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1 INTRODUCTION 
WITH the rapid development of high-speed 

railway technology, a new era of high-speed railway 

was imminent. SONG XiaoLin et al. (2014) have 

proposed that a number of new high-speed railway 

lines have been put into service in China, with 

operation speeds usually of 300 km/h and maximum 

speeds of as much as 350 km/h. Yang Yang et al. (2015) 

have proposed that high-speed railways need more 

smooth and stable track to ensure the continued 

running safety and riding quality of the electric 

multiple unit (EMU) as train speed increases. 

Conventional ballasted railway tracks require 

periodical tamping due to uneven settling of the 

ballast during operation. The sleeper panel must be 

adjusted frequently to maintain the smoothness of the 

rail surface. Previous experience has shown that this 

kind of maintenance work is significantly increased 

for high-speed railways.  

As Qianfeng Wang et al. (2016), Railway 

Construction (No. 754) and Robertson, C. et al. (2015) 

mentioned, the non-ballasted track, a concrete slab 

instead of a ballast bed to support the running train 

can enormously reduce maintenance and maintain 

constant serviceability conditions over a long service 

life. Therefore, a variety of non-ballasted tracks have 

been applied to many newly built high-speed railways 

because of their notable advantages in terms of 

structure stability, durability and track smoothness.  

CRTSⅡ slab track system is one of the CRTS 

series of non-ballasted track structure, has been 

successfully used in the Beijing-Tianjin intercity 

railway, Shanghai-Hangzhou, Ningbo-Hangzhou, 

Hefei-Bengbu, Beijing-Shijiazhuang, Shijiazhuang-

Wuhan, Tianjin- Qinhuangdao, Hangzhou-Changsha 

etc., more than 10 high-speed railway or passenger 

line. Figure1 shows a Sketch of the CRTS II slab track 

system. 

However, just as Zhai W M, et al. (2014) and ZHU 

Sheng-Yang, et al. (2012)  have proposed, these non-

ballasted tracks suffer from various degrees of 

damages due to crack, most frequently on the track 

plate or road bed, Figure 2 shows an example of 

cracked non-ballasted track in Cheng-yu line. The 

areas having high rainfall or serious water logging, the 

non-ballasted track structure cracks growth much 

faster than those in dry areas. 

 

 
ABSTRACT 

This paper reports the experimental study of water pressure properties inside 
crack of Non-ballasted track structure. Pre-existing crack concrete specimens 
with 510 × 1290 × 80mm dimensions were produced, and fluid-fracture 
interaction tests under cyclic loading were performed. The water pressure were 
measured at different locations inside cracks and with different loading 
frequencies as well as amplitudes. By using the experimental data, then is 
employed to investigate the water pressure distribution inside cracks affected 
by both the frequency and amplitude under cyclic loading. From this study, it 
was determined that the water pressure of cracks alternates between positive 
and negative values under cyclic loading, and increase with the increase of 
crack depth, loads amplitude and loads frequency. Furthermore ， the 
relationship between the water pressure, loads amplitude and loads frequency 
can be fitted into a polynomial expression. 
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Figure 1: The CRTS II slab track in the subgrade section consists 
of rail, fastener system, pre-stressed concrete slab, CA mortar 
layer and concrete support layer (Figure 1). 

Consequently, the CRTS II slab track properties 

will continually degrade; as a result, extra 

maintenance of the deteriorated track must be carried 

out frequently. It is therefore essential to investigate 

the water pressure performance inside crack and to 

influence on dynamical water pressure characteristics. 

Xu Gui-hong (2013) have proposed that, the effect of 

water -caused damage on track-service properties has 

become an important issue as well. (see figure 2).  

 

 

 

Figure 2: Example of damages on non-ballasted track. Shown 
is Cheng-yu line. The left panel depicts water accumulation 
between the supporting layer and the CA mortar, and the right 
one presents a crack on the track plate 

Some research has analyzed the relationship 

between concrete crack growth and water pressure, 

Such as: Brühwiler and Saouma V.C, et al. (1995) 

presented the results of fracture experiments, where in 

a crack is subjected to hydrostatic pressure; Akira 

Shinmura, et al.  (1997) determined that the presence 

of a hydrostatic pressure reduces not only the fracture 

energy of concrete but also the bond between 

reinforcement and concrete; G. Alfano, et al. (2006), 

on the basis of the experiment, proposed a damage–

friction model based on a new multi-scale approach 

for the interface. G. Debruyne,et al.(2012) described 

the successive fast crack growth and arrest, driven by 

a discontinuity in fracture toughness; Farrokh,et al. 

(2005) developed a theoretical model of transient 

water pressure variations along a tensile seismic 

concrete crack, and performed experimental tests to 

validate the proposed model. 

