
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 3, 573–583
https://doi.org/10.31209/2019.100000112

CONTACT Xi Meng ximeng@zju.edu.cn
© 2019 TSI® Press

The Design and Implementation of a Service Composition System Based
on a RESTful API

Wang Hui1, Sun Guang-Yu2,5, Zhang Qin-Yan2, Liu Kai-Min3, Xi Meng3,
Zhang Yuan-Yuan4
1 Inner Mongolia Medical University, Hohhot 010050
2 Zhejiang University, Hangzhou 310027
3 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027
4 College of Information Technology, Zhejiang Chinese Medical University, Hangzhou 310053
5 Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin, 300301

KEY WORDS: Open API, REST architecture, RESTful API, API manager, service combination.

1 INTRODUCTION
WITH the progress of web services, various

organizations are operating their services around the
world gradually. Organizations build a business
process on the Internet and provide web services to
their partners for sharing. With the continuous
development of economic globalization, the demand
for information sharing and collaboration between
contemporary enterprises and different corporate
organizations is becoming increasingly urgent, which
why Open API (Open Application Programming
Interface) was developed. Open API is a type of open
application programming interface. Sneps-Sneppe and
Namiot (2012) proposed M2M applications and Open
API: what could be next? Chang (2015) has proposed
a REST-based Open API architecture for cloud
computing. Microsoft, YouTube and Facebook have
opened their APIs to the public and are transferring
their core competitiveness to the open service
platform. In recent years, some domestic enterprises
have also established their own open platforms, such

as Baidu API Store, Taobao open platform (TOP),
Tencent open platform, and so on

A service composition function, which depends on
an API management system, is an important
component of that. API management enables the
integrated API to provide its maximum capability.
With API management, companies can publish Web
services to APIs not only safely and reliably but also
massively. API management can promote the
implementation of APIs within departments, partners
and developers. At the same time, API management
can also benefit from the business provided by the
operation organization. API management should
provide all the tools involved, including setting up
roles, creating usage plans, and providing throttling
strategies and data analysis. Moreover, functions
provided by single services are limited and cannot
meet the complex business requirements. Therefore,
service composition is required for APIs to complete a
complex business implementation. Maleshkova et al.
(2010) have proposed investigating web APIs on the

ABSTRACT
With the current explosion of mobile applications and smart devices, more
organizations are beginning to expose Web APIs, which makes APIs more
widely used. How can these APIs be managed and utilized safely and effectively
for businesses? It is not easy to say. Today's Web services mainly include
traditional structured WSDL and unstructured RESTful. A RESTful architecture
can effectively constrain and help to achieve a simpler, lighter, and more
scalable system. How to uniformly organize and merge RESTful APIs is also a
problem to be solved. To solve the above problems, this article has designed an
API management system that can realize API service composition. This system
brings together the open-source project WSO2 API Manager and the RESTful
API service composition model. Based on the platform, developers can perform
service management and service combination more efficiently and conveniently.

574 HUI ET AL.

World Wide Web, which can not only make use of
more resources but also increase business value.

On the basis of the previous description, we have
designed a service composition system based on a
RESTful API to solve problems such as the lack of
unified management and standards and many other
defects. Our system can not only manage the entire
lifecycle of the API but also achieve richer
functionality through the integration of multiple APIs.

In the second section, the relevant research work is
introduced. The third section presents the architecture
design of the service composition system. The fourth
section uses a tourism instance as a business
requirement to verify the effectiveness of the system.
The fifth section summarizes the full article.

2 RELATED WORKS

2.1 Open API

2.1.1 Open API Overview
OPEN API is an application program interface that

is open-ended and uses web technologies such as
SOAP and JavaScript to interconnect websites. Open
API's contribution to the issue of processing resource
integration lies in the following. First, the external
access to resources is open to the public and can
provide services for resource collocation. Second,
resources can be protected by limiting the interface
number and provision frequency. The difference
between Open API and the traditional application
program interface is that Open API does not limit the
creation of new applications. Open API provides
innovative solutions that make the interconnection
between websites more flexible and friendly, provides
integration of network information resources or
services, and integrates the foundation with third
parties. API publishers expose their resources through
open interfaces. API application developers can obtain
data in different formats (such as XML, JSON, etc.)
and pass specified protocols, URL addresses, and
functions that conform to API specifications. Open
API can also integrate the resources and services of
multiple API publishers to provide users with new
hybrid applications.

