
% Start parallel simulated annealing in temperature T
For i = 1: np

Step 1: yi = Move xi by considering random integer so-called 
K in the range 1 to 4;

(i)  Perform the swap moves (K = 1), random insertion 
scheme (K = 2), inversion moves (K = 3) or shift moves 
(K = 4) (Prandtstetter & Raidl, 2007) on xi.

(ii)  Evaluate f1(yi) and f2(yi) new solutions in the neigh-
borhood of xi.

(iii)  Update f1 and f2 as f1 = min {f1, f1(yi)}, f2 = min { f2, f2(yi)}.

Step 2: Calculate fSA and ∆Ei as follows:

fSA(xi) =
[
� ×

f1

f1(xi)
+ (1 − �) ×

f2

f2(xi)

]−1 and 

fSA(yi) =
[
� ×

f1

f1(yi)
+ (1 − �) ×

f2

f2(yi)

]−1

∆Ei = fSA(yi) - fSA(xi)

(2)f �1 (x) =
f1

f1(x)
and f �2 (x) =

f2
f2(x)

(3)

{
f �(x) =

[
� × f �1 (x) + (1 − �) × f �2 (x)

]−1
Used in SA

f �(x) =
[
� × f �1 (x) + (1 − �) × f �2 (x)

]
Used in GA

Step 3: Decision-making;
If ∆Ei < 0 Then %we accept the new solution
q = q + 1; Archive(q) = { yi }; xi = yi;
Else %we accept the new solution with a certain probability
If random<exp (–∆Ei /T) Then
xi = yi;
Endif
Endif

Step 4: Improvement of accepted solution in previous step 
as follows:

 (i)  Generate (n-g) new solutions (called zj) in the neigh-
borhood of xi with NSS in step 1.

 (ii)  Evaluate f1(zj) and f2(zj) new solutions in the neigh-
borhood of xi.

(iii)  Update f1 and f2 as f1 = min {f1, f1(zj); j = 1, 2, .., n-g}, 
f2 = min { f2, f2(zj) j = 1, 2, ..., n-g}.

(vi)  Accept solution with minimal fSA(zj); q = q + 1; 
Archive(q) = {zj}; xi = zj;

End for
% Start genetic algorithm in temperature T

Step 1: Calculate the fGA and prob of solutions in population 
as follows:

Step 2: Crossover operator

 (i)  Select np × Pc pairs of parents based on roulette wheel 
selection;

 (ii)  Choose randomly integer number (K) in the range 1 
to 5, and

(iii)  Generate an offspring of 1PX (if K = 1), OPX (if K = 
2), CX (if K = 3), OBX (if K = 4) or PBX (if K = 5).

Step 3: Mutation operator

 (i)  Select np × Pm chromosome based on purely random 
selection.

 (ii)  Choose randomly integer number (K), in the range 
1 to 4, and

(iii)  Perform the swap moves (K = 1), random insertion 
scheme (K = 2), inversion moves (K = 3) or shift 
moves (K = 4) on chromosome.

Step 4: Reproduction
Select np × Pr solutions from current population based on elitist 
selection.

Step 5: Replacement

 (i)  Combine solutions obtained from the previous steps 
(include steps 2, 3 and 4) as new population.

 (ii)  Evaluate f1(xi) and f2(xi) solutions in the population.
(iii)  Update f1 and f2 as f1=min {f1, f1(xi) i = 1, 2, .., np}, f2 = 

min { f2, f2(xi) i = 1, 2, .., np}.

T = temperature reduction by a linear schedule
Endwhile

fSA(zj) =

[
� ×

f1
f1(zj)

+ (1 − �) ×
f2

f2(zj)

]−1

j = 1, 2, ..., n − g

fGA(xi) =

[
� ×

f1
f1(xi)

+ (1 − �) ×
f2

f2(xi)

]
i = 1, ..., np

prob(xi) =
fGA(xi)

np∑
i=1

fGA(xi)

i = 1, ..., np
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The objectives are not normalized in second metric. 
Consequently, this criterion is sensitive to increase and decrease 
in objective function with a larger value. Lower values for these 
metrics (M1 and M2) represent better solution.

