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1 INTRODUCTION 
THE Android mobile operation system has 

overtaken Windows as the most popular OS for total 

Internet usage [35]. It has a growing number of 

sources of third-party apps, i.e., app markets like F-

Droid, Amazon Appstore, GetJar, et al. Thus, the 

security of apps in those markets becomes a large 

concern [23].  

The inter-component communication (ICC, for 

short) model [5] of Android provides an efficient data-

exchange mechanism for apps. But it also can give 

rise to new types of vulnerabilities such as Inter-App 

data leakage and collusion attacks, since a part of the 

functions of an app can be invoked by another app 

through ICC. One user is likely to have tens or even 

more apps installed on the device, and thus the 

situation of the overall security of those installed apps 

becomes a new interesting problem to investigate. 

The challenge for auditing Inter-App 

vulnerabilities, e.g., Inter-App data leakage as focused 

on in this paper, lies in that the execution path of the 

vulnerable behavior distributes in multiple apps. For 

any app in a vulnerable app set, it can be taken as 

benign when being analyzed in isolation, just because 

it does not exhibit any sensitive behavior itself and the 

sensitive behavior has to be carried out as the result of 

the cooperation of all the apps.  

While many research works have focused on 

auditing an individual target 

[4,18,19,20,26,27,28,29,30], there is only a minority 

of research efforts into the security audit of the entire 

collection of Android apps. IccTA [1] tries to find 

Inter-App data leakage using techniques such as static 

taint tracing. Convert [3] proposes to use static model 

checking to detect Inter-App vulnerabilities, but it 

cannot detect data leakage. Static analysis is 

essentially inaccurate and cannot avoid false positives. 

In this paper, instead, we propose the first dynamic 

audit framework for Inter-App vulnerabilities by 

applying concolic execution [10]. Concolic execution 

achieves automated input generation for dynamic 

analysis, by treating registers as symbols, recording 

path conditions w.r.t. each execution path, and then 
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solving them to get the desired inputs with a SMT 

solver.  

Concolic execution usually faces the notorious 

problems of path explosion. This can be even serious 

for our scenario and make our analysis inefficient 

when analyzing a set of apps, since we have to audit 

different possible combination of apps. Fortunately, 

we find the loosely coupled and well-formed ICC 

interface defined by Android can be utilized to boost 

performance. Paths can be naturally isolated and 

symbolically executed according to component 

boundary which is unrealistic for traditional apps as 

class interface are diversified and ambiguous. We thus 

propose a new method called compositional concolic 

walking. Another bonus of the method is that, those 

path constraint segments can be re-used for a different 

app combination. 

Evaluation over a standard benchmark as well as a 

real-world app set shows that our method achieves 

better efficiency and accuracy than state-of-the-art 

analysis methods for Inter-App data leakage.  

The contributions of this paper are: 

 Dynamic detection of Inter-App data 

leakage. We are the first to use concolic execution to 

audit Inter-App communication, to the best of our 

knowledge. 

 Mitigation of the exponential blow-up issue 

for concolic execution over a set of apps. We propose 

a novel technique called compositional concolic 

walking that can efficiently determining the existence 

of data leakage for an app bundle. 

 Implementation of our proposed method to 

dynamically audit a given set of apps for Inter-App 

data leakage. We implement our method and expect to 

contribute to the Android security community. We are 

planning to release the source code and dataset at 

https://github.com/leoaccount/AppWalker. 

The rest of this paper is organized as follows. 

Section 2 introduces Android basic knowledge and 

several existing auditing methods. Section 3 presents 

the motivating example, an overview of our proposed 

framework, and the details of the design. The 

experimental results are given in Section 4. Section 5 

discusses the limitations and concludes this paper. 

2 BACKGROUND 

2.1 Android basis 
ANDROID Components. There are four 

categories of app components as defined by the 

Android framework. The Activity component displays 

the user interface (UI) of an app. The service 

component is similar to Activity, but it runs in 

background and mostly used for business logic which 

does not need display. The BroadcastReceiver 

component is a global receiver of Inter-Component 

messages. Lastly, the ContentProvider acts like a 

database manager for the app. Android components 

can be triggered by not only traditional data inputs, 

but also events, such as a user interaction on the 

Activity or a system event received by the 

BroadcastReceiver. The most common Inter-

Component communication (ICC) mechanism is 

Intent. Inter-App communication (IAC) is similar with 

ICC but it stride across app boundaries.  

Permission model. Android permission model 

involves three aspects. The API permission is used to 

control the high level functionality of Android 

framework. For example, the permission 

READ_PHONE_STATE which allows for reading the 

state of the device should be granted when the app 

calls any phone-state fetching APIs. The file system 

permission is inherited from Unix, who uses UIDs and 

GIDs to grant access to the storage system. The IPC 

permission model restricts what component can 

receive what Intent. This is usually defined as an 

Intent Filter in the Intent sender component’s manifest 

file. Due the introduction of run-time permission 

model since Android 6.0 (Marshmallow), apps have to 

asking for permission grants at run time instead of get 

all permissions statically during installation. However, 

it may not impossible to disable permissions to pre-

installed apps and the run-time permissions model is 

only used for apps developed using Marshmallow’ 

SDK. 

2.2 Auditing methods 
STATIC auditing. The most frequently used static 

auditing method is static taint tracking. It starts by 

specifying a set of sources and sinks. It marks the 

source data and then pollutes every variable related to 

the source data in instructions that follows. Thus, this 

technique provides useful information of the 

transmission path of the data.  

One of the most famous and still state-of-the-art 

tools that transplant static taint tracking from 

traditional programs to Android apps is FlowDroid 

[4]. Nevertheless, it is only for auditing a single app, 

not for a bundle of apps. 