The openness of resources and services is not the
right embodiment of that of Open API. The openness
of Open API is reflected in the three roles that can be
used in the conversion of APIs. More accurately, the
boundary between providers, publishers, and users is
opened as well. API providers own data, technologies,
and services. Services are opened by publishers. In
reality, API providers and publishers have developed a
large number of APIs.

2.1.2 Field of Application
Currently, Open API on the Internet can be

roughly divided into the following categories based on
the business areas of the services it provides:

(1) Search API: The search engine service
provider mainly implements the search function for
the website, opens the search function and provides a
search API call. Developers can also use their search
results to assemble and compose new Web
applications. Such APIs include Google, Yahoo, and
so on

(2) Geographic information API: The geographic
information API is the most useful Open API and
provides a two-dimensional vector for one-
dimensional text information, enabling a more
accurate description of geographic locations. A large
part of the information on the Internet concerns
geographical locations. Therefore, the daily call
volume of APIs for geographic information is very
large. Google, Yahoo and Bing have all opened their
own map APIs to the public and can cover the entire
globe. At present, domestic Baidu, 51Map, and so on
provide open capabilities for geographical information
within China.

(3) Text information API: This type of API is
mainly used in Internet applications, such as
information websites, blogs, and forums, and its basic
feature is that it is more convenient for users to obtain
or publish information by using words, such as on
Twitter, Douban, and so on

(4) Multimedia type: Today, multimedia APIs
mainly provide pictures and video resources. People
can use these APIs to obtain rich picture or video
content. Compared with text information, picture and
video information is more colourful. Photo-sharing
sites, such as Yahoo's Flickr, and video-sharing sites,
such as Google’s YouTube, open their multimedia
resources by providing Open APIs.

(5) E-commerce API: E-commerce APIs can
disseminate enterprise and commodity information.
The fundamental goal of such APIs is to attract
developers to develop various additional functions and
to increase the revenue level of websites by increasing
the number of visits and trading volume; on this basis,
they will be promoted. Some of the proceeds are
shared with developers and attract developers to
continue to develop and operate. Typical
representatives include Amazon and Taobao.

(6) Life service API: The open capabilities
provided by the Life Services API are mainly related
to weather inquiries, traffic inquiries, identity card
inquiries and inquiries about the rapid increase in
demand in recent years. Such APIs provide scenes that
are commonly used in people's daily lives to facilitate
people's lives. In Baidu's API Store and Easy Source's
Show API, there is a special classification for such
APIs.

(7) Users and relationships API: User relationship
information in Internet information gradually becomes

INTELLIGENT AUTOMATION AND SOFT COMPUTING 575

more and more important with the popularity of social
networking sites, such as Facebook, where developers
can use Facebook's open API to develop substantial
applications on their social networking platforms,
which not only benefits developers but also makes
social networks more colourful.

2.2 Traditional Web Services & RESTful Web
Services

Web service is no longer a novelty. In recent years,
it has guided the development of the Internet as a
basic principle. However, REST is a new concept
proposed by Roy Fielding in his doctoral thesis. That
began the competition between traditional Web
services and RESTful Web services.

2.2.1 Traditional Web Services
Technologies of traditional web services are

mainly based on XML-SOAP-WSDL-UDDI. Erl
(2010) has proposed a field guide to integrating XML
and web services. Fensel et al. (2005) have proposed
web service modelling ontology. In the service
architecture, XML is the basis, UDDI is the discovery
layer, WSDL is the description layer, SOAP is the
package layer, and the HTTP protocol carrying SOAP
objects implements the transport layer. The network
layer in the service architecture is used to provide
communication, addressing routing and other
functions, which is the same as the network layer in
the TCP/IP network model.

(1) XML (Extensible Markup Language) is an
HTML-like plain text markup language. XML is
designed and used to transmit and store data, not to
display data. Yergeau et al. (1998) have proposed
extensible markup language (XML) 1.0. HTML can
be used to display data, which is the main difference
between them.

(2) SOAP (simple object access protocol) is a
protocol that provides an information exchange
function implemented on HTTP on the basis of XML.
Ryman (2000) has proposed simple object access
protocol (SOAP) 1.2. SOAP can describe the format
of service information transmission. SOAP consists of
four components: an encoding constraint,
encapsulation structure, RPC and binding. An
ordinary XML document can be used to represent a
SOAP message.

(3) WSDL (Web Services Description Language)
is also a technology based on XML to describe
network services and how to access network services.
Christensen et al. (2003) have proposed web services
description language (WSDL). WSDL is written in
XML, so it is presented by an XML document as well.