The decision-makers require schedules with respect to the 
trade-off between the various objectives. Figure 1 presents 
the acceptable trade-off between the objectives by angle (α). 
The angle of the solution (x), called M3 is computed as given 
in Equation (6). According to this metric, M3 in the interval 
35 to 55 (45 ± 10) degrees is proper.

This metric can be justified as follows:
A multi-objective optimization problem (MOP) differs from 

a single-objective optimization problem, because it contains 
several objectives that require optimization. A suitable solution 
should provide acceptable performance for all objectives. If 
there is a solution just along an individual axis (in one corner 
of the solution space), it won’t be appropriate, because this 
solution is suitable only for an objective (similar to a single 
objective problem). This means that angles near zero and 90 
degrees are not suitable in bi-objective problem. It is better to 
have solutions away from the angles 0 and 90. Note tolerance 
(10) can be any number from 0 to 45.

The hope of decision-makers is to find schedules close to the 
ideal point (0, 0). For this reason, the obtained solutions should 
converge towards the ideal point. Figure 2 represents conver-
gence to the ideal point by distance. The distance between 
ideal point and the solution x, called M4 is computed as given 
in Equation (7). Lower values of the fourth metric represent 
better solution.

(5)M2 =
[
� × f1(x) + (1 − �) × f2(x)

]

(6)M3 = arctan
⎛
⎜⎜⎝

f2(x)

f2

f1(x)

f1

⎞
⎟⎟⎠

(7)M4 =

√(
f1(x)

f1

)2

+

(
f2(x)

f2

)2

Local Search: The best solution in the archive (solution cor-
responding with minimal f(x)) is now subjected to two local 
search schemes, namely, neighborhood swapping (Prandtstetter 
& Raidl, 2007) and random insertion perturbation scheme 
(RIPS) (Prandtstetter & Raidl, 2007). Then, solution with min-
imal f(x) is selected.

3. Computational Experiments

This section contains the method of generating data sets and 
run these data sets by proposed algorithm, and algorithm in 
the literature, performance criteria, and then expressing the 
results of the efficiency of the proposed algorithm.

3.1. Generation of a Test Problem

The numerical data should be created to test the performance 
of the algorithm. Data required for a problem consist of the 
range of processing times, range of setup times, number of 
stages (g), number of jobs (n), range in number of machines per 
stage and range of due date. Processing times are distributed 
uniformly over two ranges with a mean of 60: [50–70] and 
[20–100]. The setup times are uniformly distributed from 12 to 
24, which are 20% to 40% of the mean of the processing time. 
We used problems with 15 jobs × 5 stages, 25 jobs × 10 stages, 
and 40 jobs × 20 stages. Numbers of machines are distributed 
uniformly over two ranges [1–4] and [1–10]. Due dates can be 
generated from a composite uniform distribution based on R 
and τ; with probability τ the due date is uniformly distributed 
over the interval [d̄, d̄ + (Cmax − d̄)R] and with probability 
(1–τ) over the interval [d̄, d̄ + (Cmax − d̄)R], where τ and R 
are two parameters called the tardiness factor (𝜏 = 1 − d̄∕Cmax) 
and the due date range (R = (dmax − dmin)∕Cmax), respectively. It 
should be noted that dmax, dmin and d̄ are maximum, minimum 
and average due date, respectively.

Values of τ close to 1 indicate that the due dates are tight, 
and values close to 0 indicate that the due dates are loose. A 
high value of R indicates a wide range of due dates, whereas a 
low value indicates a narrow range of due dates (Eren & Güner, 
2008). The values of τ and R are taken as 0.2, 0.5 and 0.8. For 
each problem structure, data based on five different τ and R 
combinations are used: (0.2, 0.2), (0.2, 0.8), (0.5, 0.5), (0.8, 0.2), 
(0.8, 0.8).