Didfail [2] uses FlowDroid to perform static taint 

analysis on each app component in an app. Then it 

synthesizes a result for Inter-Component taint 

transmissions by connecting the taint paths according 

to ICC information of the apps. Unlikely, IccTA [1] 

first combines all apps under test as one app, and 

performs taint tracking on the app like FlowDroid. 

The experimental results of IccTA reveal that the 

precision can be improved in such a way.  

COVERT [3] proposes to use static model 

checking to auditing Inter-App vulnerabilities. It 

performs intra-process and inter-process control flow 

analysis and then uses this information collected to 

construct a static model for an individual app. When 

trying to find the vulnerability caused by IAC, it 

applies model checking on all models to check the 

existence of certain vulnerability pattern. However, 

since COVERT performs reachability analysis instead 

of taint tracking, it cannot detect data leakage.  
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Dynamic app auditing. TaintDroid [26] uses 

dynamic taint tracking to detect data flows in Android 

apps. It claims better accuracy than static taint 

tracking. But due to the inaccuracy nature of taint 

analysis (compared to methods like concolic 

execution), taint tracking is mostly used as a static 

preprocessor for following dynamic auditing. 

Concolic execution combines concrete execution 

and symbolic execution to generate inputs of a 

program. When a concrete execution fails, it collects 

related path constraint and then applies symbolic 

execution to solve the constraint to generate a new 

input which can trigger the concrete execution deeper. 

Besides generating program inputs, concolic execution 

is also frequently used to verify the feasibility of 

program paths.  

AppIntent [6] is the first to use concolic execution 

for Android. It generates inputs to trigger Intra-App 

data leakage so that security specialist can better 

confirm the problem. ConDroid [7] tries to detect the 

calling of certain malicious APIs which cannot be 

normally triggered in an analyzing environment, such 

as logic bombs, using concolic execution. IntelliDroid 

[9], like AppIntent, applies concolic execution for 

auditing data leakage within an app. The authors 

further provide a new method that can generate event 

chains to dive deep into the app.  

3 OUR SOLUTION 
SYSTEM Goal. We set out to build a system for 

effective and efficient detection of Inter-App data 

leakage. We have determined four design criteria that 

we felt such a system should satisfy so as to be useful. 

1. Automated: Reduce manual efforts as much as 

possible. 

2. Effective: Detect Inter-App data leakage with a 

small number of false positive and false negative 

reports. 

3. Efficient: Speed up the analysis of a large 

number of apps. 

4. Robust: Handle real-world apps correctly. 

Figure 1 depicts the system architecture. In order to 

provide a guide to dynamic analysis, we perform a 

preliminary static analysis on the entire set of apps to 

extract Inter-App traces which may potentially cause 

data leakage. The apps in the bundle are assembled as 

one app. We use an improved version of concolic 

execution to determine the feasibility of each Inter-

App taint trace and generate inputs which can trigger 

the execution of the trace. We feed the generated 

inputs to the apps of the app bundle in a controlled 

sequence. Data leakage can be confirmed if the Inter-

App taint trace actually gets executed and leaks data at 

run time. 

 

Figure. 1. System overview. 

Motivating Example. We use the set of apps 

described in Fig. 2 for illustration, which is called the 

SWE app bundle. The name is the first letter of the 

name of each of the three apps. SendSMS and 

WriteFile each can potentially leak private data. But 

the two vulnerable behavior both need the support of 

the app Echoer (acts like an agent) to transmit the 

data. Note that Echoer itself does not leak data, 

because it do not access sensitive APIs at all. The 

SWE bundle is inspired by the example given in [2]. 

However, we add many challenging characteristics to 

prohibit existing static analysis based methods for 

Inter-App auditing. One is the stateful operations. 

SendSMS sends an Intent whose key happens to be 

dynamically created using StringBuilder. The resulted 

key is the concatenated string “secrete1”. The other is 

conditional execution. Just take WriteFile as an 

example, it contains braches which depend on user 

inputs (i.e., getData()). 

4 INTER-APP TAINT TRACE EXTRACTION 
WE use static analysis to preprocess the set of apps 

before dynamically auditing then. A component model 

is firstly extracted from then entire app bundle. Based 

on it, we extract and then extend Inter-App taint traces 

to later guide our dynamic analysis. 

Component model extraction.  As with the static 

analysis phase of our method, we first collect overall 

information of app components for each app in the 

bundle. The component model (CM) describes the 

type of IPC messages sent from or can be received by 

a component. The manifest file of an app determines: 

(a) the unique package name of the app, (b) the name 

of all Android components within the app, and their 

capabilities (e.g., which Intent can handle); (c) the 

main process; (d) permissions required by the app 

(defined in Intent Filter); (e) permissions needed by 

another app to access this app’s component. The 

properties of Intents defined in the manifest file 

include <action android:name/> (the action of the 

receiver component, e.g., making a phone call when 

receiving an Intent with action ACTION_CALL),  
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Figure. 2. An illustrative app set (SWE). 

<category android:name/> (the situation in which the 

action can be taken, e.g., being able to get launched in 

a browser with CATEGORY_BROWSABLE), <data 

android:mimeType/> (the type of the data 

transmitted).  ICC links [1] are then extracted for 

linking components using Intent information. Two 

components can be linked only when the Intent sent 

form a component meets the constraints of the Intent 

Filter of the other component. Sometimes Intent 

Filters are dynamically defined in the code instead of 

the manifest file, for which we also need extract 

accordingly. This process is same with IccTA, using 

IC3 [16] to build links and then storing them in a 

database. 

App assembling. We need first to assemble the 

apps in the bundle to enable overall static analysis. We 

use ApkCombiner [1] to achieve this goal. All 

components for each app are extracted and then 

packed into on single apk file. As with the manifest 

file of the assembled app, we just merging all manifest 

files from all apps. Since different apps have different 

default entry component, we do not make a 

specification. How to entry the assembled app should 

be determined according to what execution path we 

expect (see the dynamic analysis section). 

