
IntellIgent AutomAtIon & Soft ComputIng, 2016
http://dx.doi.org/10.1080/10798587.2016.1261956

An Efficient Hybrid Algorithm for a Bi-objectives Hybrid Flow Shop Scheduling

S. M. Mousavia and M. Zandiehb

afaculty of Industrial engineering, Department of technical and engineering, Islamic Azad university, noshahr Branch, postal code 41433—46511,
mazandaran, Iran; bmanagement and Accounting faculty, Department of Industrial management, Shahid Beheshti university, g. C., tehran, Iran

ABSTRACT
This paper considers the problem of scheduling n independent jobs in g-stage hybrid flow shop
environment. To address the realistic assumptions of the proposed problem, two additional traits
were added to the scheduling problem. These include setup times, and the consideration of maximum
completion time together with total tardiness as objective function. The problem is to determine
a schedule that minimizes a convex combination of objectives. A procedure based on hybrid the
simulated annealing; genetic algorithm and local search so-called HSA-GA-LS are proposed to handle
this problem approximately. The performance of the proposed algorithm is compared with a genetic
algorithm proposed in the literature on a set of test problems. Several performance measures are
applied to evaluate the effectiveness and efficiency of the proposed algorithm in finding a good quality
schedule. From the results obtained, it can be seen that the proposed method is efficient and effective.

1. Introduction

Scheduling is an important tool for manufacturing and engi-
neering, where it can have a major impact on the productivity of
a process. One of the most applied and recognized scheduling
problem is hybrid flow shops (HFS), in which each job has to
go through multiple stages with parallel machines instead of a
single machine. The parallel machines at each stage are added
for the objective of increasing productivity as well as flexibility.
Ruiz and Vázquez-Rodríguez (2010) described the HFS prob-
lem in its “standard” form. This paper investigates an HFS prob-
lem in standard form with an additional feature to include setup
times. The importance and applications of scheduling models
with explicit considerations of setup times (costs) have been
discussed in several studies (i.e. Andrés, Albarracı́n, Tormo,
Vicens, & Garcı́a-Sabater, 2005; Chang, Hsieh, & Wang, 2003).
The setup times considered in this problem are classified into
two types: (1) sequence-independent setup time (SIST); and (2)
sequence-dependent setup times (SDST) (Naderi, Zandieh, &
Roshanaei, 2008). Allahverdi, Gupta, and Aldowaisan (1999),
Allahverdi, Ng, Cheng, and Kovalyov (2008) provided a com-
prehensive review of the literature on scheduling problems
involving setup times (costs). Also, Jungwattanakit, Reodecha,
Chaovalitwongse, and Werner (2008) and Kurz and Askin
(2003) introduced the mathematical model of the HFS prob-
lem with sequence-dependent setup times.

The aim of scheduling is to assign jobs to the machines at the
corresponding stages and determine the processing sequences
on the machines so that one or some selected objectives are
optimized. According to just-in-time concept, production
managers should consider more than one criterion in sched-
uling problems. Therefore, simultaneous minimization of two
conflicted objective functions that are maximum comple-
tion time (makespan or Cmax) and total tardiness (T̄). In fact,
minimizing the makespan and the total tardiness will lead to

increase internal and external efficiency respectively. The prob-
lem is configured as a bi-objective model, which is a sub-class
of the multi-objective models.

The HFS scheduling problem is a strongly NP-hard prob-
lem (Ruiz & Maroto, 2006). In the literature of multi-objective
HFS scheduling problem, different approaches of heuristics
and meta-heuristics have been applied to solve these problems.
Two types of solution methods are prevalent in scheduling: (1)
develop a solution method that searches a set of non-domi-
nated solutions; (2) develop a solution method to find a good
quality schedule for convex sum of objectives. In the former,
the set of Pareto optimal (or efficient) solutions is generated
for the decision-maker, who then selects the most preferred
among the alternatives. The inconveniences here are that the
generation process is usually computationally expensive and
sometimes in part, at least, difficult. On the other hand, it is
hard for the decision-maker to select from a large set of alterna-
tives. In the latter, a good quality schedule is generated for the
decision-maker. Therefore, the aim of this paper is to develop
a solution method for the proposed problem to find a good
quality schedule. Now, some related research briefly reviewed.

Jungwattanakit et al. (2008), Jungwattanakit, Reodecha,
Chaovalitwongse, and Werner (2009) considered the flexi-
ble flow shop with unrelated parallel machines and sequence
- and machine -dependent setup times, release date and due
date constraints to minimize a convex sum of makespan and
the number of tardy jobs. They proposed the genetic algorithm
(GA), simulated annealing (SA) and tabu search (TS) to find
the near-optimal schedule for the problem. Davoudpour and
Ashrafi (2009) considered the SDST HFS problems with iden-
tical parallel machines, and release date to minimize a weighted
sum earliness, tardiness and completion time of jobs. They pro-
posed a greedy randomized adaptive search procedure to solve
this problem. Mousavi, Zandieh, and Yazdani (2012) considered