3.2. Performance Criteria

The use of performance measures (or metrics) allows a 
researcher to assess (in a quantitative way) the performance of 
their algorithms. In this paper, four metrics are used to evaluate 
the quality of solutions. The metrics applied in this paper are  
described as follows:

The first and second metrics is computed a convex combi-
nation of objective functions. In fact, one of the views of deci-
sion-makers is to minimize a convex combination of objective 
functions. The definitions of the metrics are given as follows:

f (x) =

[
� ×

f1
f1(x)

+ (1 − �) ×
f2

f2(x)

]−1

(4)M1 =

[
� ×

f1
f1(x)

+ (1 − �) ×
f2

f2(x)

]−1

α

Figure 1. A Range of Angle as Acceptable trade-off Between the two objectives.

Figure 2. A Hypothetical example of Distance.
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of RAM memory. To show the efficiency and effectiveness of 
the proposed algorithm in comparison with a GA, computa-
tional experiments were done on various test problems. The 
three replications for each problem size have been performed 
since there are some random conditions when applying the 
algorithm. The following parameters value has been used in 
tests: Initial temperature (T0): 2.9; Final temperature (Tf): 0.05; 
Number of stages for reach of T0 to Tf (N): 55; Number of 
initial population (np): 30; Probability of crossover (Pc): 0.80; 
Probability of mutation (Pm): 0.10; Probability of reproduction 
(Pr): 0.10. It is noted that these parameters are set according to 
Jungwattanakit et al. (2008) and Mousavi et al. (2012).

Time cost is an important factor when comparing different 
algorithms. In this paper, the running time for each problem 
is recorded by HSA-GA-LS. Then, these computational times 
are used in the GA as stopping criterion. Therefore, CPU time 
is almost the same for both algorithms (Figure 3).

Tables 1–3 represent the values of the four metrics for var-
ious problems. Based on the results of given in Tables, the 
following observations can be made. Due to M1, M2 and M4 
metrics, the proposed algorithm is able to outperform other 
algorithm on all problems. Due to M3 metric, two algorithms 

Note the third and fourth metrics are complementary met-
rics. A solution is appropriate when results from both metrics 
are acceptable (close to the origin and with the desired angle).

3.3. Numerical Result

In this paper, a hybrid algorithm of GA (Jungwattanakit et al., 
2008), SA (Mousavi et al., 2012) and local search is proposed to 
solve a scheduling problem. The aim is that the benefits of both 
effective algorithms are applied in the design of the proposed 
algorithm. The performance of the proposed HSA-GA-LS is 
compared with genetic algorithm proposed by Jungwattanakit 
et al. (2008). Now, the reasons of this choice are explained. 
According to the literature review, a variety of heuristics and 
meta-heuristics have been applied to find a convex combina-
tion of objectives. It is well known that algorithms are charac-
terized by a parallel search (i.e. GA, PSO) or a point-by-point 
search (i.e. SA, TS) of the state space. In this research, method is 
proposed to handle problem by a parallel search. Consequently, 
a GA is selected to search space similar to HAS-GA-LS. It is 
noticeable that all of algorithms are implemented in MATLAB 
2009a and run on a PC with 2.30 GHz Intel Core and 4 GB 

Figure 3. the Computational times of HAS-gA-lS and gA.

