
Intelligent Automation And Soft Computing, 2019 
Copyright © 2019, TSI® Press 
Vol. 25, no. 4, 805–814 
https://doi.org/10.31209/2019.100000084 

 
 

 
 

 
 

 

 
 

 
 

 

CONTACT  Yani Hou   boxcy@163.com 

© 2019 TSI® Press 

 

Hyperspectral Mineral Target Detection Based on Density Peak 
 
Yani Hou, Wenzhong Zhu and Erli Wang 

School of Computer Science, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China 

 

 
 

KEYWORDS:  Hyperspectral remote sensing; Density peak; Mineral detection; Correlation coefficient. 
 

1 INTRODUCTION 
HYPERSPECTRAL remote sensing technology is 

one of the greatest achievements in the field of remote 

sensing in 1980s. It obtains many spectral images of 

ground objects of many continuous bands while 

observing the earth from the space, achieving the 

purpose of directly identifying objects on the earth’s 

surface from space, therefore, the hyperspectral 

remote sensor is commonly called imaging 

spectrometer. Compared with the traditional 

multispectral scanner, the imaging spectrometer can 

get the continuous images of hundreds of bands, and 

each image pixel can extract a spectral curve (Tong, 

Zhang, & Zheng, 2006). The characteristics of the 

union of image and spectrum require people to 

understand the transformation of ground objects in 

space dimension from spectral dimension. The 

processing and analysis of two-dimensional space 

images need to be converted to the processing and 

analysis of spectral curves extracted from each pixel 

(Zhang, 2006).  

Mineral mapping can be said to be the most 

successful application field of the hyperspectral 

technology, which can also give full play to the 

advantages of technology. It enables the remote 

sensing geology to develop from identifying lithology 

to identify the chemical composition and crystal 

structure of single minerals and even 

minerals(Pieters,&Englert,1993), which will be one of 

the important high-tech technologies to support the 

investigation of strategic mineral resources, 

environmental monitoring and control and the Project 

Moonshot in China(Wang,Gan,&Yan,2010). In the 

early stage, the study of hyperspectral remote sensing 

for rock and mineral identification was mainly focused 

on the response law of reflectance spectrum of rocks 

and minerals. In the 1970s and 1980s, the researchers 

measured and analyzed the spectral characteristics of a 

large number of typical rocks and minerals, including 

the mixture of montmorillonite and black carbon 

particles, anhydrous carbonate, silicate minerals, etc 

(Hunt, 1977, 1979; Clark, 1983; Gafeey, 1987;Li, & 

Liu, 2008). The measurement and analysis of the 

spectral characteristics of rocks and minerals have laid 

a foundation for the rock and mineral identification of 

hyperspectral remote sensing.  

Since 1990s, the research focus has gradually 

shifted from the characteristics law of spectral 

response of rock and mineral to hyperspectral remote 

sensing rock and mineral identification technology, 

and has formed a series of complete processes of 
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hyperspectral remote sensing rock and mineral 

information identification. Typical: a set of methods 

developed by American AIG company(Kruse,2003): 

minimum noise fraction (MNF), pixel purity index 

(PPI), n-dimensional visualized analysis and spectral 

angle mapping (SAM) or mixture tuned matched 

filtering(MTMF), and  Tetracorder system developed 

by USGS and JPL in the United States 

(Clark,Swayze,&Livo,2003). The ideas adopted by 

these methods are as follows: After the preprocessing 

of atmospheric correction, geometric correction and 

noise suppression of hyperspectral remote sensing 

images, the reference spectrum and image pixel 

spectrum are processed and analyzed, and the 

categories, composition or abundance of minerals are 

obtained, thus realizing the accurate identification of 

rocks and minerals (Zhang,Qin,&Chen,2015; 

Lu,2018; Ye, Meng,&Zhang,2018). 

In this paper, the clustering algorithm is applied to 

hyperspectral mineral target detection to verify the 

feasibility taking the clustering center as the target. 