Although there are many researches in damage of 

non-ballasted and the relationship of crack 

propagation and water[14-19], such as: Elisa Poveda, et 

al(2015), have proposed a numerical study on the fatigue 

life design of concrete slabs for railway tracks. Lianhai 

Zhang, et al (2016), have showed An investigation of 

pore water pressure and consolidation phenomenon in the 

unfrozen zone during soil freezing.  Zhao Pingrui, et al 

(2014), showed Experimental study of temperature 

gradient in track slab under outdoor conditions in 

Chengdu area.  And LI Zongli, et al (2014), showed an 

analysis of Water Infusion in Rock Mass or Concrete 

Fracture Under Constant Water Head. Most of them are 

based on the assumption of hydrostatic pressure[20-24]. 

Little research has been conducted on the dynamic 

load, load frequency and load amplitude. This article 

deals with the water pressure behavior in crack of non-

ballasted track under cyclic dynamic load. A series of 

laboratory tests were performed to assess the effect of 

loading frequency and loading amplitude on the water 

pressure in crack. These experiments were then 

numerically simulated by a finite element. Based on 

the experimental and numerical investigation, a 

theoretical model is developed for transient water 

pressure variations in crack of non-ballasted track. 

2 EXPERIMENTAL 

2.1 Specimen 
IN this investigation, an ordinary Portland cement 

produced in the Guizhou cement plant in China was 

used, and all its properties were in accordance with the 

Chinese standard of Common Portland Cement. 

Natural river fine sand was adopted as fine aggregate, 

with a fineness modulus of 1.8. Natural river pebble 

was used as coarse aggregate (diameter ranging from 

5 to 30 mm). Water was tap-water. Water-cement ratio 

was 0.5, and the mix proportions by weight of the 

mixture are shown in Table 1.  

In order to study the water pressure in cracks of 

non-ballasted track, the reduced-scale track structure 

with precast crack was produced in the “MOE Key 

Laboratory of High-speed Railway Engineering” of 

Southwest Jiao tong University for crack water 

pressure tests. 
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Table 1 Mix proportion of concrete specimen  

Material Mix ratio Remarks 

Cement 246 kg/m3 P.O 42.5 

Fly ash 123 kg/m3  

Breeze 41 kg/m3  

Fine aggregate 847 kg/m3  

Coarse aggregate 1036 kg/m3  

Water 157 kg/m3  

water reducer 3.7 kg/m3  

(28d)Compression 

strength of concrete 
48.7 Mpa  

 

Since, the original size of CRTSⅡnon-ballasted 

track structure is too large to production and transport 

for the laboratory difficult, the width, length and 

thickness of track plate and cement treated base were 

considered as 510, 1290mm, and 80mm respectively. 

But crack opening displacement is 3mm no reduction. 

The production of the track structure with crack 

process is as showed in figure 4. 

The test specimens were cured under laboratory 

conditions for 30 days, and the completed track plate 

specimen is shown in Figure4. In this tests model the 

elasticity modulus and Poisson ratio were taken as 

20Gpa and 0.17 for concrete. The volumetric mass 

and strength of concrete was considered 2400kg/m3 

and 40Mpa. 

2.2 Experimental procedures 
The experimental setup, shown Figure 5, consists 

of three main parts: a cyclic dynamical loads system, a 

computer controlled data acquisition system, and 

water pressure sensor. The water pressure was 

monitored using the high sensitivity water pressure 

sensor supplied by Chengdu Taisite Company. 

The frequency of the test cyclic loading is related 

to the speed of the train. When the speed of train are 

200km/h~400km/h (55m/s~111m/s), can calculate the 

wheel loads frequency between 3-9Hz according to 

the relevant parameters of type CRH2 high speed 

locomotive (see table2).  

The crack full filled water see Figure 6, the high-

precision digital pressure sensor was inserted into 

crack to measure water pressure which connected to 

the computer, and the computer can directly save and 

display the results of the water pressure under cyclic 

loading. 

The load amplitudes chosen were 45±20, 50±25, 

55±30, 60±35, 65±40, 70±45. The loading curve 

applied on the test specimen by servo-hydraulic 

universal testing machine is set to a sinusoidal curve, 

the 60±35kN curve as shown in Figure 7. A total of 24 

tests were conducted, see Table 3~Table 7. 

 

 

(a): Cast-in-situ concrete of the cement treated base 

 

(b):The steel plate with 500×400×3mm dimensions was placed 
in the middle part of the track plate 

 

(c) Cast-in-situ concrete the track plate with precast crack 

 

(d): Before the final solidification of concrete, the steel plate 
was removed and slab with precast crack was produced    
 
Figure 4 The production of the track structure with crack 
process 
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Figure 6: High-precision digital pressure sensor measure water 
pressure 

Table 2: Parameters of type CRH2 high speed locomotive 

Components Parameters Components Parameters 

Train Type CRH2 
Axle-load of 

Bogies 
14t 

wheel-base 

bogie 
2.5m 

vehicle 

length 
25m 

Bogie center 
distance 

17.5m 
Head car 

length 
25.7m 
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Figure 7: The sinusoidal curves are set on the servo-hydraulic 
universal testing machine. 