Table 1. Results of metrics for λ = 0.25 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.5693 0.6383 44.2437 1.4145 0.5951 0.6710 47.2922 1.4932
0.2 0.8 0.5907 0.4306 45.2554 1.4966 0.6267 0.4384 49.9702 1.6179
0.5 0.5 0.5772 1.0057 44.9759 1.4397 0.5855 1.0281 46.0563 1.4633
0.8 0.2 0.5732 5.3740 44.7476 1.4252 0.5751 5.4063 44.7660 1.4334
0.8 0.8 0.5757 4.8990 45.1755 1.4304 0.5767 4.9046 44.8334 1.4394

20 5 0.2 0.2 0.5897 0.9605 46.0926 1.4817 0.6007 0.9800 48.0424 1.5114
0.2 0.8 0.5739 0.8921 44.1122 1.4366 0.5745 0.8955 43.8985 1.4422
0.5 0.5 0.5764 2.1361 44.8303 1.4381 0.5799 2.1627 45.8979 1.4404
0.8 0.2 0.5727 9.0537 44.7095 1.4233 0.5747 9.0820 44.2597 1.4381
0.8 0.8 0.5729 6.6178 44.4673 1.4275 0.5760 6.6955 44.8187 1.4365

25 10 0.2 0.2 0.5765 1.7405 45.0554 1.4358 0.5969 1.8404 47.0108 1.5043
0.2 0.8 0.5734 6.6350 44.3840 1.4307 0.5953 7.1470 45.7634 1.5113
0.5 0.5 0.5767 8.3525 44.9212 1.4382 0.5841 8.5450 44.9759 1.4702
0.8 0.2 0.5744 16.448 44.9884 1.4273 0.5776 16.540 44.4118 1.4488
0.8 0.8 0.5748 4.7460 43.8165 1.4444 0.5871 4.9471 44.7845 1.4864

30 10 0.2 0.2 0.5762 3.0012 44.2416 1.4450 0.6045 3.2775 47.4793 1.5342
0.2 0.8 0.5744 6.7755 43.9286 1.4414 0.6011 7.4867 47.4602 1.5190
0.5 0.5 0.5741 7.3899 44.0631 1.4379 0.6007 8.0954 45.9544 1.5339
0.8 0.2 0.5735 21.4460 44.4774 1.4300 0.5812 21.9240 44.2671 1.4669
0.8 0.8 0.5755 6.3420 43.7736 1.4484 0.6103 7.1991 47.9444 1.5568
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plotted in the different levels of the number of jobs and stages 
(Figure 4). It is observed in this figure that, the HSA-GA-LS 
algorithm has better performance regarding increasing the 
number of jobs and stages than genetic algorithm in the all 
cases (15 × 5, 20 × 5, 25 × 10 and 30 × 10).

are suitable. It means that solutions obtained of the algorithms 
are in the trade-off surface. These results show that the pro-
posed algorithm works effectively in all size of problems.

To demonstrate the behavior of the algorithms in the differ-
ent situations, the average M1, M2 and M4 of the algorithms is 

Figure 4. metrics plot Increasing the number of Jobs and Stages.

Table 2. Results of metrics for λ = 0.5 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.6808 0.8950 46.0667 1.4604 0.6823 0.8972 46.1501 1.4653
0.2 0.8 0.6752 0.7557 43.8869 1.4425 0.7318 0.7682 51.3944 1.6631
0.5 0.5 0.6681 1.1309 44.8092 1.4189 0.6936 1.1886 47.1065 1.5048
0.8 0.2 0.6699 4.0437 44.9040 1.4245 0.6719 4.0526 44.6958 1.4311
0.8 0.8 0.6692 3.7141 44.7998 1.4223 0.6723 3.7369 44.7201 1.4323

20 5 0.2 0.2 0.6731 1.2187 45.0328 1.4349 0.7069 1.2761 49.3071 1.5595
0.2 0.8 0.6726 1.1969 44.2331 1.4335 0.6796 1.1998 45.7451 1.4562
0.5 0.5 0.6751 2.0311 44.8112 1.4413 0.6809 2.0674 46.6572 1.4619
0.8 0.2 0.6706 6.6700 44.6903 1.4269 0.6757 6.7475 44.6994 1.4433
0.8 0.8 0.6722 5.0681 45.0152 1.4320 0.6782 5.1256 44.8284 1.4513