© 2016 tSI® press

KEYWORDS
Bi-objective scheduling;
Hybrid flow shop; genetic
algorithm; local search;
Simulated annealing

CONTACT S. m. mousavi mousavi@iauns.ac.ir

mailto:mousavi@iauns.ac.ir
http://www.tandfonline.com

2 S. M. MOUSAVI AND M. ZANDIEH

the problem of scheduling n independent jobs in HFS environ-
ment with SDST to minimize the makespan and total tardiness.
They developed a meta-heuristic based on SA/local search along
with some basic improvement procedures to minimize convex
combination of the makespan and total tardiness. Pargar and
Zandieh (2012) investigated the HFS problems with SDST and
learning effect of setup times for minimizing weighted sum of
makespan and total tardiness. They proposed a novel meta-heu-
ristic approach called water flow-like algorithm. Sheikh (2013)
investigated a multi-objective flexible flow shop scheduling
problem with limited time lag between stages and due win-
dows. They formulated the problem by a mixed integer linear
programming model with the objectives of maximizing the total
profit gained from scheduled jobs and minimizing deviation
from the due date. A GA procedure designed to solve this model
efficiently. Tadayon and Salmasi (2013) investigated group
scheduling in the flexible flow shop scheduling problem with
release time and eligibility. They considered objectives as the
minimization of the sum of the completion time of groups and
the minimization of sum of the differences between the comple-
tion time of jobs and the delivery time of the group containing
that job. A mathematical model and several meta-heuristic algo-
rithms based on the particle swarm optimization (PSO) algo-
rithm proposed to heuristically solve the problem. Behnamian
and Zandieh (2013) proposed a novel hybrid meta-heuristic
that hybridized the PSO, SA and variable neighborhood search
(VNS) to solve the HFS scheduling with SDST and position-de-
pendent learning effects. They considered objectives as tardiness
and earliness penalties as objective function.

It can be seen that the GA and SA have been used in many
studies to solve the HFS scheduling. According to the best of
our knowledge, a method based on a hybrid of GA and SA
has never been investigated in bi-objective HFS with SDST
scheduling problems in the literature up to now. In this paper,
a hybrid of GA proposed by Jungwattanakit et al. (2008), SA
proposed by Mousavi et al. (2012) and local search is pro-
posed to solve scheduling problem. The proposed algorithm
and the details of it are explained in Section 2. The rest of the
paper is organized as follows: Section 3 presents the computa-
tional results and numerical comparisons. Finally, Section 4 is
devoted to conclusion and future works.

2. Proposed Hybrid Genetic Simulated Annealing

2.1. Genetic Algorithm and Simulated Annealing

A genetic algorithm developed by Holland (1975) is an iterative
heuristic based on Darwin’s evolutionary theory about “sur-
vival of the fittest and natural selection.” Genetic algorithms are
efficient, flexible, “intelligent” probabilistic search algorithms.
They mimic the evolution process of biological organisms in
nature. Genetic algorithms simulate the evolution process by
generating an initial population of individuals (called chromo-
somes) and applying genetic operators on the fittest of those
individuals in each reproduction cycle. A chromosome is repre-
sented by a string of numbers called genes. Each chromosome
in the population is evaluated according to some fitness meas-
ure. Certain pairs of chromosomes (parents) are selected on the
basis of their fitness. Each of these pairs combines to produce
new chromosomes (offspring) and some of the offspring are
modified. A new population is then formed replacing some of
the original population by an identical number of offspring.

Simulated annealing is introduced to combinational opti-
mization by Kirkpatrick (1983) in 1982. Simulated annealing

is a neighborhood search approach designed to obtain a
global optimum solution for combinatorial optimization
problem. Simulated annealing starts with an initial solution
and iteratively moves towards other existing solutions, while
remembering the best solution found so far. In order to reduce
the probability of getting trapped in local optima, simulated
annealing accepts moves to inferior neighboring solution
under the control of randomized scheme. More precisely, if a
move from current solution S to another inferior neighboring
solution S* results in a change ∆E = f(S*)–f(S) in the objective
function value, the move is still accepted if R < exp (–∆E/T),
where T is a control parameter, called temperature, and R is a
uniform random number between interval (0, 1). Initially, the
temperature T is high enough permitting many deteriorative
moves to be accepted and it is lowered at a low speed of rate to
a value so that inferior moves are approximately rejected. This
algorithm investigates possible neighbors in each temperature
sequentially and slowly in order to find the best solution.

2.2. The Proposed Algorithm

The proposed algorithm must seek to obtain effective and
acceptable convex combination of objectives through the
implementation of a simple method. Therefore, for solutionx,
the total objective function is given by Equation (1):

where � values are the weighting coefficients representing the
relative importance of makespan and the total tardiness

The proposed algorithm is structurally similar to the basic
simulated annealing and genetic algorithm, but additional fea-
tures have been proposed in the structure of algorithms. Now,
the particular features of the proposed algorithm are described.
In the initial simulated annealing, just a specific neighbor-
hood search structure (NSS) used to generate a neighborhood
solution. The NSS remains constant during the execution of
algorithm. In this paper suggested to NSS will be randomly
selected from among several different structures at each iter-
ation procedure. This technique also has been proposed to
generate offspring solutions through genetic operators. The
important question can be expressed as follows: Why are sev-
eral neighborhood search structure, crossover and mutation
operators introduced to select among alternatives randomly
in each generation?