Inter-App taint trace extraction. Static taint traces 

can be extracted by IccTA which is based on soot 

[15]. However, we have to make some preprocesses 

before that. Firstly, a call to an Android ICC method 

(e.g., StartActivity(intent))  should be replaced with a 

call to a function that initialized the receiver 

component (e.g., func(){new 

receiverActivity(intent)}), so that the call path is now 

connected. Secondly, in order to explicitly execute all 

components (they are originally implicitly arranged by 

the Android framework, which cannot get traced), a 

dummy main method (a new default program entry) 

that initializes all components of the app is added. 

Now we can perform static taint analysis using a 

modified version of IccTA on the assembled app. The 

sensitive APIs we specified which may introduce 

sensitive data (source APIs) or leak the data (sink 

APIs) are the same with IccTA. By marking the 

sensitive data fetched by a source API and tracing 

instructions which transmit the sensitive data until 

reaching the sink API, we then have a vulnerable taint 

trace which may cause data leakage. 

Trace extention. A taint trace consists of 

instructions which are only directly related to the data 

transmission, so it may not be executable. According 

to Android lifecycle state transition, for each event 

handling method that contains instructions on a given 

taint propagation path, we forward the prerequisite 

component that eventually starts up the activity that 

contains the handler to the instructions. This method is 

illustrated in Fig. 3, in which with regard to the tainted 

trace    ,  s1 ,  s2getId send , the supporting 

event handlers  ,() (); 2onCreate onStart Clico k btnn  

are added each for the two methods on the trace. 
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Figure. 3. An instace of extended taint trace. 

Furthermore, we consider extending supportive 

event-chains by comprehensively examining implicit-

control-flow dependencies on branch conditions. 

Various channels (i.e., heap variable, file system, 

Android framework, and environment data) are 

covered, instead of merely static fields. [9] only tracks 

static field for event dependency, which is insufficient. 

The dependency between two events is caused due to 

concurrent reading/writing a same field, which can 

influence the state of the program. Fig. 3 contains an 

instance of button-click event onClick(btn2) that is 

dependent on another instance of button-click event 

onClick(btn1), thus we added an edge from the latter 

to the former. The dependency is caused in such a way 

that the variable state in a branch of onClick(btn2) can 

be modified by onClick(btn1). The resulted extended 

trace is the bold path in Fig. 3. 

4.1 Compositional Concolic Walking 
JAVA Bytecode Instrumentation. 

Instrumentation is a process to add statements to the 

app under test, so that execution traces of program 

codes can be recorded during run time. As with 

concolic execution, it instruments the code to follow 

the propagation of symbolic variables. To achieve 

that, we need add direct jump instruction to event 

handlers, generate symbolic counterparts for variables 

and assignment statements, and overwriting fields 

using the results of SMT solvers when needed. 

Acteve's [8] instrumentation tool provides most of the 

above procedures. We added the support for tracking 

dependent events for a taint trace, by also 

instrumenting the paths from the event handler (they 

are extracted in the static analysis phase) to the 

corresponding node of the trace. Thus, during run 

time, the execution along the path from a dependent 

event to the target taint trace can also be recorded for 

constraint solving. 

Algorithm 1. ConcolicExe 

Input: PATHS: program paths (default=whole 

program paths, i.e., classic concolic execution), CM: 

component model, APP: instrumented apk, 

CUR_PATH: current path (default=the path 

executed when no inputs are injected) 

Output: RESULTS: a global set of the result 

containers, say results who have members of 

cst,sat,data,events, pathSignature 

1:  model ← CM.get(APP.pkgName, PATHS)  

2:  entry ←model.getEntry() 

3:  While  !isSinkHit() do  //if not reach path end, 

or path end is not sink 

       // negate one of the branches of the path 

       //in any priority  

4:    p’←model.genNewPath(p) 

5:    solve←getSolution(p’)   //symbolic execution 

6:    if solve.sat == True do 

7:      DI←append(solve.data)  

         //backtrack and search for dependent events 

8:      EI←append(solve.getEventHandler(p’))  

9:      clean()  //clean the device environment  

10:    install(APP) 

11:    q←startComponent(entry,DI,EI)  //concrete 

execution from the component entry 

(ConcreteExe()) 

12:    ConcolicExe(PATHS,CM,APP,q) 

13:  end 

14:res← new result() 

15:res.pathSignature ←p.signature 

16:res.cst ←p 

17:if isPathFeasible(p) do  //sink is reached and 

path constraint is satisfiable 

18:  //store the path result 

19:  res.sat ←True 

20:  res.data ←DI  

21:  res.events ←EI 

22:else 

23:  res.sat ←False 

24:end 

25:RESULTS.add(res) 

26:end 

Concolic Execution. We now apply concolic 

execution to judge the feasibility of the Inter-App taint 

traces, i.e., to judge whether they can actually execute 

at run-time. All apps relative to the combined app 

bundle are instrumented as aforementioned and now 

fed to a concolic executor. 

Classic concolic execution [22] explores all 

program paths by combining concrete execution and 

symbolic execution. Several modifications have to be 

made to the original concolic execution procedure so 

that to make it adapted to the scenario of Android 

apps, similar with [6,7,8,9]. Symbolic model/input 

configurations are firstly generated according to the 

component model which specifies user inputs. As 

given in Algorithm 1, it then performs following 

procedure until a sink (some termination condition 

such as program exit or pre-defined data-leak point) is 

hit: select one branch condition of the constraint 

p=b1b2...bn (a path/trace constraint is the conjunction 

of branch conditions) of the path that have been 

traveled by far, say bn; negate the selected branch and 

we get a new path constraint q=b1b2... ¬bn; if q is 

satisfiable, concrete execution is conducted to the 

onCreate()

getId()

getId():

…

uid = teleMgr.getDeviceId();//s1

…

onStart() onClick(btn2)

send()

send():

…

if (state == INIT) {

smsMgr.sendTextMessage(

“10086",, uid,,);//s2

}

…

onClick(btn1)

onClick():

…

state = INIT;

…
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corresponding program path using some solution to q 

and continue concolic execution for the new path q; 

once a sink is hit, the constraint solutions (i.e., 

program inputs to trigger the path) are returned. Thus, 

by searching recursively, concolic execution can make 

a traversal of all paths in a given program. The results 

of concolic execution are stored in the data structure 

RESULTS, which a global set of the result containers, 

say results. Each result corresponds to a path such that 

result.cst is the path constraint, result.sat is the 

satisfiability of the constraint (TRUE/FALSE), 

result.data/result.events is the data/event inputs needed 

to trigger the execution of the path, and 

result.pathSignature is the signature of the path. 

