
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 4, 755–766
https://doi.org/10.31209/2019.100000079

CONTACT Tianjun Wu wutianjun08@nudt.edu.cn

© 2019 TSI® Press

Detecting Android Inter-App Data Leakage via Compositional Concolic
Walking

Tianjun Wu, Yuexiang Yang

College of Computer, National University of Defense Technology, Changsha 410073, China

KEYWORDS: Inter-App data leakage; security audit; static taint analysis; concolic walking; vulnerability
analysis.

1 INTRODUCTION
THE Android mobile operation system has

overtaken Windows as the most popular OS for total

Internet usage [35]. It has a growing number of

sources of third-party apps, i.e., app markets like F-

Droid, Amazon Appstore, GetJar, et al. Thus, the

security of apps in those markets becomes a large

concern [23].

The inter-component communication (ICC, for

short) model [5] of Android provides an efficient data-

exchange mechanism for apps. But it also can give

rise to new types of vulnerabilities such as Inter-App

data leakage and collusion attacks, since a part of the

functions of an app can be invoked by another app

through ICC. One user is likely to have tens or even

more apps installed on the device, and thus the

situation of the overall security of those installed apps

becomes a new interesting problem to investigate.

The challenge for auditing Inter-App

vulnerabilities, e.g., Inter-App data leakage as focused

on in this paper, lies in that the execution path of the

vulnerable behavior distributes in multiple apps. For

any app in a vulnerable app set, it can be taken as

benign when being analyzed in isolation, just because

it does not exhibit any sensitive behavior itself and the

sensitive behavior has to be carried out as the result of

the cooperation of all the apps.

While many research works have focused on

auditing an individual target

[4,18,19,20,26,27,28,29,30], there is only a minority

of research efforts into the security audit of the entire

collection of Android apps. IccTA [1] tries to find

Inter-App data leakage using techniques such as static

taint tracing. Convert [3] proposes to use static model

checking to detect Inter-App vulnerabilities, but it

cannot detect data leakage. Static analysis is

essentially inaccurate and cannot avoid false positives.

In this paper, instead, we propose the first dynamic

audit framework for Inter-App vulnerabilities by

applying concolic execution [10]. Concolic execution

achieves automated input generation for dynamic

analysis, by treating registers as symbols, recording

path conditions w.r.t. each execution path, and then

ABSTRACT
While many research efforts have been around auditing individual android apps,
the security issues related to the interaction among multiple apps are less
studied. Due to the hidden nature of Inter-App communications, few existing
security tools are able to detect such related vulnerable behaviors. This paper
proposes to perform overall security auditing using dynamic analysis techniques.
We focus on data leakage as it is one of the most common vulnerabilities for
Android applications. We present an app auditing system AppWalker, which uses
concolic execution on a set of apps. We use static Inter-App taint analysis to
guide the dynamic auditing procedure, so that we can target at potential Inter-
App data leakage. To mitigate the exponential blow-up when auditing various
combinations of apps, we introduce a novel technique called compositional
concolic walking. In the end of the auditing, the event and data inputs created
during concolic walking are fed to the app set. By dynamically checking the
triggered data-leaking behavior, we are then able to confirm the existence of
Inter-App data leakage. AppWalker takes into account both intra- and inter-app
communications, and is the first research work on dynamic audit of inter-app
vulnerabilities in a path-sensitive way to our knowledge. Experimental results
reveal that our method can effectively detect real-world Inter-App data leakage.

756 WU and YANG

solving them to get the desired inputs with a SMT

solver.

Concolic execution usually faces the notorious

problems of path explosion. This can be even serious

for our scenario and make our analysis inefficient

when analyzing a set of apps, since we have to audit

different possible combination of apps. Fortunately,

we find the loosely coupled and well-formed ICC

interface defined by Android can be utilized to boost

performance. Paths can be naturally isolated and

symbolically executed according to component

boundary which is unrealistic for traditional apps as

class interface are diversified and ambiguous. We thus

propose a new method called compositional concolic

walking. Another bonus of the method is that, those

path constraint segments can be re-used for a different

app combination.

Evaluation over a standard benchmark as well as a

real-world app set shows that our method achieves

better efficiency and accuracy than state-of-the-art

analysis methods for Inter-App data leakage.

The contributions of this paper are:

 Dynamic detection of Inter-App data

leakage. We are the first to use concolic execution to

audit Inter-App communication, to the best of our

knowledge.

 Mitigation of the exponential blow-up issue

for concolic execution over a set of apps. We propose

a novel technique called compositional concolic

walking that can efficiently determining the existence

of data leakage for an app bundle.

 Implementation of our proposed method to

dynamically audit a given set of apps for Inter-App

data leakage. We implement our method and expect to

contribute to the Android security community. We are

planning to release the source code and dataset at

https://github.com/leoaccount/AppWalker.

The rest of this paper is organized as follows.

Section 2 introduces Android basic knowledge and

several existing auditing methods. Section 3 presents

the motivating example, an overview of our proposed

framework, and the details of the design. The

experimental results are given in Section 4. Section 5

discusses the limitations and concludes this paper.

2 BACKGROUND

2.1 Android basis
ANDROID Components. There are four

categories of app components as defined by the

Android framework. The Activity component displays

the user interface (UI) of an app. The service

component is similar to Activity, but it runs in

background and mostly used for business logic which

does not need display. The BroadcastReceiver

component is a global receiver of Inter-Component

messages. Lastly, the ContentProvider acts like a

database manager for the app. Android components

can be triggered by not only traditional data inputs,

but also events, such as a user interaction on the

Activity or a system event received by the

BroadcastReceiver. The most common Inter-

Component communication (ICC) mechanism is

Intent. Inter-App communication (IAC) is similar with

ICC but it stride across app boundaries.

Permission model. Android permission model

involves three aspects. The API permission is used to

control the high level functionality of Android

framework. For example, the permission

READ_PHONE_STATE which allows for reading the

state of the device should be granted when the app

calls any phone-state fetching APIs. The file system

permission is inherited from Unix, who uses UIDs and

GIDs to grant access to the storage system. The IPC

permission model restricts what component can

receive what Intent. This is usually defined as an

Intent Filter in the Intent sender component’s manifest

file. Due the introduction of run-time permission

model since Android 6.0 (Marshmallow), apps have to

asking for permission grants at run time instead of get

all permissions statically during installation. However,

it may not impossible to disable permissions to pre-

installed apps and the run-time permissions model is

only used for apps developed using Marshmallow’

SDK.

2.2 Auditing methods
STATIC auditing. The most frequently used static

auditing method is static taint tracking. It starts by

specifying a set of sources and sinks. It marks the

source data and then pollutes every variable related to

the source data in instructions that follows. Thus, this

technique provides useful information of the

transmission path of the data.