In response to this question, the main reason of the applica-
tion of this approach is that the algorithm is able to guide the
search to another promising region through the types of moves
(The algorithm is able to consider different search directions
with the type of moves). This means that the features of several
alternatives are applied to search space. Therefore, the perfor-
mance of algorithm with cited characteristic can be better. This
corresponded to the concept of the diversification.

Although the genetic algorithm has gained many applica-
tions, it is reported that the traditional genetic algorithm often
suffers from the trouble of premature convergence. The pro-
posed technique will help to avoid the premature convergence
by the irregular selection among several alternatives.

The second feature is fitness function used in GA and SA.
To prevail over the trap of dealing with different measure-
ment sizes of objective values, we normalize the value of each

(1)
Total Objective Function = Minimizing f (x)

f (x) = � × f1(x) + (1 − �) × f2(x)

f1(x) = makespan f2(x) = total tardiness 0 ≤ � ≤ 1

INTELLIGENT AUTOMATION & SOFT COMPUTING 3

objective function by divided the minimum objectives with
the actual objectives value. The normalized objectives can be
obtained by Equation (2):

f1 and f2 are the lowest observed of makespan and total tar-
diness values respectively, which can be updated after each
iteration, therefore, the function of GA and SA are chosen from
Equation (3):

The third feature is the improvement step that performed on
the accepted solution in SA. The last feature is local search in
the end of proposed algorithm. In this section, two local search
procedures are applied on best solution archived to improve
the final solution.

2.3. The Structure of the Proposed Algorithm

Encoding
A scheme using integers is applied to display a solution. For

example, one solution of a hypothetical problem with five jobs
as [3 1 2 5 4] denotes that job 3 is processed first, and then job
1, job 2, job 5, job 4 are processed successively. For determining
the order of jobs, from the second stage to next, the first in first
out (FIFO) rule has been used.
Initialization

• Input parameters: Initial temperature (T0); Final tem-
perature (Tf); Number of stages for reach of T0 to Tf
(N); The weighting coefficients (λ ∊ {0.25, 0.5, 0.75});
Number of initial population (np); Probability of cross-
over (Pc); Probability of mutation (Pm); Probability of
reproduction (Pr).

• Initialize an initial population randomly
• Evaluate f1(xi) and f2(xi): Where f1(xi) is the makespan,

f2(xi) is the total tardiness of solution ith in population.
• Set T = T0; it = 1; q = 1; Archive(q) = {best solution in

population}; f1 = min { f1(xi) i = 1, 2, .., np}, f2 = min {
f2(xi) i = 1, 2, …, np}.

While T > Tf
% Start parallel simulated annealing in temperature T
For i = 1: np

Step 1: yi = Move xi by considering random integer so-called
K in the range 1 to 4;

(i) Perform the swap moves (K = 1), random insertion
scheme (K = 2), inversion moves (K = 3) or shift moves
(K = 4) (Prandtstetter & Raidl, 2007) on xi.

(ii) Evaluate f1(yi) and f2(yi) new solutions in the neigh-
borhood of xi.

(iii) Update f1 and f2 as f1 = min {f1, f1(yi)}, f2 = min { f2, f2(yi)}.

Step 2: Calculate fSA and ∆Ei as follows:

fSA(xi) =
[
� ×

f1

f1(xi)
+ (1 − �) ×

f2

f2(xi)

]−1 and

fSA(yi) =
[
� ×

f1

f1(yi)
+ (1 − �) ×

f2

f2(yi)

]−1

∆Ei = fSA(yi) - fSA(xi)

(2)f �1 (x) =
f1

f1(x)
and f �2 (x) =

f2
f2(x)

(3)

{
f �(x) =

[
� × f �1 (x) + (1 − �) × f �2 (x)

]−1
Used in SA

f �(x) =
[
� × f �1 (x) + (1 − �) × f �2 (x)

]
Used in GA

Step 3: Decision-making;
If ∆Ei < 0 Then %we accept the new solution
q = q + 1; Archive(q) = { yi }; xi = yi;
Else %we accept the new solution with a certain probability
If random<exp (–∆Ei /T) Then
xi = yi;
Endif
Endif

Step 4: Improvement of accepted solution in previous step
as follows:

 (i) Generate (n-g) new solutions (called zj) in the neigh-
borhood of xi with NSS in step 1.

 (ii) Evaluate f1(zj) and f2(zj) new solutions in the neigh-
borhood of xi.

(iii) Update f1 and f2 as f1 = min {f1, f1(zj); j = 1, 2, .., n-g},
f2 = min { f2, f2(zj) j = 1, 2, ..., n-g}.