The structure of this paper is as follows: the second 

part introduces the density peak clustering algorithm, 

the third part introduces two target detection 

algorithms, the fourth part uses hyperspectral images 

for clustering and detection experiments, and 

evaluates the experimental results, and the fifth part 

draws the conclusion. 

2 DENSITY PEAK CLUSTERING ALGORITHM 
AT present, clustering methods are still mostly 

used in image classification field. Classical clustering 

methods include K- mean clustering, IsoData 

clustering, Naive Bayes method and so on.(Parastou, 

Soheil, &Abbas, 2017) In recent years, the density 

based clustering algorithm has gained the extensive 

attention from the researchers. The DBSCAN (Li, 

2010) method has the function of noise processing. 

According to whether the density reaches the 

threshold, the range of data is divided. The DBSCAN 

algorithm has two advantages: first, the structure is 

simple and the clustering efficiency is high; second, 

the aggregation data sets of various shapes can be 

identified, and the noise interference can be avoided 

effectively. However, the algorithm also has its own 

defects. The algorithm must manually set two 

parameters. These two parameters have great 

influence on the clustering results and the stability of 

the algorithm is poor. The other method is OPTICS 

(Duan, 2013), which is an improved algorithm based 

on the previous method, which improves the stability 

of the algorithm. By generating an ordered cluster 

sequence, the algorithm can get the aggregation of 

different densities. The difficulty of the algorithm is to 

maintain the ordered list of the direct reachable points 

of the core points, and increase the complexity of the 

algorithm (Lu, 2017). 

The essence of the clustering algorithm based on 

the peak density lies in the determination of the cluster 

center. First, the point with the largest density i
 is 

found, and then the point with the larger distance 

between the points with the larger density can be 

identified as the cluster center.  

The two important parameters i
 and i

  of the 

sample points are defined as follows 

(Rodriguez,&Laio,2014): 

( )
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d represents the distance between the sample 

point i and the sample point j, and c
d represents the 

truncation distance, that is the threshold of distance. 

i
 represents the number of sample points in a 

circular region with i as the center of the sample point 

and c
d as the radius. The larger the i

 , the more 

points around the sample point i less than the distance 

of 
c

d from i, which means that the points around i are 

thicker. 

i
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i
 represents the minimum distance between the 

sample point i and the sample point whose density is 

greater than i, and i
  describes the difference among 

categories. The larger the i
 , the larger the distance 

between the sample point i and the sample point 

whose density is greater than it, indicating that this 

point is not the same class as the point of greater 

density.   

The goal of clustering is that the smaller the 

difference, the better in the same category, and the 

higher the difference between categories, the better. It 

can be seen from the above two parameters that the 

larger the i
 , the larger the density of the sample 

point, and the more points around it, and the larger the 

probability of the sample point as the cluster center, 

and the points around it should be clearly divided into 

the same category. Under the premise of satisfying 

this condition, we should also consider that the larger 

the gap between the classes, the better. And the larger 

the i
 , the larger the difference between classes. 

According to the above discussion, we only need to 

find the point with larger i
 and i

 , and then we can 

determine the cluster center. When we calculate the 

values of i
 and i

 of the sample point, we can 

characterize the sample point into decision diagrams, 

and then the decision diagram is used to intuitively 
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determine the cluster center. After determining the 

cluster center, we need to classify other sample points. 

The basis of distribution is that the attribution of a 

sample point is consistent with the attribution of the 

nearest point whose density is higher than it.  

Due to the uniqueness of the clustering algorithm 

classification criteria of density peaks, it can identify 

all kinds of data classes of different shapes.  

3 TARGET DETECTION METHOD 
HYPERSPECTRAL target detection methods are 

classified according to different criteria. According to 

the target pixel size, it can be divided into pure pixel 

target detection method and a sub-pixel target 

detection method. According to whether the target 

spectrum is a prior knowledge, it can be divided into 

the target matching detection method and the 

abnormal target detection method. According to the 

different algorithms, it can be divided into the method 

based on hypothesis testing and the method based on 

projection. Classical detection methods have matured 

and new algorithms have emerged one after another. 