One of the most famous and still state-of-the-art

tools that transplant static taint tracking from

traditional programs to Android apps is FlowDroid

[4]. Nevertheless, it is only for auditing a single app,

not for a bundle of apps.

Didfail [2] uses FlowDroid to perform static taint

analysis on each app component in an app. Then it

synthesizes a result for Inter-Component taint

transmissions by connecting the taint paths according

to ICC information of the apps. Unlikely, IccTA [1]

first combines all apps under test as one app, and

performs taint tracking on the app like FlowDroid.

The experimental results of IccTA reveal that the

precision can be improved in such a way.

COVERT [3] proposes to use static model

checking to auditing Inter-App vulnerabilities. It

performs intra-process and inter-process control flow

analysis and then uses this information collected to

construct a static model for an individual app. When

trying to find the vulnerability caused by IAC, it

applies model checking on all models to check the

existence of certain vulnerability pattern. However,

since COVERT performs reachability analysis instead

of taint tracking, it cannot detect data leakage.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 757

Dynamic app auditing. TaintDroid [26] uses

dynamic taint tracking to detect data flows in Android

apps. It claims better accuracy than static taint

tracking. But due to the inaccuracy nature of taint

analysis (compared to methods like concolic

execution), taint tracking is mostly used as a static

preprocessor for following dynamic auditing.

Concolic execution combines concrete execution

and symbolic execution to generate inputs of a

program. When a concrete execution fails, it collects

related path constraint and then applies symbolic

execution to solve the constraint to generate a new

input which can trigger the concrete execution deeper.

Besides generating program inputs, concolic execution

is also frequently used to verify the feasibility of

program paths.

AppIntent [6] is the first to use concolic execution

for Android. It generates inputs to trigger Intra-App

data leakage so that security specialist can better

confirm the problem. ConDroid [7] tries to detect the

calling of certain malicious APIs which cannot be

normally triggered in an analyzing environment, such

as logic bombs, using concolic execution. IntelliDroid

[9], like AppIntent, applies concolic execution for

auditing data leakage within an app. The authors

further provide a new method that can generate event

chains to dive deep into the app.

3 OUR SOLUTION
SYSTEM Goal. We set out to build a system for

effective and efficient detection of Inter-App data

leakage. We have determined four design criteria that

we felt such a system should satisfy so as to be useful.

1. Automated: Reduce manual efforts as much as

possible.

2. Effective: Detect Inter-App data leakage with a

small number of false positive and false negative

reports.

3. Efficient: Speed up the analysis of a large

number of apps.

4. Robust: Handle real-world apps correctly.

Figure 1 depicts the system architecture. In order to

provide a guide to dynamic analysis, we perform a

preliminary static analysis on the entire set of apps to

extract Inter-App traces which may potentially cause

data leakage. The apps in the bundle are assembled as

one app. We use an improved version of concolic

execution to determine the feasibility of each Inter-

App taint trace and generate inputs which can trigger

the execution of the trace. We feed the generated

inputs to the apps of the app bundle in a controlled

sequence. Data leakage can be confirmed if the Inter-

App taint trace actually gets executed and leaks data at

run time.

Figure. 1. System overview.

Motivating Example. We use the set of apps

described in Fig. 2 for illustration, which is called the

SWE app bundle. The name is the first letter of the

name of each of the three apps. SendSMS and

WriteFile each can potentially leak private data. But

the two vulnerable behavior both need the support of

the app Echoer (acts like an agent) to transmit the

data. Note that Echoer itself does not leak data,

because it do not access sensitive APIs at all. The

SWE bundle is inspired by the example given in [2].

However, we add many challenging characteristics to

prohibit existing static analysis based methods for

Inter-App auditing. One is the stateful operations.

SendSMS sends an Intent whose key happens to be

dynamically created using StringBuilder. The resulted

key is the concatenated string “secrete1”. The other is

conditional execution. Just take WriteFile as an

example, it contains braches which depend on user

inputs (i.e., getData()).

4 INTER-APP TAINT TRACE EXTRACTION
WE use static analysis to preprocess the set of apps

before dynamically auditing then. A component model

is firstly extracted from then entire app bundle. Based

on it, we extract and then extend Inter-App taint traces

to later guide our dynamic analysis.

Component model extraction. As with the static

analysis phase of our method, we first collect overall

information of app components for each app in the

bundle. The component model (CM) describes the

type of IPC messages sent from or can be received by

a component. The manifest file of an app determines:

(a) the unique package name of the app, (b) the name

of all Android components within the app, and their

capabilities (e.g., which Intent can handle); (c) the

main process; (d) permissions required by the app

(defined in Intent Filter); (e) permissions needed by

another app to access this app’s component. The

properties of Intents defined in the manifest file

include <action android:name/> (the action of the

receiver component, e.g., making a phone call when

receiving an Intent with action ACTION_CALL),

Concolic executor

Concolic engine

Instrumentor

API Modler

Handler instrumentor

Symbol instrumentor

Instrumented apk

Runner

Solver

Inputs

App

Combined App

Static model extractor

Component model,

input specification
XML parser

Taint trace extractor

CFG analyzer

Inter-App taint traces

Extended taint traces

App ...

App combiner

CombinerLink builder

Links

Run-time monitor

758 WU and YANG

Figure. 2. An illustrative app set (SWE).

<category android:name/> (the situation in which the

action can be taken, e.g., being able to get launched in

a browser with CATEGORY_BROWSABLE), <data

android:mimeType/> (the type of the data

transmitted). ICC links [1] are then extracted for

linking components using Intent information. Two

components can be linked only when the Intent sent

form a component meets the constraints of the Intent

Filter of the other component. Sometimes Intent

Filters are dynamically defined in the code instead of

the manifest file, for which we also need extract

accordingly. This process is same with IccTA, using

IC3 [16] to build links and then storing them in a

database.

App assembling. We need first to assemble the

apps in the bundle to enable overall static analysis. We

use ApkCombiner [1] to achieve this goal. All

components for each app are extracted and then

packed into on single apk file. As with the manifest

file of the assembled app, we just merging all manifest

files from all apps. Since different apps have different

default entry component, we do not make a

specification. How to entry the assembled app should

be determined according to what execution path we

expect (see the dynamic analysis section).