(4) UDDI (Universal Description, Discovery and
Integration) is a directory service that developers can
use to register and search for Web services. Curbera et
al. (2002) have proposed unravelling the web services
web: an introduction to SOAP, WSDL, and UDDI.

Popularly speaking, UDDI is a directory used to store
relevant information of Web services. UDDI is
implemented by WSDL service description language.
UDDI can help consumers search Web services
conveniently and facilitates the use and calling of Web
services. UDDI has been recognized by academia and
industry and has been widely applied.

2.2.2 RESTful Web Services
Before Dr. Roy Fielding proposed the concept of

REST, REST was called "HTTP Object Model," and it
was not completed. The official name of REST is
"Representational State Transfer." It is expected that
each developer will have a deep understanding of how
to design a good Web application: a Web-based
Network in which a user can select the link (state
transition) and that leads to the next page, i.e., the next
state is passed and presented to the user. Fielding
(2000) has proposed architectural styles and the design
of network-based software architecture. The "next
page" passed to the user is used to indicate the
"representation" here and may be a normal HTML
page or a normal XML page or may only be some data
and services. The “Representational” refers to those.

For a simple example, suppose a user uses the
following logic to request a book's resources on a
book vendor's Web server. URL:
http://www.books.com/computers/Thinking_in_Java.
The physical representation of a resource is then
responded to the user, assuming it is
Thinking_in_Java.html. A user selects a link, such as a
picture, price, or book content description in the
presentation page, to specify the next action so that the
program state can be maintained by the user, as shown
in Figure 1.

Figure 1. State Transition of REST

The REST architecture is a common set of
architectural styles, and its design principles apply to
any aspect. However, the web services are the most
widely used at present. RESTful web services refer to
web services with the REST architectural style.
RESTful Web Services are resource-centric Web
Services. Resource Identifiers are implemented using
the Uniform Resource Identifier URI, and unified
methods are implemented using HTTP standard
methods. Surhone et al. (2013) have proposed a
uniform resource identifier. Lopes and Oliveira (2002)
have proposed a uniform resource identifier scheme
for SNMP. Totty et al. have proposed a definitive
guide of HTTP. Web services present different forms
of page content to the user, that is, the representation

576 HUI ET AL.

of resources. A user opens the next page by clicking
on a link in the page to promote changes in the state of
the entire web service.

The following describes the characteristics of
RESTful Web services, that is, the constraints that the
design of RESTful Web services needs to comply
with:

(1) Client-Server: The client-server constraint says
that the system is divided into two parts: client and
server. The client implements the display interface and
input data. The server implements the processing of
information and storage of data, which improves not
only the cross-platform portability of the user interface
but also the system's scalability.

(2) No status: The stateless constraint emphasizes
that the client-initiated request does not depend on the
previous communication; the request itself must
include all information required by the server to
process the request, and no context state information
needs to be stored on the server. This specification
improves the reliability and scalability of the system.
The disadvantages of the system are also obvious. The
system increases the overhead for the client to send
duplicate request data and reduces system
performance.

(3) Caching: Stateless constraints make the server
unable to store state information, and the client must
carry all the information in the sent request data,
which leads to the loss of system performance. The
existence of cache constraints can improve the
negative effects of statelessness. If the resource is
cacheable, the representation of the resource is saved
in the client.

(4) Unified interface: Different from other
architectural styles, the core feature of the REST
architectural style is unified interface constraints,
which is manifested in RESTful Web services, where
everything on the network is abstracted as resources.
The unified interface emphasizes that all resources are
accessed through a common interface.

(5) Hierarchical system: Layered system
constraints divide the system's structure into multiple
layers based on the system's capabilities. Components
in each layer can communicate with neighbouring
components without knowing all non-adjacent
components. Each level of components can evolve
independently without changing the functionality of
other layer components.

(6) Code on Demand: Code on Demand constraints
are optional and allow the client to be extended, which
shows that the server sends the program to be run to
the client; the program is downloaded and executed by
the client. For example, client functionality is
extended by downloading and executing a Java applet
or scripted code.