We apply Acteve [8] as the concolic engine, 

integrate the z3-str SMT solver which has the solving 

capability of string-related constraints, and reuse a 

back-tracing procedure of ConDroid [6] collecting 

semantically richer solutions Boolean registers. For 

objects which are user-input-related and require 

complex instantiation (e.g., strings of StringBuilder 

and intent data stored in the Android Bundle data 

type), we model the instantiation methods of those 

data structures and thus can track them symbolically. 

If a complex object is not user-defined (i.e., nothing to 

do with user inputs), we add paths from intent which 

contains the object to the receiver component to avoid 

missing potential data leakage. 

Concrete execution involves following steps. 

Firstly, the environment is cleaned for the emulator 

device, where the instrumented app is installed. 

Secondly, the default entry component is determined 

by looking for the component that contains the start 

node of each path. Thirdly, the component is started 

by calling an am-start command. We also need to 

inject the solutions (i.e., data inputs and concrete 

values of modeled APIs) into symbolic registers of the 

instrumented app. 

One specialty with Android apps is that we need 

not only generate data inputs but also event inputs to 

trigger a program path. Since we have connected the 

discreet event space of apps, we can simply backtrack 

from each program statement to find event handlers 

which are data- or control- dependent to it. The 

dependency has been modeled in the taint trace 

extension section, and what is left now is just back 

tracking along that model (getEventHandler(), line 8 

in Algorithm 1). 

Fig. 4 gives an example of concolic execution. The 

gray and solid nodes are program terminals, dashed 

lines are dependent events, and the dark regions are 

the vulnerable paths containing data leakage. Concolic 

execution can firstly explore the path D1>0 ∧
D2.Contains(‘goldfish’) before  the vulnerable path 

D1>0 ∧ ¬D2.Contains(‘goldfish’)∧ Sink1, and there 

can be much more redundant paths to explore if we 

have a more complex real-world app. When we are 

along the path D1>0 ∧ ¬D2.Contains(‘goldfish’)∧

Sink1, we also backtrack each node and find two 

relative events E1, E2 which need be injected as input 

so as to trigger the current path. To satisfy the path 

condition ¬D2.Contains(‘goldfish’), a SMT solver is 

used and it generates a data input say ‘abc’ that does 

not contain the string ‘goldfish’. 

 

Figure. 4. A demonstration of concolic execution for Android 
apps. 

Combinative Concolic Walking. Classic concolic 

execution is well-known for its inefficiency due to the 

path explosion problem, since there can be a large 

number of paths in a program. Therefore, we propose 

to use the previously extracted Inter-App taint traces 

to guide the execution, which is called concolic 

walking. By using the notion of “walking”, we mean 

that the execution is performed step-by-step along the 

Inter-App taint traces and within the input space of 

data and events. 

A first design that can be proposed is directly 

enforce the concolic walking along Inter-App taint 

traces for the entire app bundle that is assembled as a 

unique app by AppCombiner [17]. This forms the 

basis of our previously proposed prototype IacCE 

[21]. This method requires enumerating all app 

bundles by trying every combination of different apps, 

therefore we can it combinative concolic walking. As 

depicted in Algorithm 2, we first generate all possible 

combinations (i.e., bundles) of apps and then perform 

concolic walking for each entire bundle. Since we 

have previously connected the non-deterministic event 

space by inserting direct jumps between app entries, 

concolic execution thus can now smoothly “walk” 

through the bundle. Moreover, given the Inter-App 

taint traces, the concolic procedure is now forced to 

walk only along those traces. This is guaranteed by 

our Bytecode instrumentation and run-time enforced 

by dump branch conditions represented by symbolic 

registers, negating one of the clauses (i.e., branches) 

of a path once the path deviates from Inter-App taint 

traces (in Algorithm 1, line 4), and ask z3 to solve the 

respective constraints for the path. The solution of 

new values of variables will lead the execution of 

intended Inter-App taint traces. Once an Inter-App 

taint trace is considered feasible (i.e., the target API is 

E1

Entry

D1>0
D1<=0

D3!=10086

D3==10086

D2.Contains(‘goldfish’)

¬D2.Contains(‘goldfish’)

D4!=-1
D4==-1

Sink1

Sink2

E2

Source1 Source2
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hit) by concolic walking, it generates and returns data 

and event inputs to trigger each of the traces. 

 

Algorithm 2. Combinative Concolic Walking 

Input: CM: component model, BUNDLES: all app 

bundles under test 

Output: IDI2: Inter-App data inputs, IEI2: Inter-

App event inputs 

1:  IDI2←{}, IEI2←{} 

2:  foreach bundle in BUNDLES do 

3:    T2←getTraces(bundle)   // Inter-App taint 

traces 

4:    reses←ConcolicExe(T2.traces, 

CM.get(bundle.pkgName),bundle)  

5:    foreach res in reses do 

6:      if res.sat == True do: 

7:        IDI2.put({res.pathSignature:res.data}) 

8:        IEI2.put({res.pathSignature:res.events}) 

9:      end 

10:  end 

11:end 

Compositional Concolic Walking. By restricting 

the searching space, we save the execution cost of 

classic concolic execution. However, for each 

combination of apps, combinative concolic walking 

will have a fresh try of concolic walking along the 

respective traces, thus the cost can still be expensive. 