Inter-App taint trace extraction. Static taint traces

can be extracted by IccTA which is based on soot

[15]. However, we have to make some preprocesses

before that. Firstly, a call to an Android ICC method

(e.g., StartActivity(intent)) should be replaced with a

call to a function that initialized the receiver

component (e.g., func(){new

receiverActivity(intent)}), so that the call path is now

connected. Secondly, in order to explicitly execute all

components (they are originally implicitly arranged by

the Android framework, which cannot get traced), a

dummy main method (a new default program entry)

that initializes all components of the app is added.

Now we can perform static taint analysis using a

modified version of IccTA on the assembled app. The

sensitive APIs we specified which may introduce

sensitive data (source APIs) or leak the data (sink

APIs) are the same with IccTA. By marking the

sensitive data fetched by a source API and tracing

instructions which transmit the sensitive data until

reaching the sink API, we then have a vulnerable taint

trace which may cause data leakage.

Trace extention. A taint trace consists of

instructions which are only directly related to the data

transmission, so it may not be executable. According

to Android lifecycle state transition, for each event

handling method that contains instructions on a given

taint propagation path, we forward the prerequisite

component that eventually starts up the activity that

contains the handler to the instructions. This method is

illustrated in Fig. 3, in which with regard to the tainted

trace    , s1 , s2getId send , the supporting

event handlers  ,() (); 2onCreate onStart Clico k btnn

are added each for the two methods on the trace.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 759

Figure. 3. An instace of extended taint trace.

Furthermore, we consider extending supportive

event-chains by comprehensively examining implicit-

control-flow dependencies on branch conditions.

Various channels (i.e., heap variable, file system,

Android framework, and environment data) are

covered, instead of merely static fields. [9] only tracks

static field for event dependency, which is insufficient.

The dependency between two events is caused due to

concurrent reading/writing a same field, which can

influence the state of the program. Fig. 3 contains an

instance of button-click event onClick(btn2) that is

dependent on another instance of button-click event

onClick(btn1), thus we added an edge from the latter

to the former. The dependency is caused in such a way

that the variable state in a branch of onClick(btn2) can

be modified by onClick(btn1). The resulted extended

trace is the bold path in Fig. 3.

4.1 Compositional Concolic Walking
JAVA Bytecode Instrumentation.

Instrumentation is a process to add statements to the

app under test, so that execution traces of program

codes can be recorded during run time. As with

concolic execution, it instruments the code to follow

the propagation of symbolic variables. To achieve

that, we need add direct jump instruction to event

handlers, generate symbolic counterparts for variables

and assignment statements, and overwriting fields

using the results of SMT solvers when needed.

Acteve's [8] instrumentation tool provides most of the

above procedures. We added the support for tracking

dependent events for a taint trace, by also

instrumenting the paths from the event handler (they

are extracted in the static analysis phase) to the

corresponding node of the trace. Thus, during run

time, the execution along the path from a dependent

event to the target taint trace can also be recorded for

constraint solving.

Algorithm 1. ConcolicExe

Input: PATHS: program paths (default=whole

program paths, i.e., classic concolic execution), CM:

component model, APP: instrumented apk,

CUR_PATH: current path (default=the path

executed when no inputs are injected)

Output: RESULTS: a global set of the result

containers, say results who have members of

cst,sat,data,events, pathSignature

1: model ← CM.get(APP.pkgName, PATHS)

2: entry ←model.getEntry()

3: While !isSinkHit() do //if not reach path end,

or path end is not sink

 // negate one of the branches of the path

 //in any priority

4: p’←model.genNewPath(p)

5: solve←getSolution(p’) //symbolic execution

6: if solve.sat == True do

7: DI←append(solve.data)

 //backtrack and search for dependent events

8: EI←append(solve.getEventHandler(p’))

9: clean() //clean the device environment

10: install(APP)

11: q←startComponent(entry,DI,EI) //concrete

execution from the component entry

(ConcreteExe())

12: ConcolicExe(PATHS,CM,APP,q)

13: end

14:res← new result()

15:res.pathSignature ←p.signature

16:res.cst ←p

17:if isPathFeasible(p) do //sink is reached and

path constraint is satisfiable

18: //store the path result

19: res.sat ←True

20: res.data ←DI

21: res.events ←EI

22:else

23: res.sat ←False

24:end

25:RESULTS.add(res)

26:end

Concolic Execution. We now apply concolic

execution to judge the feasibility of the Inter-App taint

traces, i.e., to judge whether they can actually execute

at run-time. All apps relative to the combined app

bundle are instrumented as aforementioned and now

fed to a concolic executor.

Classic concolic execution [22] explores all

program paths by combining concrete execution and

symbolic execution. Several modifications have to be

made to the original concolic execution procedure so

that to make it adapted to the scenario of Android

apps, similar with [6,7,8,9]. Symbolic model/input

configurations are firstly generated according to the

component model which specifies user inputs. As

given in Algorithm 1, it then performs following

procedure until a sink (some termination condition

such as program exit or pre-defined data-leak point) is

hit: select one branch condition of the constraint

p=b1b2...bn (a path/trace constraint is the conjunction

of branch conditions) of the path that have been

traveled by far, say bn; negate the selected branch and

we get a new path constraint q=b1b2... ¬bn; if q is

satisfiable, concrete execution is conducted to the

onCreate()

getId()

getId():

…

uid = teleMgr.getDeviceId();//s1

…

onStart() onClick(btn2)

send()

send():

…

if (state == INIT) {

smsMgr.sendTextMessage(

“10086",, uid,,);//s2

}

…

onClick(btn1)

onClick():

…

state = INIT;

…

760 WU and YANG

corresponding program path using some solution to q

and continue concolic execution for the new path q;

once a sink is hit, the constraint solutions (i.e.,

program inputs to trigger the path) are returned. Thus,

by searching recursively, concolic execution can make

a traversal of all paths in a given program. The results

of concolic execution are stored in the data structure

RESULTS, which a global set of the result containers,

say results. Each result corresponds to a path such that

result.cst is the path constraint, result.sat is the

satisfiability of the constraint (TRUE/FALSE),

result.data/result.events is the data/event inputs needed

to trigger the execution of the path, and

result.pathSignature is the signature of the path.

We apply Acteve [8] as the concolic engine,

integrate the z3-str SMT solver which has the solving

capability of string-related constraints, and reuse a

back-tracing procedure of ConDroid [6] collecting

semantically richer solutions Boolean registers. For

objects which are user-input-related and require

complex instantiation (e.g., strings of StringBuilder

and intent data stored in the Android Bundle data

type), we model the instantiation methods of those

data structures and thus can track them symbolically.

If a complex object is not user-defined (i.e., nothing to

do with user inputs), we add paths from intent which

contains the object to the receiver component to avoid

missing potential data leakage.

Concrete execution involves following steps.

Firstly, the environment is cleaned for the emulator

device, where the instrumented app is installed.