2.3 Service Composition Methods and Models
The combination of Web Services has attracted

extensive attention in the areas of process

management, artificial intelligence, and other
research. The combination of Web Services can be
classified according to different standards. In
accordance with the level of automation, it can be
divided into the manual service composition method,
semi-automatic service composition method and
automatic service composition method. According to
different types of task classification, it can be divided
into the business process-driven method and real-time
task solution method. The former mainly depends on
workflow technology, and the latter mainly depends
on artificial intelligence theory. The composition
method of Web services can be divided into service
compilation and service orchestration and
choreography. Yang (2012) has proposed research on
a formalization model for web service compilation.
Peltz (2003) has proposed web service orchestration
and choreography. Service preparation requires a
central scheduling node to dominate the Web services
that need to be used and to coordinate services to
achieve differential operations; service orchestration
does not require the central control node to dominate
the entire orchestration process. Service orchestration
is a point-to-point method of transferring information
between services. Finalize the combination. Not only
that, service composition methods can also be divided
into static combinations and dynamic combinations.

According to the importance of control and data,
the service composition model has three types: a
process-based model, data-based model, and
knowledge management-based model. The process-
based model emphasizes control logic and maps tasks
in the process into services. This model does not focus
on the importance of data, although it has the
advantages of convenience and portability. The focus
of service aggregation and combination is not the
control process but rather data. The control process
only needs to play an auxiliary role. In summary, the
realization of service aggregation and combination
operations is more appropriate to use data-based
service aggregation and combination models. In
addition, the model based on knowledge management
mainly relies on artificial intelligence technology that
is not yet mature. Thus, the model used in this article
is a data-based service aggregation and composition
model.

3 SERVICE COMPOSITION SYSTEM DESIGN

3.1 System Component Architecture
THERE are four main types of components in the

system: service publishing/management components,
service store components, service composition
components, and management components.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 577

3.1.1 Service Publishing / Management
Components

In the development of the API, it is usually
necessary for professional developers who understand
APIs, interfaces, and documents to be involved. In the
management of the API, people who are familiar with
the API business also need to be present. Therefore,
professional API developers can easily use this
component.

API development and management are in the
system API Publisher interface. The web interface is a
structured user graphical interface. API developers can
develop, test, and maintain APIs in the API Publisher
and can also perform API management-related
operations, such as API publishing, lifecycle
management, and flow control.

The API Publisher's access address is:
https://<HostName>:9443/publisher and must be
accessed through the https protocol.

3.1.2 Service Store Components
The API Store exposes collaborative interfaces to

API publishers so that they can publish and promote
their own APIs and provides API users with the ability
to independently register, discover, subscribe, use, and
evaluate APIs. The URL of the API Store is:
https://<YourHostName>:9443/store and can only be
accessed through the https protocol.

3.1.3 Service Composition Components
Service Aggregation and Combination Component

API Combination are implemented on the basis of a
data-based service composition model. The main
functions include acquisition, aggregation and
combination design, and issuance of RESTful
services.

API Combination can obtain the APIs available on
the API Manager platform and aggregate and combine
the services available on the platform. To present the
internal structure of the service and provide an
interface that is easy for the user to develop, the
component uses a graphical approach. As a result,
developers can easily implement the services they
need to receive the services they need through
aggregation and combination of services.

As shown in Figure 2, a functional block diagram
of service aggregation and composite components is
shown. Several functional modules of the component
can be understood through that.

(1) Interaction module with API Manager platform:
The interaction with the service platform is the basic
function of this function module, such as obtaining the
service and uploading and synthesizing the code and
document after completion, so that the user and the
platform can seamlessly interact with each other.

(2) Model operation module: All the graphical
elements that need to be used in the RESTful service
aggregation and combination model are provided by
this function module. Users can create, modify, and
delete the model to achieve the purpose of designing
the graphical service description and designing service
aggregation and combination.

(3) Grammar module: This function module is
mainly used to check and parse the RESTful service
description and RESTful service aggregation and
combination syntax. Through the definition of some
rules in the model, it is determined whether the
graphical representation of the developer's design
accords with the defined rules, and corresponding
feedback information is provided to the developer in
real-time.

Figure 2. Service composition component functional structure

578 HUI ET AL.

Figure 3. Diagram of how FreeMarker generates document samples

(4) File Management Module: This function
module can long-term convert the graphical element
representation designed by the developer into a
specific description file. The file is saved in JSON
format because the model design borrows from JSON
design ideas. If you want to save a JSON file, you
should specify the structure of the save file.

(5) Document code generator module: This
function module has two main functions. The module
can generate RESTful service documents according to
the developer's service model description or generate
service aggregation and combination code according
to the service aggregation and combination description
designed by the developer and upload the code to the
platform. If you want to obtain a uniform style of
document, the first step is to define a uniform
document template. The second step is to fill in the
service information in the appropriate location. The
work of this module can be done by calling the
FreeMarker tool. FreeMarker is a template engine that
was developed using Java. FreeMarker generates text
output based on templates. As Figure 3 shows, the
FreeMarker tool first modifies the symbols in the
template into real data and then outputs the document.