Figure 8 shows the arrangement of monitoring 

points in order to evaluate the water pressure 

properties in crack of specimens. Point 1 and4, 2 and 

5, 3 and 6, were 50, 100 and 150 mm away from the 

crack mouth respectively. 

 

Figure 8 Monitoring point layout 

3 TEST RESULTS AND DISCUSSION 

3.1 Water pressure at different points 
THIS section mainly analyses the change 

characteristics of crack water pressure under cyclic 

load in different monitoring points. The relevant 

parameters and arrangements for the tests are shown 

in Table 3. 

 
Table 3 Water pressure test arrangement (1) 

Test number 1 ~6 

Crack width  500mm 

Crack length 300mm 

Load frequencies (Hz) 5 

Mean Fatigue load 

(Sinusoidal)±Amplitude  
60±35(kN) 

Monitoring site Point1 to point 6 

Test objective 
Water pressure analysis at 

different points 

 

  

 

Figure 5: Schematic view of test set up 
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Figure 9, Figure 10 and Figure 11 illustrates the 

water pressure-time curves for monitoring points1, 2 

and 3 in table 3. 
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Figure 9: Water pressure variation of monitoring point 1  
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Figure 10: Water pressure variation of monitoring point 2 
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Figure 11: Water pressure variation of monitoring point 2 

Figure 9, Figure 10 and Figure 11, show that water 

pressure will be produced in crack when the cyclic 

loads applied on the track plate. Furthermore, the 

water pressures rapid builds up or disappear as the 

loading applied or offload. When the load reaches the 

maximum value, the water pressure also has a peak 

value. 

When the load frequency is 5Hz, there are 5 big 

peaks in the 1s .The pressure of each peak is similar 

but not identical. After each big peak, there will be a 

few small peak, this is caused by the shock nature of 

the water. 

Through the comparison of the peak water pressure 

of the 1, 2 and 3 monitoring points, it is known the 

water pressure increases with the increase of the crack 

depth. The maximum at monitoring point 3 is 1kPa. 

Water pressure variation of monitoring points 4, 5 

and 6 are reported in Figure 12, Figure 13 and Figure 

14. 
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Figure 12: Water pressure variation of monitoring point 4 in 
test 1 
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Figure 13: Water pressure variation of monitoring point 5 in 
test 1 
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Figure 14: Water pressure variation of monitoring point 6 in 
test 1 

The water pressure maximum for monitoring 

points 1~6 are 0.31, 0.71, 1.0, 0.31, 0.83 and 1.02 kPa. 

Through the comparison of the peak water pressure of 

the 1, 2, 3, 4, 5 and 6 monitoring points, they were 

indicated that the water pressure in crack is not same 

at different positions under the same load frequency 

(5Hz) and amplitude (60±35kN).  

From monitoring points 1 to 3 (or 4 to 6), with the 

increase of crack depth, water pressure increased. The 

water pressure for monitoring points in the middle part 

of the crack is a lightly bigger than those of the both 

sides. 
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3.2 The effect of Crack width on water 
pressure 

This section mainly analyses the change 

characteristics of crack water pressure under different 

crack width in different monitoring points. The 

relevant parameters and arrangements for the tests are 

shown in Table 4. 

 
Table 4 Water pressure test arrangement (2) 

Test number 7 8 9 

Crack width (mm) 300 500 700 

Crack length(mm) 300mm 

Load frequencies 5（HZ） 

Mean Fatigue load 

(Sinusoidal)±Amplitude  
60±35(kN) 

Monitoring site Point1 to point 5 

Test objective 
Analysis of the influence of 

crack width on Water pressure 

 

The results of the water pressure tests as obtained 

in this investigation are given in table 5 and figure 15. 

 
Table 5 test results 

Monitoring 
site 

Crack width (mm) 

300mm 500mm 700mm 

Point 1 0.264 0.973 1.074 

Point2 0.318 1.565 1.903 

Point3 0.624 2.546 3.658 

Point4 0.634 3.055 6.008 

Point5 0.852 3.658 6.702 

 

It can be seen from the table5 that the water 

pressure at the same point increases with the crack 

width increasing, such as point 2, when the crack 

width is 300mm, 500mm and 700mm, the 

corresponding water pressure is 0.318kPa, 1.565kPa 

and 1.903kPa respectively. 
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Figure 15 Test results for different crack width 

It can be observed from figure15 that the data 

points raise approximately along a straight line, which 

indicates that the crack width is a important factor for 

water pressure. 