Secondly, the default entry component is determined

by looking for the component that contains the start

node of each path. Thirdly, the component is started

by calling an am-start command. We also need to

inject the solutions (i.e., data inputs and concrete

values of modeled APIs) into symbolic registers of the

instrumented app.

One specialty with Android apps is that we need

not only generate data inputs but also event inputs to

trigger a program path. Since we have connected the

discreet event space of apps, we can simply backtrack

from each program statement to find event handlers

which are data- or control- dependent to it. The

dependency has been modeled in the taint trace

extension section, and what is left now is just back

tracking along that model (getEventHandler(), line 8

in Algorithm 1).

Fig. 4 gives an example of concolic execution. The

gray and solid nodes are program terminals, dashed

lines are dependent events, and the dark regions are

the vulnerable paths containing data leakage. Concolic

execution can firstly explore the path D1>0 ∧
D2.Contains(‘goldfish’) before the vulnerable path

D1>0 ∧ ¬D2.Contains(‘goldfish’)∧ Sink1, and there

can be much more redundant paths to explore if we

have a more complex real-world app. When we are

along the path D1>0 ∧ ¬D2.Contains(‘goldfish’)∧

Sink1, we also backtrack each node and find two

relative events E1, E2 which need be injected as input

so as to trigger the current path. To satisfy the path

condition ¬D2.Contains(‘goldfish’), a SMT solver is

used and it generates a data input say ‘abc’ that does

not contain the string ‘goldfish’.

Figure. 4. A demonstration of concolic execution for Android
apps.

Combinative Concolic Walking. Classic concolic

execution is well-known for its inefficiency due to the

path explosion problem, since there can be a large

number of paths in a program. Therefore, we propose

to use the previously extracted Inter-App taint traces

to guide the execution, which is called concolic

walking. By using the notion of “walking”, we mean

that the execution is performed step-by-step along the

Inter-App taint traces and within the input space of

data and events.

A first design that can be proposed is directly

enforce the concolic walking along Inter-App taint

traces for the entire app bundle that is assembled as a

unique app by AppCombiner [17]. This forms the

basis of our previously proposed prototype IacCE

[21]. This method requires enumerating all app

bundles by trying every combination of different apps,

therefore we can it combinative concolic walking. As

depicted in Algorithm 2, we first generate all possible

combinations (i.e., bundles) of apps and then perform

concolic walking for each entire bundle. Since we

have previously connected the non-deterministic event

space by inserting direct jumps between app entries,

concolic execution thus can now smoothly “walk”

through the bundle. Moreover, given the Inter-App

taint traces, the concolic procedure is now forced to

walk only along those traces. This is guaranteed by

our Bytecode instrumentation and run-time enforced

by dump branch conditions represented by symbolic

registers, negating one of the clauses (i.e., branches)

of a path once the path deviates from Inter-App taint

traces (in Algorithm 1, line 4), and ask z3 to solve the

respective constraints for the path. The solution of

new values of variables will lead the execution of

intended Inter-App taint traces. Once an Inter-App

taint trace is considered feasible (i.e., the target API is

E1

Entry

D1>0
D1<=0

D3!=10086

D3==10086

D2.Contains(‘goldfish’)

¬D2.Contains(‘goldfish’)

D4!=-1
D4==-1

Sink1

Sink2

E2

Source1 Source2

INTELLIGENT AUTOMATION AND SOFT COMPUTING 761

hit) by concolic walking, it generates and returns data

and event inputs to trigger each of the traces.

Algorithm 2. Combinative Concolic Walking

Input: CM: component model, BUNDLES: all app

bundles under test

Output: IDI2: Inter-App data inputs, IEI2: Inter-

App event inputs

1: IDI2←{}, IEI2←{}

2: foreach bundle in BUNDLES do

3: T2←getTraces(bundle) // Inter-App taint

traces

4: reses←ConcolicExe(T2.traces,

CM.get(bundle.pkgName),bundle)

5: foreach res in reses do

6: if res.sat == True do:

7: IDI2.put({res.pathSignature:res.data})

8: IEI2.put({res.pathSignature:res.events})

9: end

10: end

11:end

Compositional Concolic Walking. By restricting

the searching space, we save the execution cost of

classic concolic execution. However, for each

combination of apps, combinative concolic walking

will have a fresh try of concolic walking along the

respective traces, thus the cost can still be expensive.

Thus we propose the second design, called

compositional concolic walking. The method includes

two phases – Intra-App constraint trawling (Algorithm

3) and compositional execution (Algorithm 4).

Algorithm 3. Intra-App Constraint trawling

Input: CM: component model, APPS: all apps

under test

Output: IC1: Intra-App constraints

1: IC1←{}

2: foreach app in APPS do

3: T1←getTraces(app) //unlike for assembled

app, getTraces() returns all trace segments within

the app which appear in any Inter-App taint traces

4: if T1.signature IC1.keys do

5: res←ConcolicExe’(T1.traces,

CM.get(app.pkgName), app) // do not perform the

last step of concrete execution in ConcolicExe()

6: foreach res in reses do

7: if res.sat == True do:

8: IC1.put({T1.signature: <res.cst,res.sat>})

9: end

10: end

11: end

12:end

Algorithm 4. Compositional execution

Input: CM: component model, BUNDLES: all app

bundles under test, IC1: Intra-App constraints

Output: IDI2: Inter-App data inputs, IEI2: Inter-App

event inputs

1: IDI2←{}, IEI2←{}

2: foreach bundle in BUNDLES do

3: T2←getTraces(bundle) // Inter-App taint

traces

4: foreach Inter-App trace t in T2 do

5: foreach Intra-App trace t1 in t do

6: <cst,sat>←IC1.get(t1.signature)

7: if sat == False do

8: break

9: end

10: end

11: solve←getSolution(t)

12: isFeasible←ConcreteExe(bundle,t) //concrete

execution of the Inter-App taint trace

13: if solve.sat == True and isFeasible == True

do:

14: IDI2.put({t.signature:solve.data})

15: IEI2.put({t.signature:

solve.getEventHandler(t)})

16: end

17: end

18:end

In the first phase, we trawl Intra-App constraints by

performing concolic walking within each apps for a

given app bundle. We use the operator ConcolicExe’()

instead of ConcolicExe() to mean that we do not need

the last step of concrete execution during concolic

walking, as the purpose here is trawling constraints

rather than executing the apps. The constraint and

satisfiability of each trace is then stored for next

phase. The concolic procedures are guided by Intra-

App taint traces, which also appear on the Inter-App

taint traces we extracted in the static model extraction

section.