Thus we propose the second design, called 

compositional concolic walking. The method includes 

two phases – Intra-App constraint trawling (Algorithm 

3) and compositional execution (Algorithm 4). 

 

Algorithm 3. Intra-App Constraint trawling 

Input: CM: component model, APPS: all apps 

under test 

Output: IC1: Intra-App constraints 

1:  IC1←{} 

2:  foreach app in APPS do 

3:    T1←getTraces(app)   //unlike for assembled 

app, getTraces() returns all trace segments within 

the app which appear in any Inter-App taint traces 

4:    if T1.signature IC1.keys do 

5:      res←ConcolicExe’(T1.traces, 

CM.get(app.pkgName), app) // do not perform the 

last step of concrete execution in ConcolicExe() 

6:      foreach res in reses do 

7:        if res.sat == True do:  

8:          IC1.put({T1.signature: <res.cst,res.sat>}) 

9:        end 

10:    end 

11:  end 

12:end 

 

Algorithm 4. Compositional execution 

Input: CM: component model, BUNDLES: all app 

bundles under test, IC1: Intra-App constraints 

Output: IDI2: Inter-App data inputs, IEI2: Inter-App 

event inputs 

1:  IDI2←{}, IEI2←{} 

2:  foreach bundle in BUNDLES do 

3:    T2←getTraces(bundle)   // Inter-App taint 

traces 

4:    foreach Inter-App trace t in T2 do 

5:      foreach Intra-App trace t1 in t do 

6:        <cst,sat>←IC1.get(t1.signature)  

7:        if sat == False do 

8:          break 

9:        end 

10:    end 

11:    solve←getSolution(t)  

12:    isFeasible←ConcreteExe(bundle,t)  //concrete 

execution of the Inter-App taint trace 

13:    if solve.sat == True and isFeasible == True 

do:  

14:      IDI2.put({t.signature:solve.data}) 

15:      IEI2.put({t.signature: 

solve.getEventHandler(t)}) 

16:    end 

17:  end 

18:end 

In the first phase, we trawl Intra-App constraints by 

performing concolic walking within each apps for a 

given app bundle. We use the operator ConcolicExe’() 

instead of ConcolicExe() to mean that we do not need 

the last step of concrete execution during concolic 

walking, as the purpose here is trawling constraints 

rather than executing the apps. The constraint and 

satisfiability of each trace is then stored for next 

phase. The concolic procedures are guided by Intra-

App taint traces, which also appear on the Inter-App 

taint traces we extracted in the static model extraction 

section. 

Then in the second phase, we set out to determine 

the feasibility of the Inter-App taint traces and thus 

determine whether data leakage happens or not. For 

each Inter-App taint trace in the current app bundle 

under test, we first check the feasibility of the Intra-

App taint traces contained within that trace. Any 

infeasibility of Intra-App taint traces will lead to the 

infeasibility of the entire Inter-App taint trace, for 

which case we just skip and change to another Inter-

App taint trace. If and only if all Intra-App taint traces 

are satisfiable, we call the Z3 solver to solve the 

constraint w.r.t. the entire Inter-App taint trace and 

generate inputs which can trigger the execution along 

that trace. 

The effectiveness of our method can be illustrated 

by the example in Fig. 2, which corresponds to the 

illustrative SWE app set. We use the entity graph [3] 

to exhibit Inter-App data leakage. In an entity graph, 

every entity represents an app, each rectangle in an 

entity represents a component of an app, each bold 

swallow-tail form that embedded at the left size of a 
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component stands for a public ICC interface, a labeled 

swallow-tail form is a intent message, bold arrows are 

ICC channels, dashed arrows are event-dependency, 

and each node means a branch condition or 

prerequisite events of a path. There are two potential 

Inter-App vulnerable paths which are extracted by our 

previous static Inter-App taint trace extraction, Src1 ⇒ 

B1 ⇒ intent1 ⇒ B5 ⇒ intent3 ⇒ B2 ⇒ Snk1 (t1) and 

Src2 ⇒ B3 ⇒ intent2 ⇒ B5 ⇒ intent3 ⇒ B4 ⇒ Snk2 

(t2). During the static model extraction process, we 

assembled the three apps into one single app.  

Classic concolic execution will take all paths 

resulted from both side of branches of every path 

condition for the assembled app. Instead, combinative 

concolic walking performs both concrete and 

symbolic execution only along t1 and t2 for the 

assembled app, i.e., ConcreteExe() ⇒ 

SMTsolve(¬¬B1) ⇒ ConcreteExe() ⇒ SMTsolve(B1∧

¬¬B5) ⇒ ConcreteExe()⇒ SMTsolve(B1 ∧ B5 ∧
¬¬B2) ⇒ ConcreteExe() ⇒ Snk and ConcreteExe() ⇒ 

SMTsolve(¬¬B3) ⇒ ConcreteExe() ⇒ SMTsolve(B3∧

¬¬B5) ⇒ ConcreteExe() ⇒ SMTsolve(B3 ∧ B5 ∧
¬¬B4) ⇒ infeasible. We have 

#ConcreteExe=#SMTsolve=3(t1)+3(t2)=6.  

With compositional concolic walking, according to 

the Intra-App constraint trawling algorithm, we first 

examine all Intra-App taint traces appeared on the two 

paths — Src1 ⇒ B1 ⇒ intent1 (s1), B5 ⇒ intent3 (s2), 

Entry ⇒ B2 ⇒ Snk1 (s3), Src2 ⇒ B3 ⇒ intent2 (s4), 

Entry ⇒ B4 ⇒ Snk2 (s5) — using concolic walking. 