(vi) Accept solution with minimal fSA(zj); q = q + 1;
Archive(q) = {zj}; xi = zj;

End for
% Start genetic algorithm in temperature T

Step 1: Calculate the fGA and prob of solutions in population
as follows:

Step 2: Crossover operator

 (i) Select np × Pc pairs of parents based on roulette wheel
selection;

 (ii) Choose randomly integer number (K) in the range 1
to 5, and

(iii) Generate an offspring of 1PX (if K = 1), OPX (if K =
2), CX (if K = 3), OBX (if K = 4) or PBX (if K = 5).

Step 3: Mutation operator

 (i) Select np × Pm chromosome based on purely random
selection.

 (ii) Choose randomly integer number (K), in the range
1 to 4, and

(iii) Perform the swap moves (K = 1), random insertion
scheme (K = 2), inversion moves (K = 3) or shift
moves (K = 4) on chromosome.

Step 4: Reproduction
Select np × Pr solutions from current population based on elitist
selection.

Step 5: Replacement

 (i) Combine solutions obtained from the previous steps
(include steps 2, 3 and 4) as new population.

 (ii) Evaluate f1(xi) and f2(xi) solutions in the population.
(iii) Update f1 and f2 as f1=min {f1, f1(xi) i = 1, 2, .., np}, f2 =

min { f2, f2(xi) i = 1, 2, .., np}.

T = temperature reduction by a linear schedule
Endwhile

fSA(zj) =

[
� ×

f1
f1(zj)

+ (1 − �) ×
f2

f2(zj)

]−1

j = 1, 2, ..., n − g

fGA(xi) =

[
� ×

f1
f1(xi)

+ (1 − �) ×
f2

f2(xi)

]
i = 1, ..., np

prob(xi) =
fGA(xi)

np∑
i=1

fGA(xi)

i = 1, ..., np

4 S. M. MOUSAVI AND M. ZANDIEH

The objectives are not normalized in second metric.
Consequently, this criterion is sensitive to increase and decrease
in objective function with a larger value. Lower values for these
metrics (M1 and M2) represent better solution.

The decision-makers require schedules with respect to the
trade-off between the various objectives. Figure 1 presents
the acceptable trade-off between the objectives by angle (α).
The angle of the solution (x), called M3 is computed as given
in Equation (6). According to this metric, M3 in the interval
35 to 55 (45 ± 10) degrees is proper.

This metric can be justified as follows:
A multi-objective optimization problem (MOP) differs from

a single-objective optimization problem, because it contains
several objectives that require optimization. A suitable solution
should provide acceptable performance for all objectives. If
there is a solution just along an individual axis (in one corner
of the solution space), it won’t be appropriate, because this
solution is suitable only for an objective (similar to a single
objective problem). This means that angles near zero and 90
degrees are not suitable in bi-objective problem. It is better to
have solutions away from the angles 0 and 90. Note tolerance
(10) can be any number from 0 to 45.

The hope of decision-makers is to find schedules close to the
ideal point (0, 0). For this reason, the obtained solutions should
converge towards the ideal point. Figure 2 represents conver-
gence to the ideal point by distance. The distance between
ideal point and the solution x, called M4 is computed as given
in Equation (7). Lower values of the fourth metric represent
better solution.

(5)M2 =
[
� × f1(x) + (1 − �) × f2(x)

]

(6)M3 = arctan
⎛
⎜⎜⎝

f2(x)

f2

f1(x)

f1

⎞
⎟⎟⎠

(7)M4 =

√(
f1(x)

f1

)2

+

(
f2(x)

f2

)2

Local Search: The best solution in the archive (solution cor-
responding with minimal f(x)) is now subjected to two local
search schemes, namely, neighborhood swapping (Prandtstetter
& Raidl, 2007) and random insertion perturbation scheme
(RIPS) (Prandtstetter & Raidl, 2007). Then, solution with min-
imal f(x) is selected.

3. Computational Experiments

This section contains the method of generating data sets and
run these data sets by proposed algorithm, and algorithm in
the literature, performance criteria, and then expressing the
results of the efficiency of the proposed algorithm.

3.1. Generation of a Test Problem

The numerical data should be created to test the performance
of the algorithm. Data required for a problem consist of the
range of processing times, range of setup times, number of
stages (g), number of jobs (n), range in number of machines per
stage and range of due date. Processing times are distributed
uniformly over two ranges with a mean of 60: [50–70] and
[20–100]. The setup times are uniformly distributed from 12 to
24, which are 20% to 40% of the mean of the processing time.
We used problems with 15 jobs × 5 stages, 25 jobs × 10 stages,
and 40 jobs × 20 stages. Numbers of machines are distributed
uniformly over two ranges [1–4] and [1–10]. Due dates can be
generated from a composite uniform distribution based on R
and τ; with probability τ the due date is uniformly distributed
over the interval [d̄, d̄ + (Cmax − d̄)R] and with probability
(1–τ) over the interval [d̄, d̄ + (Cmax − d̄)R], where τ and R
are two parameters called the tardiness factor (𝜏 = 1 − d̄∕Cmax)
and the due date range (R = (dmax − dmin)∕Cmax), respectively. It
should be noted that dmax, dmin and d̄ are maximum, minimum
and average due date, respectively.