Then in the second phase, we set out to determine

the feasibility of the Inter-App taint traces and thus

determine whether data leakage happens or not. For

each Inter-App taint trace in the current app bundle

under test, we first check the feasibility of the Intra-

App taint traces contained within that trace. Any

infeasibility of Intra-App taint traces will lead to the

infeasibility of the entire Inter-App taint trace, for

which case we just skip and change to another Inter-

App taint trace. If and only if all Intra-App taint traces

are satisfiable, we call the Z3 solver to solve the

constraint w.r.t. the entire Inter-App taint trace and

generate inputs which can trigger the execution along

that trace.

The effectiveness of our method can be illustrated

by the example in Fig. 2, which corresponds to the

illustrative SWE app set. We use the entity graph [3]

to exhibit Inter-App data leakage. In an entity graph,

every entity represents an app, each rectangle in an

entity represents a component of an app, each bold

swallow-tail form that embedded at the left size of a

762 WU and YANG

component stands for a public ICC interface, a labeled

swallow-tail form is a intent message, bold arrows are

ICC channels, dashed arrows are event-dependency,

and each node means a branch condition or

prerequisite events of a path. There are two potential

Inter-App vulnerable paths which are extracted by our

previous static Inter-App taint trace extraction, Src1 ⇒

B1 ⇒ intent1 ⇒ B5 ⇒ intent3 ⇒ B2 ⇒ Snk1 (t1) and

Src2 ⇒ B3 ⇒ intent2 ⇒ B5 ⇒ intent3 ⇒ B4 ⇒ Snk2

(t2). During the static model extraction process, we

assembled the three apps into one single app.

Classic concolic execution will take all paths

resulted from both side of branches of every path

condition for the assembled app. Instead, combinative

concolic walking performs both concrete and

symbolic execution only along t1 and t2 for the

assembled app, i.e., ConcreteExe() ⇒

SMTsolve(¬¬B1) ⇒ ConcreteExe() ⇒ SMTsolve(B1∧

¬¬B5) ⇒ ConcreteExe()⇒ SMTsolve(B1 ∧ B5 ∧
¬¬B2) ⇒ ConcreteExe() ⇒ Snk and ConcreteExe() ⇒

SMTsolve(¬¬B3) ⇒ ConcreteExe() ⇒ SMTsolve(B3∧

¬¬B5) ⇒ ConcreteExe() ⇒ SMTsolve(B3 ∧ B5 ∧
¬¬B4) ⇒ infeasible. We have

#ConcreteExe=#SMTsolve=3(t1)+3(t2)=6.

With compositional concolic walking, according to

the Intra-App constraint trawling algorithm, we first

examine all Intra-App taint traces appeared on the two

paths — Src1 ⇒ B1 ⇒ intent1 (s1), B5 ⇒ intent3 (s2),

Entry ⇒ B2 ⇒ Snk1 (s3), Src2 ⇒ B3 ⇒ intent2 (s4),

Entry ⇒ B4 ⇒ Snk2 (s5) — using concolic walking.

E.g., for Src1 ⇒ B1 ⇒ intent1, we have ConcreteExe()

⇒ SMTsolve(¬¬B1) ⇒ ConcreteExe(). Then we apply

one more symbolic execution for each of the two

Inter-App taint traces t1, t2; as B4 ⇒ Snk2 can be found

infeasible (Echoer does not have the permission to call

the WriteFile Activity) in advance during Intra-App

constraint trawling, the execution on t2 is avoided. In

all, for t1 we have

#ConcreteExe=#SMTsolve=1(s1)+1(s2)+1(s3)+1(t1)=4.

Since the constraints can be reused, the cost of t2 is

reduced to #ConcreteExe=#SMTsolve=0. Note that,

once all constraints for every apps have been trawled

(the number of apps are relatively much smaller than

the number of all possible combination of apps, so we

will soon encounter all apps after trying several

combination of apps and the trawling can end in a

reasonable small time), the execution cost for any

Inter-App taint trace can be reduced to

#ConcreteExe=0,#SMTsolve=0 or 1. That is, given

pre-computed Intra-App constraints of si (i=1,2,3,4,5),

the total cost becomes merely

#ConcreteExe=0,#SMTsolve=1 for compositional

concolic walking of t1, t2 in the example in Fig. 2.

Figure. 5. Compositional concolic walking for the illustrating
app bundle.

Given an arbitrary set of apps under test, let us

analyze the cost of time and space for the above

algorithms. Let n be the number of apps in the bundle

under test, ib be the branch count of the ith app, and it

be the branch count of the Intra-App taint trace of the

ith app. And let s , r each be the maximal time

needed to solve a path constraint and to initiate and

run an app in the device. The time complexity of

concolic execution depends on the number of paths.

Thus, we have 1(+ 2)

n

i

i

b

s rO 


  （ ） and

1(+ 2)

n

i

i

t

s rO 


  （ ） for classic concolic execution and

combinative concolic walking respectively. The space

complexity is the same with time complexity, since

concolic execution stores each path during the

recursive search procedure. We can see from the

analysis that, by forcing execution along taint traces,

the latter two algorithms avoid path enumeration and

are thus much more efficient.

As with compositional concolic walking, the cost

becomes 1

1

(+ 2 2)

n

i

i i

n t
t

s r s

i

O









     （ ） =

1

1 1

(2 2 +2)

n

i

i i i

n n t
t t

r s

i i

O






 


     （ ） , where  is the

fraction of Inter-App taint traces get solved in line 11

of the compositional execution algorithm,

1

(+ 2)i

n
t

s r

i

O


  （ ） is the cost of Intra-App

Constraint trawling, and 1(2)

n

i

i

t

sO





  is the cost of

compositional execution. This cost is much lower than

combinative concolic walking in two reasons. Firstly

and most importantly, we manage to avoid most

executions of apps by reusing the concolic execution

results of Intra-App taint traces once another bundle of

WriteFile

SendSMS

SendSMS
Activity

OnClick

Intent1

Echoer

Listener

WriteFile
Activity

Intent
Hijack

Intent
Spoof

Src1E1

Snk1

OnClick

Intent2

Src2

Snk2B4

E2

B1

B2

B3

Listener

OnClick

E3

B3 Intent3

INTELLIGENT AUTOMATION AND SOFT COMPUTING 763

apps contains the same traces. The time for running an

app in mobile devices or device emulators (in

seconds) is much slower than that that for solving path

constraints and executing the analysis algorithms

which are implemented as PC programs (in

milliseconds per instruction). We have now moved the

overhead r to Intra-App Constraint trawling, and

only leave the overhead s to compositional

execution. The reuse of trances also reduces the time

complexity of concolic execution procedure itself.