25 10 0.2 0.2 0.6713 2.0423 44.3959 1.4294 0.6903 2.1124 46.9384 1.4934
0.2 0.8 0.6726 5.3715 44.2270 1.4337 0.6843 5.5754 45.4342 1.4711
0.5 0.5 0.6734 6.3925 44.7797 1.4357 0.6792 6.4950 45.0628 1.4544
0.8 0.2 0.6695 11.8410 44.9420 1.4232 0.6717 11.8040 44.3489 1.4306
0.8 0.8 0.6721 3.9911 44.5784 1.4317 0.6855 4.1171 44.7751 1.4749

30 10 0.2 0.2 0.6708 3.0248 44.4644 1.4276 0.6900 3.1638 46.4165 1.4913
0.2 0.8 0.6713 5.6407 44.6292 1.4290 0.6968 6.0747 46.5921 1.5140
0.5 0.5 0.7005 6.2640 46.9198 1.5272 0.7127 6.5235 48.2925 1.5736
0.8 0.2 0.6708 15.5460 44.9971 1.4275 0.6823 15.6920 43.8312 1.4655
0.8 0.8 0.6796 5.3127 45.6853 1.4561 0.7021 5.6332 46.7405 1.5321

Table 3. Results of metrics for λ = 0.75 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.8116 1.1366 45.3140 1.4440 0.8217 1.1421 47.4122 1.4972
0.2 0.8 0.8220 1.0875 43.6934 1.4476 0.8815 1.1035 54.1699 1.7972
0.5 0.5 0.8113 1.2511 45.7799 1.4495 0.8249 1.2729 47.6848 1.5091
0.8 0.2 0.8031 2.6920 44.8177 1.4188 0.8057 2.7085 44.9806 1.4265
0.8 0.8 0.8034 2.5375 45.0958 1.4230 0.8079 2.5686 45.5147 1.4384

20 5 0.2 0.2 0.8122 1.5006 45.4764 1.4474 0.8229 1.5184 46.5414 1.4865
0.2 0.8 0.8156 1.4941 45.6829 1.4577 0.8496 1.5348 51.8557 1.6528
0.5 0.5 0.8173 1.9256 45.7909 1.4630 0.8223 1.9406 45.7967 1.4745
0.8 0.2 0.8073 4.2687 45.8452 1.4413 0.8159 4.2553 44.7727 1.4467
0.8 0.8 0.8085 3.4067 44.5144 1.4270 0.8176 3.4729 44.9223 1.4524

25 10 0.2 0.2 0.8044 2.2424 44.7360 1.4208 0.8347 2.3321 48.5797 1.5474
0.2 0.8 0.8137 3.9914 45.1167 1.4461 0.8345 4.1270 45.2713 1.4949
0.5 0.5 0.8089 4.4305 44.7822 1.4313 0.8234 4.5862 45.8302 1.4774
0.8 0.2 0.8041 7.1763 45.3976 1.4282 0.8085 7.1780 45.0148 1.4332
0.8 0.8 0.8123 3.2759 44.3183 1.4332 0.8120 3.2875 44.9728 1.4404

30 10 0.2 0.2 0.8210 3.0158 45.5817 1.4686 0.8386 3.1125 48.5993 1.5569
0.2 0.8 0.8028 4.3688 45.0336 1.4208 0.8181 4.5001 45.6885 1.4634
0.5 0.5 0.8173 4.7662 47.2930 1.4852 0.8390 4.9725 48.1181 1.5493
0.8 0.2 0.8076 9.3050 44.9189 1.4300 0.8216 9.3487 43.9698 1.4499
0.8 0.8 0.8087 4.2870 44.8112 1.4312 0.8279 4.4689 46.1834 1.4927
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which have not been included in this paper, such as release date, 
limited intermediate buffers, machine availability constraints, 
and unrelated parallel machines at each stage can be a prac-
tical extension, although the problem would be very difficult 
to solve.
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