Values of τ close to 1 indicate that the due dates are tight,
and values close to 0 indicate that the due dates are loose. A
high value of R indicates a wide range of due dates, whereas a
low value indicates a narrow range of due dates (Eren & Güner,
2008). The values of τ and R are taken as 0.2, 0.5 and 0.8. For
each problem structure, data based on five different τ and R
combinations are used: (0.2, 0.2), (0.2, 0.8), (0.5, 0.5), (0.8, 0.2),
(0.8, 0.8).

3.2. Performance Criteria

The use of performance measures (or metrics) allows a
researcher to assess (in a quantitative way) the performance of
their algorithms. In this paper, four metrics are used to evaluate
the quality of solutions. The metrics applied in this paper are
described as follows:

The first and second metrics is computed a convex combi-
nation of objective functions. In fact, one of the views of deci-
sion-makers is to minimize a convex combination of objective
functions. The definitions of the metrics are given as follows:

f (x) =

[
� ×

f1
f1(x)

+ (1 − �) ×
f2

f2(x)

]−1

(4)M1 =

[
� ×

f1
f1(x)

+ (1 − �) ×
f2

f2(x)

]−1

α

Figure 1. A Range of Angle as Acceptable trade-off Between the two objectives.

Figure 2. A Hypothetical example of Distance.

INTELLIGENT AUTOMATION & SOFT COMPUTING 5

of RAM memory. To show the efficiency and effectiveness of
the proposed algorithm in comparison with a GA, computa-
tional experiments were done on various test problems. The
three replications for each problem size have been performed
since there are some random conditions when applying the
algorithm. The following parameters value has been used in
tests: Initial temperature (T0): 2.9; Final temperature (Tf): 0.05;
Number of stages for reach of T0 to Tf (N): 55; Number of
initial population (np): 30; Probability of crossover (Pc): 0.80;
Probability of mutation (Pm): 0.10; Probability of reproduction
(Pr): 0.10. It is noted that these parameters are set according to
Jungwattanakit et al. (2008) and Mousavi et al. (2012).

Time cost is an important factor when comparing different
algorithms. In this paper, the running time for each problem
is recorded by HSA-GA-LS. Then, these computational times
are used in the GA as stopping criterion. Therefore, CPU time
is almost the same for both algorithms (Figure 3).

Tables 1–3 represent the values of the four metrics for var-
ious problems. Based on the results of given in Tables, the
following observations can be made. Due to M1, M2 and M4
metrics, the proposed algorithm is able to outperform other
algorithm on all problems. Due to M3 metric, two algorithms

Note the third and fourth metrics are complementary met-
rics. A solution is appropriate when results from both metrics
are acceptable (close to the origin and with the desired angle).

3.3. Numerical Result

In this paper, a hybrid algorithm of GA (Jungwattanakit et al.,
2008), SA (Mousavi et al., 2012) and local search is proposed to
solve a scheduling problem. The aim is that the benefits of both
effective algorithms are applied in the design of the proposed
algorithm. The performance of the proposed HSA-GA-LS is
compared with genetic algorithm proposed by Jungwattanakit
et al. (2008). Now, the reasons of this choice are explained.
According to the literature review, a variety of heuristics and
meta-heuristics have been applied to find a convex combina-
tion of objectives. It is well known that algorithms are charac-
terized by a parallel search (i.e. GA, PSO) or a point-by-point
search (i.e. SA, TS) of the state space. In this research, method is
proposed to handle problem by a parallel search. Consequently,
a GA is selected to search space similar to HAS-GA-LS. It is
noticeable that all of algorithms are implemented in MATLAB
2009a and run on a PC with 2.30 GHz Intel Core and 4 GB

Figure 3. the Computational times of HAS-gA-lS and gA.

Table 1. Results of metrics for λ = 0.25 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.5693 0.6383 44.2437 1.4145 0.5951 0.6710 47.2922 1.4932
0.2 0.8 0.5907 0.4306 45.2554 1.4966 0.6267 0.4384 49.9702 1.6179
0.5 0.5 0.5772 1.0057 44.9759 1.4397 0.5855 1.0281 46.0563 1.4633
0.8 0.2 0.5732 5.3740 44.7476 1.4252 0.5751 5.4063 44.7660 1.4334
0.8 0.8 0.5757 4.8990 45.1755 1.4304 0.5767 4.9046 44.8334 1.4394

20 5 0.2 0.2 0.5897 0.9605 46.0926 1.4817 0.6007 0.9800 48.0424 1.5114
0.2 0.8 0.5739 0.8921 44.1122 1.4366 0.5745 0.8955 43.8985 1.4422
0.5 0.5 0.5764 2.1361 44.8303 1.4381 0.5799 2.1627 45.8979 1.4404
0.8 0.2 0.5727 9.0537 44.7095 1.4233 0.5747 9.0820 44.2597 1.4381
0.8 0.8 0.5729 6.6178 44.4673 1.4275 0.5760 6.6955 44.8187 1.4365