Secondly, due to the fact that static analysis incurs a

large number of falsely reported (i.e., infeasible) data

leakages, only a small portion  of Intra-App taint

traces can be pruned before the final execution of the

entire Inter-App taint trace.

4.2 Controlled Execution & Check
Finally, events and inputs generated by concolic

execution are injected through adb, am commands,

and InstrumentationTestRunner, step by step along

each path in the event-dependency graph. By

observing the vulnerable-path related behavior, an

analyst manages to confirm the existence of Inter-App

vulnerable API calls in the original app set.

This step is necessary, as an analyst can fully

confirm the data leak the analyzer reports only if the

vulnerability does happen under controlled inputs.

Besides, since showing how to reproduce the

vulnerability is the most critical part of a vulnerability

report, by directly triggering the data leakage we can

make it more comprehensible and convincible to app

vendors. Also note that we should never base our

report on modified apps (e.g., the assembled app for

the app bundle), we have to control the execution and

cooperation of the set of original apps by only

manipulating data and event program inputs.

Here are some detailed designs of this module of

AppWalker. For each Inter-App taint trace, we

generate and then inject events/data inputs

sequentially along the trace. UI events are generated

by Monkey script [12] and injected by monkeyrunner

tool [12], whose positions on the device screen can be

statically determined by referring to the layout

configurations of apps. System events are generated

and injected via the Activity Manager (am) commands

[13]. Data inputs, which have been previously

generated by concolic execution, are now directly fed

[14] to the apps. When starting the entry component of

the taint trace, we send a start Intent to it, using

Android Debug Bridge (adb) [11]. After being

properly injected all inputs, the set of apps are now

triggered, and we just need to observe whether the

Inter-App data leakage is replayed to confirm the

vulnerability.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setting
WE design the experiments by evaluating our

design criteria. The effectiveness of our method is

demonstrated on a standard benchmark, which makes

it easy for comparing various approaches. The

efficiency and robustness is evaluated on a larger set

of real-world apps. Our experiments are performed on

a laptop (Duo T5550, 2 cores, 4G RAM). AppWalker

is written in Java and apps run in Android emulators.

Benchmarks:

 IAC-Bench. It is a mixture of DroidBench

[4], ICC-Bench [1], and SWE. DroidBench and ICC-

Bench are standard Android application benchmarks

used as the ground truth of the effectiveness of both

Intra-App and Inter-App data-leakage detectors. We

have both ICC and IAC data leak instances, due to the

lack of IAC benchmarks and the fact that ICC and

IAC are essentially similar.

 IAC-Bench-ext. It has 77 apps which are

derived from IAC-Bench. DroidBench and ICC-bench

are initially proposed for testing static tools, few run-

time constraints exist. In practical, malicious app

authors usually add such constraints to make

traditional static analysis fail to detect vulnerable app

behaviors. To better evaluate dynamic methods and to

compare them with static methods, we add branch

conditions (collected from some popular malware

benchmarks) to protect each sensitive API for the 28

apps in DroidBench, and 9 apps in ICC-Bench. Since

there can be two possible branches for each branch

condition, we have two set of apps for the IAC-Bench-

ext benchmark — one set has been added branch

conditions which are all satisfiable (IAC-Bench-ext-

sat), the other set has branch conditions all

unsatisfiable (IAC-Bench-ext-unsat).

 F-Droid. F-Droid [25] is a free application

market for Android users. As most apps in the F-Droid

market are popular real-world apps appearing in

Google Play [24], many research works have used it

as a standard benchmark. All apps in the site are

required to open-sourced, which enable us to manually

dive deep into the code to confirm the vulnerabilities

we found. We randomly selected 100 apps in the F-

Droid app collection provided by [3].

Methods compared:

 FlowDroid. As the same trick with [1], we

still can use FlowDroid to statically detect Inter-App

data leakage, though it was initially proposed only for

analyzing Intra-Component taint paths.

 IccTA. It performs pure static taint analysis

for Inter-App data leakage, as has been introduced in

previous sections. COVERT is not open sourced and

cannot detect data leakage, so we do not use it for

comparison.

 ConDroid. To enable the detection of data

leaks rather than API invocations, we use a procedure

of static Intra-App taint traces extraction to guide the

764 WU and YANG

concolic execution, similar to AppWalker, instead of

the original call graph guided execution. Event-

dependency extraction is also added. We also

modified the system to support the Android

component of BroadcastReceiver and Service, besides

the Activity component.

 AppWalker. AppWalker is our method of

dynamic detection of Inter-App data leaks. It can also

be directly used to perform Intra-App analysis.

5.2 Comparison of Various Approaches
table 1 and Table 2 give the results of different

methods on the benchmarks IAC-Bench-ext-sat and

IAC-Bench-ext-unsat.

For FlowDroid, IccTA, ConDroid and AppWalker,

they each achieve the precision of 27.4%/13.7%,

93.9%/47.7%, 100%/100%, 100%/100% on IAC-

Bench-ext-sat/IAC-Bench-ext-unsat, and the recall

rate of 60.6%/60.6%, 93.9%/93.9%, 48.5%/48.5%,

100%/100%.

We can see that FlowDroid works poorly. Taint

paths are isolately extracted for individual app

component and then combined, so the tainted data can

be mismatched. A lot of false reports are therefore

generated by FlowDroid.

IccTA manages to detect the majority of leaks, but

it still does not work well with dynamic program

constraints. The detection rate sharply drops from

93.9% (Bench-ext-sat) to 47.7% (IAC-Bench-ext-

unsat), because IccTA cannot tell whether the

sensitive APIs can actually be called at run time.

The data leaks detected by ConDroid are all true

positive reports, that is, it does not give false positive

reports. This owns to that ConDroid is a dynamic

method, among the above two methods, which is

effective at pruning false positive reports. However,

ConDroid missed some Intra-App leaks as it does not

track data flows through implicit ICC. It also missed

all Inter-App leaks since it only can analyze a single

app instead of a set of apps as a whole.