E.g., for Src1 ⇒ B1 ⇒ intent1, we have ConcreteExe() 

⇒ SMTsolve(¬¬B1) ⇒ ConcreteExe(). Then we apply 

one more symbolic execution for each of the two 

Inter-App taint traces t1, t2; as B4 ⇒ Snk2 can be found 

infeasible (Echoer does not have the permission to call 

the WriteFile Activity) in advance during Intra-App 

constraint trawling, the execution on t2 is avoided. In 

all, for t1 we have 

#ConcreteExe=#SMTsolve=1(s1)+1(s2)+1(s3)+1(t1)=4. 

Since the constraints can be reused, the cost of t2 is 

reduced to #ConcreteExe=#SMTsolve=0. Note that, 

once all constraints for every apps have been trawled 

(the number of apps are relatively much smaller than 

the number of all possible combination of apps, so we 

will soon encounter all apps after trying several 

combination of apps and the trawling can end in a 

reasonable small time), the execution cost for any 

Inter-App taint trace can be reduced to 

#ConcreteExe=0,#SMTsolve=0 or 1. That is, given 

pre-computed Intra-App constraints of si (i=1,2,3,4,5), 

the total cost becomes merely 

#ConcreteExe=0,#SMTsolve=1 for compositional 

concolic walking of t1, t2 in the example in Fig. 2. 

 

Figure. 5. Compositional concolic walking for the illustrating 
app bundle. 

Given an arbitrary set of apps under test, let us 

analyze the cost of time and space for the above 

algorithms. Let n be the number of apps in the bundle 

under test, ib  be the branch count of the ith app, and it  

be the branch count of the Intra-App taint trace of the 

ith app. And let s , r  each be the maximal time 

needed to solve a path constraint and to initiate and 

run an app in the device. The time complexity of 

concolic execution depends on the number of paths. 
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concolic execution stores each path during the 

recursive search procedure. We can see from the 

analysis that, by forcing execution along taint traces, 

the latter two algorithms avoid path enumeration and 

are thus much more efficient.  

As with compositional concolic walking, the cost 
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fraction of Inter-App taint traces get solved in line 11 

of the compositional execution algorithm, 
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Constraint trawling, and 1( 2 )
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   is the cost of 

compositional execution. This cost is much lower than 

combinative concolic walking in two reasons. Firstly 

and most importantly, we manage to avoid most 

executions of apps by reusing the concolic execution 

results of Intra-App taint traces once another bundle of 
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apps contains the same traces. The time for running an 

app in mobile devices or device emulators (in 

seconds) is much slower than that that for solving path 

constraints and executing the analysis algorithms 

which are implemented as PC programs (in 

milliseconds per instruction). We have now moved the 

overhead r  to Intra-App Constraint trawling, and 

only leave the overhead s  to compositional 

execution. The reuse of trances also reduces the time 

complexity of concolic execution procedure itself. 

Secondly, due to the fact that static analysis incurs a 

large number of falsely reported (i.e., infeasible) data 

leakages, only a small portion   of Intra-App taint 

traces can be pruned before the final execution of the 

entire Inter-App taint trace. 

4.2 Controlled Execution & Check 
Finally, events and inputs generated by concolic 

execution are injected through adb, am commands, 

and InstrumentationTestRunner, step by step along 

each path in the event-dependency graph. By 

observing the vulnerable-path related behavior, an 

analyst manages to confirm the existence of Inter-App 

vulnerable API calls in the original app set. 

This step is necessary, as an analyst can fully 

confirm the data leak the analyzer reports only if the 

vulnerability does happen under controlled inputs. 

Besides, since showing how to reproduce the 

vulnerability is the most critical part of a vulnerability 

report, by directly triggering the data leakage we can 

make it more comprehensible and convincible to app 

vendors. Also note that we should never base our 

report on modified apps (e.g., the assembled app for 

the app bundle), we have to control the execution and 

cooperation of the set of original apps by only 

manipulating data and event program inputs. 

Here are some detailed designs of this module of 

AppWalker. For each Inter-App taint trace, we 

generate and then inject events/data inputs 

sequentially along the trace. UI events are generated 

by Monkey script [12] and injected by monkeyrunner 

tool [12], whose positions on the device screen can be 

statically determined by referring to the layout 

configurations of apps. System events are generated 

and injected via the Activity Manager (am) commands 

[13]. Data inputs, which have been previously 

generated by concolic execution, are now directly fed 

[14] to the apps. When starting the entry component of 

the taint trace, we send a start Intent to it, using 

Android Debug Bridge (adb) [11]. After being 

properly injected all inputs, the set of apps are now 

triggered, and we just need to observe whether the 

Inter-App data leakage is replayed to confirm the 

vulnerability. 

5 EXPERIMENTAL EVALUATION 

5.1 Experimental Setting 
WE design the experiments by evaluating our 

design criteria. The effectiveness of our method is 

demonstrated on a standard benchmark, which makes 

it easy for comparing various approaches. The 

efficiency and robustness is evaluated on a larger set 

of real-world apps. Our experiments are performed on 

a laptop (Duo T5550, 2 cores, 4G RAM). AppWalker 

is written in Java and apps run in Android emulators. 

Benchmarks: 

 IAC-Bench. It is a mixture of DroidBench 

[4], ICC-Bench [1], and SWE. DroidBench and ICC-

Bench are standard Android application benchmarks 

used as the ground truth of the effectiveness of both 

Intra-App and Inter-App data-leakage detectors. We 

have both ICC and IAC data leak instances, due to the 

lack of IAC benchmarks and the fact that ICC and 

IAC are essentially similar. 