25 10 0.2 0.2 0.5765 1.7405 45.0554 1.4358 0.5969 1.8404 47.0108 1.5043
0.2 0.8 0.5734 6.6350 44.3840 1.4307 0.5953 7.1470 45.7634 1.5113
0.5 0.5 0.5767 8.3525 44.9212 1.4382 0.5841 8.5450 44.9759 1.4702
0.8 0.2 0.5744 16.448 44.9884 1.4273 0.5776 16.540 44.4118 1.4488
0.8 0.8 0.5748 4.7460 43.8165 1.4444 0.5871 4.9471 44.7845 1.4864

30 10 0.2 0.2 0.5762 3.0012 44.2416 1.4450 0.6045 3.2775 47.4793 1.5342
0.2 0.8 0.5744 6.7755 43.9286 1.4414 0.6011 7.4867 47.4602 1.5190
0.5 0.5 0.5741 7.3899 44.0631 1.4379 0.6007 8.0954 45.9544 1.5339
0.8 0.2 0.5735 21.4460 44.4774 1.4300 0.5812 21.9240 44.2671 1.4669
0.8 0.8 0.5755 6.3420 43.7736 1.4484 0.6103 7.1991 47.9444 1.5568

6 S. M. MOUSAVI AND M. ZANDIEH

plotted in the different levels of the number of jobs and stages
(Figure 4). It is observed in this figure that, the HSA-GA-LS
algorithm has better performance regarding increasing the
number of jobs and stages than genetic algorithm in the all
cases (15 × 5, 20 × 5, 25 × 10 and 30 × 10).

are suitable. It means that solutions obtained of the algorithms
are in the trade-off surface. These results show that the pro-
posed algorithm works effectively in all size of problems.

To demonstrate the behavior of the algorithms in the differ-
ent situations, the average M1, M2 and M4 of the algorithms is

Figure 4. metrics plot Increasing the number of Jobs and Stages.

Table 2. Results of metrics for λ = 0.5 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.6808 0.8950 46.0667 1.4604 0.6823 0.8972 46.1501 1.4653
0.2 0.8 0.6752 0.7557 43.8869 1.4425 0.7318 0.7682 51.3944 1.6631
0.5 0.5 0.6681 1.1309 44.8092 1.4189 0.6936 1.1886 47.1065 1.5048
0.8 0.2 0.6699 4.0437 44.9040 1.4245 0.6719 4.0526 44.6958 1.4311
0.8 0.8 0.6692 3.7141 44.7998 1.4223 0.6723 3.7369 44.7201 1.4323

20 5 0.2 0.2 0.6731 1.2187 45.0328 1.4349 0.7069 1.2761 49.3071 1.5595
0.2 0.8 0.6726 1.1969 44.2331 1.4335 0.6796 1.1998 45.7451 1.4562
0.5 0.5 0.6751 2.0311 44.8112 1.4413 0.6809 2.0674 46.6572 1.4619
0.8 0.2 0.6706 6.6700 44.6903 1.4269 0.6757 6.7475 44.6994 1.4433
0.8 0.8 0.6722 5.0681 45.0152 1.4320 0.6782 5.1256 44.8284 1.4513

25 10 0.2 0.2 0.6713 2.0423 44.3959 1.4294 0.6903 2.1124 46.9384 1.4934
0.2 0.8 0.6726 5.3715 44.2270 1.4337 0.6843 5.5754 45.4342 1.4711
0.5 0.5 0.6734 6.3925 44.7797 1.4357 0.6792 6.4950 45.0628 1.4544
0.8 0.2 0.6695 11.8410 44.9420 1.4232 0.6717 11.8040 44.3489 1.4306
0.8 0.8 0.6721 3.9911 44.5784 1.4317 0.6855 4.1171 44.7751 1.4749

30 10 0.2 0.2 0.6708 3.0248 44.4644 1.4276 0.6900 3.1638 46.4165 1.4913
0.2 0.8 0.6713 5.6407 44.6292 1.4290 0.6968 6.0747 46.5921 1.5140
0.5 0.5 0.7005 6.2640 46.9198 1.5272 0.7127 6.5235 48.2925 1.5736
0.8 0.2 0.6708 15.5460 44.9971 1.4275 0.6823 15.6920 43.8312 1.4655
0.8 0.8 0.6796 5.3127 45.6853 1.4561 0.7021 5.6332 46.7405 1.5321

Table 3. Results of metrics for λ = 0.75 (M2 × 103).