This section introduces two classical target detection 

algorithms. 

3.1 HUD Algorithm 
HUD (hybrid unstructured detector) (Du, 2010)is 

evolved from ACE, and ACE is a very effective sub-

pixel target detection method. Specifically, the 

background structure is completely removed in the 

ACE method, and the background is assumed to be a 

Gaussian distribution with zero mean and covariance 

of 
2Γ .  

ACE can be expressed as:  
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r is a spectral vector of a pixel in a hyperspectral 

image, D is the target spectral matrix, and is the 

background covariance matrix. 

The HUD algorithm 
T 1 1 T 1( )D D D r   

 will be 

replaced by the real spectral component ˆFCLS
a obtained 

by the full constraint least square spectral 

decomposition, that is: 
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FCLS
a can be calculated by 
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Among them, x represents the pixel spectrum, E 

represents the end-member matrix, and a represents 

the abundance. 

3.2 OSP Algorithm 
The idea of orthogonal subspace projection (OSP) 

algorithm is to maximize the signal-to-noise ratio of 

background orthotopic subspace projection (Huang, 

2014; Hou, 2016). Assuming that there is only one 

kind of target to be detected in hyperspectral data X, 

the signal to be detected is set as t, and its abundance 

is αt. The background signal is set as U, and the 

percentage of the background is αU, so there is:  

 t U    X t U  

The OSP algorithm gives the projection operator 

UP 
to remove the unused background U, and UP 

 is 

defined as: 

 
#

UP   I UU  

#U  is called the pseudo inverse of U, 
# T 1 T( )U U U U . The function of the projection 

operator UP 
is to project the hyperspectral data into 

the subspace spanned by the background. The formula 

is as follows: 
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At this point, the background signal U is 

eliminated. Then, we look for a vector w to maximize 

the signal to noise ratio (SNR) of the output UP 
w X

. 
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The solution of the upper form is equivalent to 

solving one eigenvalue problem. 

 
1 T T( ) ( )U U UP P P     tt w w

 

w t is obtained, among which  is a integer. 

Therefore, the OSP operator is finally in the form of: 

 
T T

Uq P  t  

The OSP algorithm can eliminate the background 

influence and suppress the noise signal while retaining 

the target signal to the maximum extent (Wang,2014). 

4 EXPERIMENT AND ANALYSIS 

4.1 Experimental Data 
THIS experiment used the AVIRIS (Airborne 

Visible Infrared Imaging Spectrometer) hyperspectral 

data of Cuprite copper mine area of Nevada in 

America, and combined with the spectral library of 

geological survey in the United States (usgs_min.sli). 

AVIRIS can provide a whisk broom imaging with 

spectral resolution of 10 nm, ground pixel resolution 
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of 20 m, and spectral range of 0.2~2.4 μm (Wang et 

al,2010). 

The Cuprite mining area is divided into east and 

west two north-south elongated alteration zones by 

road No.95. There are mainly outcrop rocks in the 

eastern region, including tertiary volcanic rocks and 

quaternary alluvial rocks, while there are cambrian 

metamorphic sedimentary rock, tertiary volcanic rocks 

and quaternary alluvial rocks. The experimental area 

has been an important experimental area for 

geological research since the 1970s due to its good 

rock outcrop, diversified mineral assemblage, dry 

climate and convenient transportation. 

This experiment selected a part of the region, and 

the size was 60*60. In addition to the water vapor 

absorption and low signal to noise ratio band, there 

were 202 remaining bands. The study area image is 

shown in Figure 1. Figure 2 shows the mapping results 

of Clark and Swayze (Clark, &Swayze,2003) in the 

corresponding region, which contains Na82 Alunite, 

Kaolinite, high-Al muscovite and other minerals and 

also a mixture of several types of minerals. 