3.1.4 System Management Components
The system management implementation mainly

uses the API Gateway component and the Key
Manager component.

(1) The API Gateway is mainly responsible for
protecting and managing API calls and intercepts API
requests to apply policies (such as throttling policies)
and manages API statistics. After validating the
policy, Web service calls are transmitted by the API
gateway to the real backend. If the service call is a
token request, the API gateway passes the service call
to the key manager. The URL of the API Gateway is:
https://localhost:9443/carbon, accessible only through
https protocol.

(2) The Key Manager mainly ensures that the
client's normal work is not destroyed, and the
processing service call is a token request operation.
The validity of the OAuth tokens for the subscription
and invocation APIs is the connection between the
API Gateway and the Key Manager as a whole. The
process of obtaining the access token is as follows.
First, the subscriber creates a new application and
generates an access token for it. This step is completed
in the API Store. Then, the API Store notifies the API
Gateway that an access token needs to be obtained.
Finally, the API Gateway connects to the Key
Manager to obtain an access token. The process of
verifying the access token is similar to the process of
obtaining the token. The API Gateway connects to the
Key Manager and obtains the token from the database
and then verifies the access token.

All tokens used for authentication are based on the
OAuth 2.0 protocol. Secure API authorization is
provided by OAuth 2.0 compliant key management.
The API Gateway supports API authentication using
OAuth 2.0.

The API Gateway has a cache function. When it is
not enabled, every time an API call is received, the
call authentication is triggered. Use the API Gateway
cache to avoid frequent connection to the Key
Manager when the API Gateway receives an API call
request.

3.2 Database Architecture
The system uses 3 databases, and the following

databases are shared among server nodes.
(1) User Manager Database: Stores user and user

role information. This information is shared between
the Key Manager server, Store, and Publisher. Users
can access the Publisher creation API and access the
Store consumer API.

(2) API Manager Database: Stores API and API
subscription information. The Key Manager server

INTELLIGENT AUTOMATION AND SOFT COMPUTING 579

uses this database to store user access tokens used to
verify API calls.

(3) Registry Database: Stores shared information
between Publisher and Store. When the API is
published through the Publisher, the API is made
available in the Store by sharing the registry database.
Although information is typically shared only between
Publisher and Store components, if you plan to
configure a multi-tenant environment (creating and
using tenants), you also need to share information for
this database between the Gateway and Key Manager
components.

3.3 Users and Roles
This system provides four different roles.
(1) Admin: Provide APIs for the server and

management API Gateway. Administrator privileges
include creating users in the system, assigning roles,
managing system security, and more. The
administrator role is available in the initial system.
The default account name is admin, and the password
is admin.

(2) Creator: Professional developers familiar with
API technology are called creators. You can use the
API Publisher to publish APIs to the API store. The
rating and feedback information given by the API user
is fed back to the creator in the API store. Creators can
add APIs to the API Store but cannot control the API
lifecycle.

(3) Publisher: The publisher manages a set of APIs
and dictates the API's life cycle, subscriptions, and
flow control. Publishers can also access statistics for
all APIs.

(4) Subscriber: Subscribers find and subscribe to
APIs in the API Store. In addition, they can read
documents, rate APIs, provide feedback, and so on

3.4 API Lifecycle
The difference between an API and a service is

that the API is the published interface while the
service is a program that is executing in the
background. APIs have their own lifecycle,
independent of the back-end services they depend on.
The API publisher manages the API lifecycle in the
API Publisher interface.

The following is a list of all the states in the API
lifecycle:

(1) Created: After the API is created by the creator,
although the API is added to the API Store, the user
cannot see this API in the API Store, nor is it deployed
to the API Gateway.

(2) Prototyped: The API is deployed as a prototype
and published in the API Store. An API prototype is
often used to receive feedback on its usability, which
users can emulate but cannot add to their own
application.

(3) Published: When the API lifecycle is in this
period, users can find it in the API Store and add it to
their own applications.

(4) Deprecated: The API is still deployed in the
API Gateway, but it can no longer be called. The old
version of the API will automatically become
deprecated after the new version of the API is released.

(5) Retired: After the API expires, it will be
removed from the API Gateway and API Store.

(6) Blocked: API access is restricted, the API
cannot be called at this time, and it is not displayed in
the API Store.