Test problem HSA-GA-LS Genetic algorithm

n g τ R M1 M2 M3 M4 M1 M2 M3 M4

15 5 0.2 0.2 0.8116 1.1366 45.3140 1.4440 0.8217 1.1421 47.4122 1.4972
0.2 0.8 0.8220 1.0875 43.6934 1.4476 0.8815 1.1035 54.1699 1.7972
0.5 0.5 0.8113 1.2511 45.7799 1.4495 0.8249 1.2729 47.6848 1.5091
0.8 0.2 0.8031 2.6920 44.8177 1.4188 0.8057 2.7085 44.9806 1.4265
0.8 0.8 0.8034 2.5375 45.0958 1.4230 0.8079 2.5686 45.5147 1.4384

20 5 0.2 0.2 0.8122 1.5006 45.4764 1.4474 0.8229 1.5184 46.5414 1.4865
0.2 0.8 0.8156 1.4941 45.6829 1.4577 0.8496 1.5348 51.8557 1.6528
0.5 0.5 0.8173 1.9256 45.7909 1.4630 0.8223 1.9406 45.7967 1.4745
0.8 0.2 0.8073 4.2687 45.8452 1.4413 0.8159 4.2553 44.7727 1.4467
0.8 0.8 0.8085 3.4067 44.5144 1.4270 0.8176 3.4729 44.9223 1.4524

25 10 0.2 0.2 0.8044 2.2424 44.7360 1.4208 0.8347 2.3321 48.5797 1.5474
0.2 0.8 0.8137 3.9914 45.1167 1.4461 0.8345 4.1270 45.2713 1.4949
0.5 0.5 0.8089 4.4305 44.7822 1.4313 0.8234 4.5862 45.8302 1.4774
0.8 0.2 0.8041 7.1763 45.3976 1.4282 0.8085 7.1780 45.0148 1.4332
0.8 0.8 0.8123 3.2759 44.3183 1.4332 0.8120 3.2875 44.9728 1.4404

30 10 0.2 0.2 0.8210 3.0158 45.5817 1.4686 0.8386 3.1125 48.5993 1.5569
0.2 0.8 0.8028 4.3688 45.0336 1.4208 0.8181 4.5001 45.6885 1.4634
0.5 0.5 0.8173 4.7662 47.2930 1.4852 0.8390 4.9725 48.1181 1.5493
0.8 0.2 0.8076 9.3050 44.9189 1.4300 0.8216 9.3487 43.9698 1.4499
0.8 0.8 0.8087 4.2870 44.8112 1.4312 0.8279 4.4689 46.1834 1.4927

INTELLIGENT AUTOMATION & SOFT COMPUTING 7

which have not been included in this paper, such as release date,
limited intermediate buffers, machine availability constraints,
and unrelated parallel machines at each stage can be a prac-
tical extension, although the problem would be very difficult
to solve.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes on contributors

Sayyed Mostafa Mousavi obtained a B.Sc. in
Industrial Engineering at University of Science and
Industry, Behshar Branch, Iran (1999–2003), and an
M.Sc. in Industrial Engineering at Islamic Azad
University, Qazvin branch, Iran (2006–2008). He
obtained a Ph.D. in Industrial Engineering from
Mazandaran University of Science and Technology,
Iran (2011–2016). Currently, he is an assistant profes-
sor at Industrial Engineering Department, Islamic

Azad University, Noshahr Brach, Iran. His research interests are produc-
tion planning and scheduling, applied operations research.

Mostafa Zandieh accomplished a B.Sc. in Industrial
Engineering at Amirkabir University of Technology,
Tehran, Iran (1994–1998), and an M.Sc. in Industrial
Engineering at Sharif University of Technology,
Tehran, Iran (1998–2000). He obtained a Ph.D. in
Industrial Engineering from Amirkabir University of
Technology, Tehran, Iran (2000–2006). Currently, he
is an associate professor at Industrial Management
Department, Shahid Beheshti University, Tehran,

Iran. His research interests are production planning and scheduling,
financial engineering, quality engineering, applied operations research,
simulation, and artificial intelligence techniques in the areas of manufac-
turing systems design.

References
Allahverdi, A., Gupta, J.N.D., & Aldowaisan, T. (1999). A review of

scheduling research involving setup considerations. Omega, 27, 219–
239.

Allahverdi, A., Ng, C.T., Cheng, T.C.E., & Kovalyov, M.Y. (2008). A survey
of scheduling problems with setup times or costs. European Journal of
Operational Research, 187, 985–1032.

Andrés, C., Albarracı́n, J.M., Tormo, G., Vicens, E., & Garcı́a-Sabater, J.P.
(2005). Group technology in a hybrid flowshop environment: A case
study. European Journal of Operational Research, 167, 272–281.

Behnamian, J., & Zandieh, M. (2013). Earliness and tardiness minimizing
on a realistic hybrid flowshop scheduling with learning effect by
advanced metaheuristic. Arabian Journal for Science and Engineering,
38, 1229–1242.

Chang, P.C., Hsieh, J.C., & Wang, Y.W. (2003). Genetic algorithms applied
in BOPP film scheduling problems: minimizing total absolute deviation
and setup times. Applied Soft Computing, 3, 139–148.

Davoudpour, H., & Ashrafi, M. (2009). Solving multi-objective SDST
flexible flow shop using GRASP algorithm. The International Journal
of Advanced Manufacturing Technology, 44, 737–747.