Table 1 Experimental results on IAC-Bench-ext-sat. True
positive: ▲, false positive: ▼, true negative: △, false negative: ▽;
precision: ●=▲/(▲+▼, recall:○=▲/(▲+▽.

package
FlowDroi

d

IccT

A

ConDroi

d

AppWalke

r

DroidBench-ext-sat

startActivity1 ▲▼ ▲ ▲ ▲

startActivity2 ▲▼▼▼▼ ▲ ▲ ▲

startActivity3 ▲▼(32) ▲ ▲ ▲

startActivity4 ▼▼ - - -

startActivity5 ▼▼ - - -

startActivity6 ▼▼ - - -

startActivity7 ▼▼ ▼ - -

startActivityForRes

1
▲ ▲ ▲ ▲

startActivityForRes

2
▲ ▲ ▲ ▲

startActivityForRes

3
▲▼ ▲ ▲ ▲

startActivityForRes

4
▲▲▼ ▲▲ ▲▲ ▲▲

startService1 ▲▼ ▲ ▲ ▲

startService2 ▲▼ ▲ ▲ ▲

bindService1 ▲▼ ▲ ▲ ▲

bindService2 ▽ ▲ ▲ ▲

bindService3 ▽ ▲ ▲ ▲

bindService4 ▲▼▽ ▲▲ ▲▲ ▲▲

sendBroadcast1 ▲▼ ▲ ▽ ▲

insert1 ▽ ▲ ▽ ▲

delete1 ▽ ▲ ▽ ▲

update1 ▽ ▲ ▽ ▲

query1 ▽ ▲ ▽ ▲

startActivity1 set ▽ ▲ ▽ ▲

startService1 set ▽ ▲ ▽ ▲

sendBroadcast1 set ▽ ▲ ▽ ▲

ICC-Bench-ext-sat

Explicit1 ▲ ▲ ▲ ▲

Implicit1 ▲ ▲ ▽ ▲

Implicit2 ▲ ▲ ▽ ▲

Implicit3 ▲ ▲ ▽ ▲

Implicit4 ▲ ▲ ▽ ▲

Implicit5 ▲▼ ▲ ▽ ▲

Implicit6 ▲ ▲ ▽ ▲

DynRegister1 ▽ ▲ ▽ ▲

DynRegister2 ▽ ▽ ▽ ▲

The SWE bundle

SWE set ▽ ▼▽ ▽ ▲

Total

▲ 20 31 16 32

▼ 53 2 0 0

▽ 13 2 17 0

● 27.4% 93.9% 100% 100%

○ 60.1% 93.9% 48.5% 100%

Table 2 Experimental results on IAC-Bench-ext-unsat. The
table is organized similarly to Table 1.

package FlowDr

oid

IccT

A

ConDro

id

AppWal

ker

DroidBench-ext-unsat

startActivity1 ▲▼▼▼ ▲▼ ▲ ▲

startActivity2 ▲▼(9) ▲▼ ▲ ▲

startActivity3 ▲▼(65) ▲▼ ▲ ▲

startActivity4 ▼▼▼▼ - - -

startActivity5 ▼▼▼▼ - - -

startActivity6 ▼▼▼▼ - - -

startActivity7 ▼▼▼▼ ▼▼ - -

startActivityForR

es1

▲▼ ▲▼ ▲ ▲

startActivityForR

es2

▲▼ ▲▼ ▲ ▲

startActivityForR

es3

▲▼▼▼ ▲▼ ▲ ▲

INTELLIGENT AUTOMATION AND SOFT COMPUTING 765

startActivityForR

es4

▲▲▼(4) ▲▲▼

▼

▲▲ ▲▲

startService1 ▲▼▼▼ ▲▼ ▲ ▲

startService2 ▲▼▼▼ ▲▼ ▲ ▲

bindService1 ▲▼▼▼ ▲▼ ▲ ▲

bindService2 ▽ ▲▼ ▲ ▲

bindService3 ▽ ▲▼ ▲ ▲

bindService4
▲▼▼▼

▽

▲▲▼

▼

▲▲ ▲▲

sendBroadcast1 ▲▼▼▼ ▲▼ ▽ ▲

insert1 ▽ ▲▼ ▽ ▲

delete1 ▽ ▲▼ ▽ ▲

update1 ▽ ▲▼ ▽ ▲

query1 ▽ ▲▼ ▽ ▲

startActivity1 set ▽ ▲▼ ▽ ▲

startService1 set ▽ ▲▼ ▽ ▲

sendBroadcast1

set
▽ ▲▼ ▽ ▲

ICC-Bench-ext-unsat

Explicit1 ▲▼ ▲▼ ▲ ▲

Implicit1 ▲▼ ▲▼ ▽ ▲

Implicit2 ▲▼ ▲▼ ▽ ▲

Implicit3 ▲▼ ▲▼ ▽ ▲

Implicit4 ▲▼ ▲▼ ▽ ▲

Implicit5 ▲▼▼▼ ▲▼ ▽ ▲

Implicit6 ▲▼ ▲▼ ▽ ▲

DynRegister1 ▽ ▲▼ ▽ ▲

DynRegister2 ▽ ▽ ▽ ▲

The SWE bundle

SWE set ▽ ▼▽ ▽ ▲

Total

▲ 20 31 16 32

▼ 126 34 0 0

▽ 13 2 17 0

● 13.7% 47.7% 100% 100%

○ 60.6% 93.9% 48.5% 100%

Our method AppWalker achieves the best results

for both benchmarks, i.e., the highest precision and

recall rate. We are able to detect more leaks than

IccTA, because we have modified IccTA by

conservatively adding paths from an intent (when the

intent contains complex object) sender to the receiver

to avoid missing potential leakage. False positiveness,

if there exists any, can be easily pruned during

dynamic analysis. Most importantly, when analyzing

Inter-App information leaks for a set of apps, we

neither miss any data leaks nor introduce false positive

reports.

5.3 Application to Real-world Apps
In this section, we evaluate AppWalker on the

selected real-world apps from F-Droid. The overall

result is given in Table 3.

Table 3 #Apps from 100 F-Droid apps which are found to be
vulnerable. The result is represented as “#Statically detected /
#Dynamically confirmed by the detector itself / #Actual data
leaks”

 Intra-App Inter-App

AppWalker 31/3/3 53/5/5

We here provide an interesting vulnerable case

involving 3 apps. One app called Ermete SMS, which

exposes its ICC interface and has the WRITE_SMS

permission, is previously reported by COVERT to be

exploitable when another app, Binaural beats therapy,

runs in the same device simultaneously. The latter

app, which does not have the WRITE_SMS

permission, can escalate its privilege by crafting an

intent and send it to the former app. This vulnerability,

however, is a false positive report as the field of the

intent sent from Binaural beats therapy mismatches

with that of Ermete SMS and thus the latter can never

receive the ICC message. Instead, we find another

app, Hesabdar, whose TransactionsActivity

component handles user money transaction and sends

the account information as payload of an implicit

intent to another component. However, there is no

guarantee for this transmission as it can easily be

intercepted. To demonstrate that, we further compose

an exploiting app which first hijacks the intents

containing the account information from Hesabdar,

and then sends a spoofed intent to Ermete SMS filled

with account information and adversary phone number

as the payload.