 IAC-Bench-ext. It has 77 apps which are 

derived from IAC-Bench. DroidBench and ICC-bench 

are initially proposed for testing static tools, few run-

time constraints exist. In practical, malicious app 

authors usually add such constraints to make 

traditional static analysis fail to detect vulnerable app 

behaviors. To better evaluate dynamic methods and to 

compare them with static methods, we add branch 

conditions (collected from some popular malware 

benchmarks) to protect each sensitive API for the 28 

apps in DroidBench, and 9 apps in ICC-Bench. Since 

there can be two possible branches for each branch 

condition, we have two set of apps for the IAC-Bench-

ext benchmark — one set has been added branch 

conditions which are all satisfiable (IAC-Bench-ext-

sat), the other set has branch conditions all 

unsatisfiable (IAC-Bench-ext-unsat).  

 F-Droid. F-Droid [25] is a free application 

market for Android users. As most apps in the F-Droid 

market are popular real-world apps appearing in 

Google Play [24], many research works have used it 

as a standard benchmark. All apps in the site are 

required to open-sourced, which enable us to manually 

dive deep into the code to confirm the vulnerabilities 

we found. We randomly selected 100 apps in the F-

Droid app collection provided by [3]. 

Methods compared: 

 FlowDroid. As the same trick with [1], we 

still can use FlowDroid to statically detect Inter-App 

data leakage, though it was initially proposed only for 

analyzing Intra-Component taint paths.  

 IccTA. It performs pure static taint analysis 

for Inter-App data leakage, as has been introduced in 

previous sections. COVERT is not open sourced and 

cannot detect data leakage, so we do not use it for 

comparison. 

 ConDroid. To enable the detection of data 

leaks rather than API invocations, we use a procedure 

of static Intra-App taint traces extraction to guide the 
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concolic execution, similar to AppWalker, instead of 

the original call graph guided execution. Event-

dependency extraction is also added. We also 

modified the system to support the Android 

component of BroadcastReceiver and Service, besides 

the Activity component.  

 AppWalker. AppWalker is our method of 

dynamic detection of Inter-App data leaks. It can also 

be directly used to perform Intra-App analysis. 

5.2 Comparison of Various Approaches 
table 1 and Table 2 give the results of different 

methods on the benchmarks IAC-Bench-ext-sat and 

IAC-Bench-ext-unsat.  

For FlowDroid, IccTA, ConDroid and AppWalker, 

they each achieve the precision of  27.4%/13.7%, 

93.9%/47.7%, 100%/100%, 100%/100% on IAC-

Bench-ext-sat/IAC-Bench-ext-unsat,  and the recall 

rate of 60.6%/60.6%, 93.9%/93.9%, 48.5%/48.5%, 

100%/100%.  

We can see that FlowDroid works poorly. Taint 

paths are isolately extracted for individual app 

component and then combined, so the tainted data can 

be mismatched. A lot of false reports are therefore 

generated by FlowDroid.  

IccTA manages to detect the majority of leaks, but 

it still does not work well with dynamic program 

constraints. The detection rate sharply drops from 

93.9% (Bench-ext-sat) to 47.7% (IAC-Bench-ext-

unsat), because IccTA cannot tell whether the 

sensitive APIs can actually be called at run time. 

The data leaks detected by ConDroid are all true 

positive reports, that is, it does not give false positive 

reports. This owns to that ConDroid is a dynamic 

method, among the above two methods, which is 

effective at pruning false positive reports. However, 

ConDroid missed some Intra-App leaks as it does not 

track data flows through implicit ICC. It also missed 

all Inter-App leaks since it only can analyze a single 

app instead of a set of apps as a whole.  

 
Table 1  Experimental results on IAC-Bench-ext-sat. True 
positive: ▲, false positive: ▼, true negative: △, false negative: ▽; 
precision: ●=▲/(▲+▼, recall:○=▲/(▲+▽. 

package  
FlowDroi

d 

IccT

A 

ConDroi

d 

AppWalke

r 

DroidBench-ext-sat 

startActivity1 ▲▼ ▲ ▲ ▲ 

startActivity2 ▲▼▼▼▼ ▲ ▲ ▲ 

startActivity3 ▲▼(32) ▲ ▲ ▲ 

startActivity4 ▼▼ - - - 

startActivity5 ▼▼ - - - 

startActivity6 ▼▼ - - - 

startActivity7 ▼▼ ▼ - - 

startActivityForRes

1 
▲ ▲ ▲ ▲ 

startActivityForRes

2 
▲ ▲ ▲ ▲ 

startActivityForRes

3 
▲▼ ▲ ▲ ▲ 

startActivityForRes

4 
▲▲▼ ▲▲ ▲▲ ▲▲ 

startService1 ▲▼ ▲ ▲ ▲ 

startService2 ▲▼ ▲ ▲ ▲ 

bindService1 ▲▼ ▲ ▲ ▲ 

bindService2 ▽ ▲ ▲ ▲ 

bindService3 ▽ ▲ ▲ ▲ 

bindService4 ▲▼▽ ▲▲ ▲▲ ▲▲ 

sendBroadcast1 ▲▼ ▲ ▽ ▲ 

insert1 ▽ ▲ ▽ ▲ 

delete1 ▽ ▲ ▽ ▲ 

update1 ▽ ▲ ▽ ▲ 

query1 ▽ ▲ ▽ ▲ 

startActivity1 set ▽ ▲ ▽ ▲ 

startService1 set ▽ ▲ ▽ ▲ 

sendBroadcast1 set ▽ ▲ ▽ ▲ 

ICC-Bench-ext-sat 

Explicit1 ▲ ▲ ▲ ▲ 

Implicit1 ▲ ▲ ▽ ▲ 

Implicit2 ▲ ▲ ▽ ▲ 

Implicit3 ▲ ▲ ▽ ▲ 

Implicit4 ▲ ▲ ▽ ▲ 

Implicit5 ▲▼ ▲ ▽ ▲ 

Implicit6 ▲ ▲ ▽ ▲ 

DynRegister1 ▽ ▲ ▽ ▲ 

DynRegister2 ▽ ▽ ▽ ▲ 

The SWE bundle 

SWE set ▽ ▼▽ ▽ ▲ 

Total 

▲ 20 31 16 32 

▼ 53 2 0 0 

▽ 13 2 17 0 

● 27.4% 93.9% 100% 100% 

○ 60.1% 93.9% 48.5% 100% 

 