Eren, T., & Güner, E. (2008). The tricriteria flowshop scheduling problem.
The International Journal of Advanced Manufacturing Technology, 36,
1210–1220.

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann
Arbor, Michigan: University of Michigan.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F.
(2008). Algorithms for flexible flow shop problems with unrelated
parallel machines, setup times, and dual criteria. The International
Journal of Advanced Manufacturing Technology, 37, 354–370.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F.
(2009). A comparison of scheduling algorithms for flexible flow shop
problems with unrelated parallel machines, setup times, and dual
criteria. Computers & Operations Research, 36, 358–378.

Graphical representation is provided to demonstrate output
results of the HSA-GA-LS and genetic algorithm (Figs. 5 and
6). These figures show the obtained solutions (convex combi-
nation) of HSA-GA-LS and genetic algorithm over twenty runs
for problem with 15 jobs × 5 stages and 20 jobs × 5 stages. It
is observed in these figures that obtained solutions of genetic
algorithm have the trade-off between the various objectives
(M3 metric), but other metrics (M1, M2 and M4 metrics) are
not satisfied. These figures illustrate and confirm the conclusion
derived from the numerical results based on the performance
criteria. Therefore, the proposed algorithm is effective in min-
imizing makespan and total tardiness for the hybrid flow shop
problem with sequence-dependent setup times.

4. Conclusion and Future Work

This paper considers the HFS sequence-dependent job setup
times scheduling problem. Our objective is to determine a
schedule that minimizes a convex combination of makespan
and the total tardiness. The hybrid method is applied to solve
this problem, which belongs to NP-hard class. Several computa-
tional tests are used to evaluate the effectiveness and efficiency
of the proposed algorithm in finding good quality schedules.
Computational results show that the proposed algorithm pro-
vides better results than genetic algorithm in the literature. For
future study, the scheduling with other system characteristics,

1365 1370 1375 1380 1385 1390 1395 1400
380

400

420

440

460

480

500

520

540

Makespan

To
ta

l t
ar

di
ne

ss
HSA-GA-LS
Genetic Algorithm

Figure 5. Convex Combination of Algorithms for problems with 15 Jobs × 5
Stages.

1750 1760 1770 1780 1790 1800 1810 1820
600

650

700

750

800

850

900

950

1000

1050

Makespan

To
ta

l t
ar

di
ne

ss

HSA-GA-LS
Genetic Algorithm

Figure 6. Convex Combination of Algorithms for problems with 20 Jobs × 5
Stages.

8 S. M. MOUSAVI AND M. ZANDIEH

Prandtstetter, M., & Raidl, G.R. (2007). An integer linear programming
approach and a hybrid variable neighborhood search for the car
sequencing problem. European Journal of Operational Research, 191,
1004–1022.

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flow shops
with sequence dependent setup times and machine eligibility. European
Journal of Operational Research, 169, 781–800.

Ruiz, R., & Vázquez-Rodríguez, J.A. (2010). The hybrid flow shop
scheduling problem. European Journal of Operational Research, 205,
1–18.

Sheikh, S. (2013). Multi-objective flexible flow lines with due window,
time lag, and job rejection. The International Journal of Advanced
Manufacturing Technology, 64, 1423–1433.

Tadayon, B., & Salmasi, N. (2013). A two-criteria objective function flexible
flowshop scheduling problem with machine eligibility constraint. The
International Journal of Advanced Manufacturing Technology, 64,
1001–1015.

Kirkpatrick, S. (1983). Optimization by simulated annealing. Science, 220,
671–680.

Kurz, M.E., & Askin, R.G. (2003). Scheduling flexible flow lines with
sequence-dependent setup times. European Journal of Operational
Research, 159, 66–82.

Mousavi, S.M., Zandieh, M., & Yazdani, M. (2012). A simulated annealing/
local search to minimize the makespan and total tardiness on a hybrid
flowshop. International Journal of Advanced Manufacturing Technology,
64, 369–388.

Naderi, B., Zandieh, M., & Roshanaei, V. (2008). Scheduling hybrid flow
shops with sequence dependent setup times to minimize makespan and
maximum tardiness. International Journal of Advanced Manufacturing
Technology, 41, 1186–1198.

Pargar, F., & Zandieh, M. (2012). Bi-criteria SDST hybrid flow shop
scheduling with learning effect of setup times: Water flow-like
algorithm approach. International Journal of Production Research, 50,
2609–2623.

	Abstract
	1. Introduction
	2. ProposedHybridGeneticSimulatedAnnealing
	2.1. GeneticAlgorithmandSimulatedAnnealing
	2.2. TheProposedAlgorithm
	2.3. TheStructureoftheProposedAlgorithm

	3. ComputationalExperiments
	3.1. GenerationofaTestProblem
	3.2. PerformanceCriteria
	3.3. NumericalResult

	4. ConclusionandFutureWork
	Disclosurestatement
	Notesoncontributors
	References