 

Figure 1. Cuprite research area 

       

Figure 2. The mapping results by Clark et al 

4.2 Experimental Method 
In this experiment, the SAM (Spectral Angle 

Mapper) method was first used to obtain the spectral 

angle between pixels in the image. The spectral angle 

matching technique is a measure based on the 

similarity of spectral dimension curves. It determines 

the similarity between them by calculating the angle 

between the spectral vectors. The smaller the angle, 

the greater the similarity between the two (Wang et al, 

2010). The spectral angle was used as the raw data of 

the density peak clustering algorithm, and the local 

density and the local minimum distance were 

calculated to make the decision diagram. 

Secondly, according to the principle of density 

peak clustering, some isolated points were manually 

selected as cluster centers from the decision diagram, 

and then the number of cluster centers and the array of 

attribution markers were initialized, and the clustering 

results were obtained after statistical classification. 

Thirdly, according to the location of the cluster 

center, the location spectrum was extracted from the 

image, which was used as the target spectrum. The 

attribution marker array was used as ground data in 

clustering results, HUD and OSP algorithms were 

used to detect, and the detection rate, false alarm rate, 

ROC curve and other indexes were used to evaluate 

the results. 

The American geological exploration spectrum 

library (usgs_min.sli) can be obtained from the ENVI. 

Finally, the correlation coefficient between the 

standard mineral spectrum and the cluster center 

spectrum was obtained. The correlation coefficient 

solution formula is as follows: 

 
CC 0 0 0, , ,e e es s s s s s

 

The experimental flow chart is shown in Figure 3. 

4.2 Experimental Results 

4.2.1 Cluster Results 
By calculating the local density and local minimum 

distance, the decision graph and two-dimensional data 

distribution graph are shown in Figure 4. In the 

decision graph, the abscissa represents the local 

density, the ordinate represents the local minimum 

distance, and the color points in the coordinate are the 

isolated points selected by the manual frame, which 

are also the five cluster centers of the experiment. The 

cluster results are shown in Figure 5. 

Table 1 shows the location of five cluster centers 

and the number of elements contained in each 

category, so as to provide a standard for subsequent 

detection and evaluation. 

4.2.2 Target Detection Results 
The spectral curves of the five cluster centers are 

shown in Figure 6, and they are used as the target 

spectrum. The HUD and OSP methods are used to 

detect the target in the image. The detection result 

graphs are shown in Figure 7, and the ROC curve is 

shown in Figure 8. 

By calculating the local density and local minimum 

distance, the decision graph and two-dimensional data 

distribution graph are shown in Figure 4. In the 

decision graph, the abscissa represents the local 

density, the ordinate represents the local minimum 

distance, and the color points in the coordinate are the 

isolated points selected by the manual frame, which 

are also the five cluster centers of the experiment. The 

cluster results are shown in Figure 5. 
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Figure 3. Experimental flow chart 

 

 

Figure 4. Decision graph and two-dimensional data 
distribution graph 

Table 1  Cluster center coordinates and the number of various 
elements 

Category Central position 
Element 

number 

1 （5,13） 215 

2 （27,13） 98 

3 （57,26） 286 

4 （8,36） 2806 

5 （41,51） 195 

 

Table 1 shows the location of five cluster centers 

and the number of elements contained in each 

category, so as to provide a standard for subsequent 

detection and evaluation. 