Table 2  Experimental results on IAC-Bench-ext-unsat. The 
table is organized similarly to Table 1. 

package FlowDr

oid 

IccT

A 

ConDro

id 

AppWal

ker 

DroidBench-ext-unsat 

startActivity1 ▲▼▼▼ ▲▼ ▲ ▲ 

startActivity2 ▲▼(9) ▲▼ ▲ ▲ 

startActivity3 ▲▼(65) ▲▼ ▲ ▲ 

startActivity4 ▼▼▼▼ - - - 

startActivity5 ▼▼▼▼ - - - 

startActivity6 ▼▼▼▼ - - - 

startActivity7 ▼▼▼▼ ▼▼ - - 

startActivityForR

es1 

▲▼ ▲▼ ▲ ▲ 

startActivityForR

es2 

▲▼ ▲▼ ▲ ▲ 

startActivityForR

es3 

▲▼▼▼ ▲▼ ▲ ▲ 
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startActivityForR

es4 

▲▲▼(4) ▲▲▼

▼ 

▲▲ ▲▲ 

startService1 ▲▼▼▼ ▲▼ ▲ ▲ 

startService2 ▲▼▼▼ ▲▼ ▲ ▲ 

bindService1 ▲▼▼▼ ▲▼ ▲ ▲ 

bindService2 ▽ ▲▼ ▲ ▲ 

bindService3 ▽ ▲▼ ▲ ▲ 

bindService4 
▲▼▼▼

▽ 

▲▲▼

▼ 

▲▲ ▲▲ 

sendBroadcast1 ▲▼▼▼ ▲▼ ▽ ▲ 

insert1 ▽ ▲▼ ▽ ▲ 

delete1 ▽ ▲▼   ▽ ▲ 

update1 ▽ ▲▼ ▽ ▲ 

query1 ▽ ▲▼ ▽ ▲ 

startActivity1 set ▽ ▲▼ ▽ ▲ 

startService1 set ▽ ▲▼ ▽ ▲ 

sendBroadcast1 

set 
▽ ▲▼ ▽ ▲ 

ICC-Bench-ext-unsat 

Explicit1 ▲▼ ▲▼ ▲ ▲ 

Implicit1 ▲▼ ▲▼ ▽ ▲ 

Implicit2 ▲▼ ▲▼ ▽ ▲ 

Implicit3 ▲▼ ▲▼ ▽ ▲ 

Implicit4 ▲▼ ▲▼ ▽ ▲ 

Implicit5 ▲▼▼▼ ▲▼ ▽ ▲ 

Implicit6 ▲▼ ▲▼ ▽ ▲ 

DynRegister1 ▽ ▲▼ ▽ ▲ 

DynRegister2 ▽ ▽ ▽ ▲ 

The SWE bundle 

SWE set ▽ ▼▽ ▽ ▲ 

Total 

▲ 20 31 16 32 

▼ 126 34 0 0 

▽ 13 2 17 0 

● 13.7% 47.7% 100% 100% 

○ 60.6% 93.9% 48.5% 100% 

 

Our method AppWalker achieves the best results 

for both benchmarks, i.e., the highest precision and 

recall rate. We are able to detect more leaks than 

IccTA, because we have modified IccTA by 

conservatively adding paths from an intent (when the 

intent contains complex object) sender to the receiver 

to avoid missing potential leakage. False positiveness, 

if there exists any, can be easily pruned during 

dynamic analysis. Most importantly, when analyzing 

Inter-App information leaks for a set of apps, we 

neither miss any data leaks nor introduce false positive 

reports. 

5.3 Application to Real-world Apps 
In this section, we evaluate AppWalker on the 

selected real-world apps from F-Droid. The overall 

result is given in Table 3.  

 

Table 3  #Apps from 100 F-Droid apps which are found to be 
vulnerable. The result is represented as “#Statically detected / 
#Dynamically confirmed by the detector itself / #Actual data 
leaks” 

 Intra-App Inter-App 

AppWalker 31/3/3 53/5/5 

 

We here provide an interesting vulnerable case 

involving 3 apps. One app called Ermete SMS, which 

exposes its ICC interface and has the WRITE_SMS 

permission, is previously reported by COVERT to be 

exploitable when another app, Binaural beats therapy, 

runs in the same device simultaneously. The latter 

app, which does not have the WRITE_SMS 

permission, can escalate its privilege by crafting an 

intent and send it to the former app. This vulnerability, 

however, is a false positive report as the field of the 

intent sent from Binaural beats therapy mismatches 

with that of Ermete SMS and thus the latter can never 

receive the ICC message. Instead, we find another 

app, Hesabdar, whose TransactionsActivity 

component handles user money transaction and sends 

the account information as payload of an implicit 

intent to another component. However, there is no 

guarantee for this transmission as it can easily be 

intercepted. To demonstrate that, we further compose 

an exploiting app which first hijacks the intents 

containing the account information from Hesabdar, 

and then sends a spoofed intent to Ermete SMS filled 

with account information and adversary phone number 

as the payload. 

6 CONCLUSION 
WE propose a method for dynamic auditing a set of 

apps for Inter-App data leakage, which is caused due 

to the cooperation of multiple apps. Our approach 

consists two phases: firstly statically extract 

potentially vulnerable Inter-App traces and then 

dynamically analyzing those traces using concolic 

execution for confirmation. Several techniques are 

proposed to increase the accuracy and boost the speed 

of analysis. 
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