3.3 The effect of Crack Length on water 
pressure 

This section mainly analyses the change 

characteristics of crack water pressure under different 

crack length in different monitoring points. The details 

of the parameters and arrangements for the tests are 

shown in Table 6. 

 
Table 6 Water pressure test arrangement  

Test number 10 11 12 

Crack width 500mm 

Crack length(mm) 200 300 400 

Load frequencies 5Hz 

Mean Fatigue load 

(Sinusoidal)±Amplitude 

60 kN±35kN 

Monitoring points Point1 to point 3 

Test objective 
Analysis of the influence of 

crack length on Water pressure 

The results of the water pressure tests as obtained 

in this investigation are given in table 7. 
 

Table 7  Test results 

Monitoring points 
Crack length (mm) 

200mm 300mm 400mm 

Point 1 0.458 0.973 1.032 

Point2 1.121 1.565 1.883 

Point3 1.894 2.546 2.688 

 

It was observed from the table 7 that the water 

pressure at the same point increases with the crack 

length increasing, such as point 2, when the crack 

width is 200mm, 300mm and 400mm, the 

corresponding water pressure is 1.121kPa, 1.565kPa 

and 1.883kPa respectively. 

3.4 The effect of load Frequency on water 
pressure 

In this section, the effect of the load frequency on 

water pressure will be investigated.  

The results for maximum water pressure and load 

frequency relationship for monitoring point 2 in table 

8 tests are reported in Figure 16. 
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Table 8 Water pressure test arrangement 

Test number 13~18 

Crack width  500mm 

Crack length 300mm 

Load frequencies (Hz) 3,5,7,9,11,13 

Mean Fatigue load 

(Sinusoidal)±Amplitude  
60±35(kN) 

Monitoring points Point 2 

Test objective 

Analysis of the influence of 

load amplitude on Water 

pressure 
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Figure 16: The relationship between load frequency and water 
pressure for point 2 

It can be seen from Figure 16 that the maximum 

water pressure in crack increases with the load 

frequency at the same monitoring point 2. 

The relationship between load frequency and 

water pressure in cracks can be fitted as: 

 45150291000850 2 .n.n.P   

where P is the maximum water pressure in kPa, and 

n is the load frequency in Hz. 
The load frequency is obtained by the conversion 

of train speed and bogie center distance, therefore, the 

train speed is an important factor that affects water 

pressure in cracks. The higher the train speed, the 

larger water pressure in cracks. 

3.5 The effect of load amplitude on water 
pressure 

In this section, the effect of the load amplitude on 

the maximum water pressure will be investigated. The 

details of the parameters and arrangements for the 

tests are shown in Table 9. 

In tests table 9, as shown in Figure 17, with the 

increase of load amplitude, the water pressure also 

increased. When load amplitude is 20kN, the pressure 

is 0.281kPa. When the load amplitude was 30kN, the 

corresponding pressure was 0.543kPa. When the load 

amplitude was 40kN, the corresponding pressure was 

1 kPa. When the load was 45kN, the corresponding 

pressure was 1.365kPa. 

Table9 Water pressure test arrangement  

Test number 19 ~24 

Crack width  500mm 

Crack length 300mm 

Load frequencies 5Hz 

Mean Fatigue load 
(Sinusoidal)±Amplitude 

(kN) 

45±20, 50±25, 55±30, 

60±35, 65±40, 70±45 

Monitoring site Point2 

Test objective 
Analysis of the influence of 

frequency on Water pressure 
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Figure 17: The relationship between the maximum water 
pressure and load amplitude for monitoring point 2. 

The relationship between the maximum water 

pressure of monitoring point 2 and loads amplitude 

can be fitted as: 

 
f..P 062300840 e  

where f is the loads amplitude in kN. 

4 CONCLUSIONS 
The aim of this paper is to evaluate the properties 

of water pressure inside crack under cyclic loading, 

and provide a scientific data for the study of the water 

damage of non-ballasted track.  

The reduce-size track plate was be made and a 

series of laboratory tests were performed to assess the 

effect of crack width, crack length, load frequency and 

load amplitude on the water pressure in crack. Test 

results show that: crack length, load frequency and 

load amplitude are important factor that affects the 

water pressure in cracks.  

(1) The shape of the crack has an effect on the 

water pressure inside the crack. With the increase of 

crack width and length, the crack water pressure 

increases. 

(2) The train speed is an important factor that 

affects water pressure in cracks. The higher the train 

speed, the larger water pressure in cracks. 

(3) For the same point with the increase of load 

amplitude, the water pressure also increased. 
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These findings have benefits in terms of maintain 

and design for non-ballasted track structure. 
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