4.3.2 Target Detection Results 
The spectral curves of the five cluster centers are 

shown in Figure 6, and they are used as the target 

spectrum. The HUD and OSP methods are used to 

detect the target in the image. The detection result 

graphs are shown in Figure 7, and the ROC curve is 

shown in Figure 8. 
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Figure 5. Clustering result graph 

 

Figure 6. Cluster center spectral curve 

Figure 7 (a) - (e) shows the detection results of 5 

kinds of targets. Compared with Figure 5, it can be 

seen that both HUD and OSP two algorithms can 

detect the target in the image, however, in the first, 

second, fifth class of detection results, HUD produces 

less false alarm, and in the third, fourth detection 

results, the OSP produces less false alarm. It can be 

seen from the ROC curve in Figure 8 that the two 

algorithms show better performance. Table 2 and 3 

show the false alarm rate, detection rate and missed 

alarm rate of the two methods. The threshold is set to 

0.01, and the missed alarm rate and false alarm rate 

are calculated. At the same time, the false alarm rate is 

counted when the detection rate is 0.5. 

From Table 2 and 3, we can find that the HUD and 

OSP methods can show high detection rate and low 

false alarm rate under a specific threshold. In the 

second class detection results, the false alarm rate of 

the HUD method is only 0.05 when the detection rate 

is 0.85, and in the fourth class detection result, the 

detection rate is 1 when the false alarm rate of the 

OSP method is 0.2. When the detection rate is 0.5, 

HUD and OSP methods both maintain low false alarm 

rate, and the HUD false alarm rate is all below 0.15. 

4.3.3  Correlation Coefficient between Mineral 
and Cluster Center 

Combined with the US geological exploration 

spectrum library (usgs_min.sli), we obtained the 

correlation coefficients between the five cluster center 

spectra and 481 spectra in the spectral library. The one 

with high correlation coefficient was chosen as the 

corresponding mineral. The selection results are 

shown in Table 4. 

As can be seen from Table 4, the first class 

corresponds to Na82 Alunite, the second class 

corresponds to the Na03 Alunite, the third class 

corresponds to the High Al Muscovite GDS107, the 

fourth class corresponds to the Kaolinite, and the fifth 

class corresponds to the Kaolinite pxl. However, the 

correlation coefficient between the fourth class and 

Kaolinitepxl is 0.69, which may be in a mixed state of 

Kaolinite and other minerals. According to the 

mapping results of Clark et al in Figure 2, there is no 

Na40 Alunite spectrum in the spectral library, so they 

choose Na03 Alunite which is similar to it, and the 

minerals corresponding to the high correlation 

coefficient are more accurate. 
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(b) 

 

(c) 

  

(d) 

 

(e) 

Figure 7. Detection results (a) category I,(b) category II,(c) 
category III, (d) category IV,(e) category V 

 

 

(a) 

  

(b) 

 

(c) 

   

(d) 

 

(e) 

Figure 8. ROC curves of detection results  (a) category I,(b) 
category II,(c) category III,(d) category IV,(e) category V 
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5 CONCLUSIONS 
HYPERSPECTRAL, because of its own 

characteristics, has significant advantages in the field 

of target detection, which can solve the problems that 

the traditional panchromatic images and multispectral 

images cannot solve. However, the mixed pixel in the 

image exists widely, which makes the research of the 

related applications more difficult. The density peak 

algorithm is based on high-dimensional data, and has 

the good effect in the data set with uneven density 

distribution. In this paper, the density peak algorithm 

is used to cluster the images, determine the cluster 

centers of all kinds of images and take them as the 

target spectrum. The clustering results are used as the 

ground data, and the two methods of HUD and OSP 

are used to detect the images, and the correlation 

coefficients of the spectrum of each cluster center and 

the spectral library mineral spectra are obtained. 

Finally, the result is compared with the mapping 

results of Clark et al. The experimental results show 

that the cluster center spectrum as the target can detect 

the location of the corresponding mineral target in the 

image, which has high detection rate and low false 

alarm rate, and has higher correlation coefficient with 

mineral in the result of mapping, indicating that the 

cluster center in the image is similar to pure pixel. 

However, in the process of clustering, manual 

selection of cluster centers can not automate the 

algorithm, the small targets in sub-pixel can not be 

detected well, and the memory and time consumption 

in large size images research are higher. Therefore, the 

optimization of the algorithm and the improvement of 

efficiency have become a problem to be solved in the 

future. 
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