6 CONCLUSION
WE propose a method for dynamic auditing a set of

apps for Inter-App data leakage, which is caused due

to the cooperation of multiple apps. Our approach

consists two phases: firstly statically extract

potentially vulnerable Inter-App traces and then

dynamically analyzing those traces using concolic

execution for confirmation. Several techniques are

proposed to increase the accuracy and boost the speed

of analysis.

7 ACKNOWLEDGMENTS
THIS research was supported by the Mobile

Research Funding of Chinese Education Ministry

(MCM) under Grant No. MCM20170404.

8 REFERENCES
Anand, S., Naik, M., Harrold, M. J., & Yang, H.

(2012, November). Automated concolic testing of

smartphone apps. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (p. 59).

ACM.

Android Debug Bridge | Android API.

http://www.android-doc.com/tools/help/adb.html.

766 WU and YANG

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel,

A., Klein, J., & McDaniel, P. (2014). Flowdroid:

Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps.

Acm Sigplan Notices, 49(6), 259-269.

Bagheri, H., Sadeghi, A., Jabbarvand, R., & Malek, S.

(2016, June). Practical, formal synthesis and

automatic enforcement of security policies for

android. In Dependable Systems and Networks

(DSN), 2016 46th Annual IEEE/IFIP International

Conference on (pp. 514-525). IEEE.

Ball, S., & Tuker, M. (2017). A fuzzy multi-criteria

decision analysis approach for the evaluation of the

network service providers in turkey. Intelligent

Automation & Soft Computing, 1-7.

Build instrumented unit tests.

https://developer.android.com/training/testing/unit-

testing/instrumented-unit-tests.

Burket, J., Flynn, L., Klieber, W., Lim, J., Shen, W.,

& Snavely, W. (2015). Making didfail succeed:

Enhancing the cert static taint analyzer for android

app sets (No. CMU/SEI-2015-TR-001).

CARNEGIE-MELLON UNIV PITTSBURGH PA

PITTSBURGH US.

Burnim, J., & Sen, K. (2008, September). Heuristics

for scalable dynamic test generation. In

Proceedings of the 2008 23rd IEEE/ACM

international conference on automated software

engineering (pp. 443-446). IEEE Computer

Society.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L.,

& Engler, D. R. (2008). EXE: automatically

generating inputs of death. ACM Transactions on

Information and System Security (TISSEC), 12(2),

10.

Documentation for app developers.

https://developer.android.google.cn/docs/.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun,

B. G., Cox, L. P.,... & Sheth, A. N. (2014).

TaintDroid: an information-flow tracking system

for realtime privacy monitoring on smartphones.

ACM Transactions on Computer Systems, 32(2), 5.

F-Droid - Free and open source Android app

repository. https://f-droid.org/.

Google play store. https://play.google.com/.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., & Le

Traon, Y. (2015, May). Apkcombiner: Combining

multiple android apps to support inter-app analysis.

In IFIP International Information Security

Conference (pp. 513-527). Springer, Cham.

 Li, L., Bartel, A., Klein, J., & Le, T. (2014) Detecting

privacy leaks in Android Apps. CEUR Workshop

Proceedings (pp. 1298).

Li, L., Bartel, A., Klein, J., Traon, Y. L., Arzt, S.,

Rasthofer, S.,... & Mcdaniel, P. (2014). I know

what leaked in your pocket: uncovering privacy

leaks on Android apps with static taint analysis.

arXiv preprint arXiv:1404.7431.

monkeyrunner.

https://developer.android.com/studio/test/monkeyru

nner/.

Protalinski, E. (2016, October 12). Android malware

numbers explode to 25,000 in June 2012. Retrieved

from www.zdnet.com.

Quiroz, J. C., Banerjee, A., Dascalu, S. M., & Lau, S.

L.. (2017). Feature selection for activity

recognition from smartphone accelerometer data.

Intelligent Automation & Soft Computing, 1-9.

Schütte, J., Fedler, R., & Titze, D. (2015, March).

Condroid: Targeted dynamic analysis of android

applications. In Advanced Information Networking

and Applications (AINA), 2015 IEEE 29th

International Conference on (pp. 571-578). IEEE.

Using activity manager (am).

http://androiddoc.qiniudn.com/tools/help/shell.html

#am.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam,

P., & Sundaresan, V. (2010, November). Soot: A

Java bytecode optimization framework. In

CASCON First Decade High Impact Papers (pp.

214-224). IBM Corp.

Wang, P., Lu, K., Li, G., & Zhou, X. DFTracker:

detecting double-fetch bugs by multi-taint parallel

tracking. Frontiers of Computer Science, 1-17.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 767

Wong, M. Y., & Lie, D. (2016, February).

IntelliDroid: A Targeted Input Generator for the

Dynamic Analysis of Android Malware. In NDSS

(Vol. 16, pp. 21-24).

Wu, T., & Yang, Y. (2016, October). IacCE: Extended

Taint Path Guided Dynamic Analysis of Android

Inter-App Data Leakage. In International

Conference on Security and Privacy in

Communication Systems (pp. 317-333). Springer,

Cham.

Wu, Z., Lu, K., Wang, X., & Zhou, X. (2015).

Collaborative technique for concurrency bug

detection. International Journal of Parallel

Programming, 43(2), 260-285.

Wu, Z., Lu, K., Wang, X., Zhou, X., & Chen, C.

(2015). Detecting harmful data races through

parallel verification. The Journal of

Supercomputing, 71(8), 2922-2943.

Yiğit Kültür, & Mehmet Ufuk Çağlayan. (2015). A

novel cardholder behavior model for detecting

credit card fraud. International Conference on

Application of Information & Communication

Technologies. IEEE.

Zareapoor, M., & Yang, J.. (2017). A novel strategy

for mining highly imbalanced data in credit card

transactions. Intelligent Automation & Soft

Computing, 1-7.

Zhang, Y., Yang, M., Yang, Z., Gu, G., Ning, P., &

Zang, B. (2014). Permission use analysis for

vetting undesirable behaviors in android apps.

IEEE transactions on information forensics and

security, 9(11), 1828-1842.

9 NOTES ON CONTRIBUTORS
Tianjun Wu received his M.S.

degrees in computer science from

College of Computer, National

University of Defense Technology

(NUDT), China in 2015. He is

currently a Ph.D. candidate in College

of Computer of NUDT. His research

interests include vulnerability mining, network

security, and information security.

Yuexiang Yang received his Ph.D.

degree in computer science from

College of Computer of NUDT, China

in 2006. He is currently a professor

with College of Computer of NUDT.

His research interests include

information security, network security,

architecture design of the Internet, and web service.

Email: yyx@nudt.edu.cn