3.5 Access Tokens
The access token is in the form of a simple string

that is transmitted via the HTTP header in the request,
for example, "Authorization: NtBQkXoKElu0H1a1fQ
0DWfo6IX4a." Both API users and application
security require an access token for verification. If the
token transmitted by the request is invalid, the request
is discarded. The access token works well regardless
of SOAP or REST calls.

There are two types of access tokens:
(1) User access token: The authentication of the

API end user is through the user access token. API
consumers can call APIs from third-party applications,
such as mobile applications, which is allowed by the
user access token. Users can generate or update user
access tokens through the API management platform.

(2) Application access token: The application is
authenticated by the application access token. An
application refers to a logical collection of APIs.
Developers can access all APIs associated with an
application through a single application access token.

3.6 Throttling Tiers
Throttling Tiers can limit the number of times the

API is successfully called in a certain interval. They
can be applied in the following scenarios:

(1) Protect APIs from DoS attacks.
(2) Adjust traffic based on the availability of

infrastructure.
(3) Services can be provided to users at three

levels: APIs, applications, and resources.
API publishers can define the throttling strategy at

three levels: API level, application level, and resource
level. As shown in Figure 4, a user's request limit is
ultimately determined by the aggregate output of all
flow control layers. Here is an illustrative example: if
two users subscribe to an API at the Bronze level
(bronze level, which can achieve a maximum of 1000
requests per minute), both of them use the application
"App1" to subscribe, and the application "App1" is set
again. With 1000 requests per minute, there is no limit
to the flow control layer for all resource levels. Under
this condition, although both users can call this API
1000 times per minute, the theoretical limit for each
user is 500 requests per minute because of the limit of
1000 requests per minute set at the application level.

Here are the different levels of throttling, which
correspond to the three levels of restriction in Figure 4:

580 HUI ET AL.

Figure 4. Get request restriction process

3.6.1 API-Level Throttling
Developers can define API-level flow control

levels on the API Publisher interface. After API-level
flow control is set and the API is published, API
subscribers can use different levels when subscribing
to the API.

After selecting a different level at the time of
subscription, the maximum number of requests for the
API to be called by the subscriber within unit time is
limited by the subscription level. The default levels
are as follows:

(1) Bronze: Allows 1000 requests per minute.
(2) Silver: Allows 2000 requests per minute.
(3) Gold: Allows 5000 requests per minute.
(4) Unlimited: Allows Unlimited requests.
Subscribers can log in to the API Store and use the

specified tier consumer APIs only if the subscriber
belongs to a role that allows access. In the API Store,
the subscriber sees a filtered list of ratings based on
the subscriber's role. Only the allowed levels of access
for the role are displayed on the page. By default,
anyone is allowed access to all levels.

3.6.2 Application-Level Throttling
Developers can create applications on the API

Store interface and define application-level flow
control levels at the same time. An application is a
collection of one or more APIs that are required to
subscribe to the API. The application not only allows
developers to access an API set using a single
application access token but also licenses multiple
subscriptions to a single API using different traffic
control levels.

Application-level default traffic configuration
levels are as follows:

(1) Bronze: Allows 1000 requests per minute.
(2) Silver: Allows 2000 requests per minute.
(3) Gold: Allows 5000 requests per minute.
(4) Unlimited: Allows Unlimited requests.

3.6.3 Resource-Level Throttling
The API consists of one or more resources. Similar

to a method or function in the API, each resource
handles a specific type of request. Developers can
open the API Publisher interface and set resource-
level flow control to the HTTP method that calls API
resources. The default flow control level is as follows:

(1) Bronze: Allows 1000 requests per minute.
(2) Silver: Allows 2000 requests per minute.
(3) Gold: Allows 5000 requests per minute.
(4) Unlimited: Allows Unlimited requests.

4 INSTANCES
THIS section uses the travel scene as an example to

use the system to implement the combined functions
of the service. The services required for service
portfolio demonstration are a taxi calling service, bus
inquiry service, weather inquiry service, hotel inquiry
service, train ticket inquiry service and ticket inquiry
service. It is assumed here that these services have
already been deployed on the service management
platform.

Combining the habits of most people in daily life,
we can find that, when the weather is raining, people
are more willing to travel by car and have less
tendency to travel by bus. Because the bus may need
to transfer and because the time it takes to stop at the
platform will take a long time, the advantage of
taxiing is reflected; not only does one not need to
transfer, but it is also quicker and easier. Similarly, it
is observed that for those who like to travel by car,
when deciding between traveling by train or by plane,
the latter is more likely.

The first thing that needs to be done is to add the
required services. Import the required services to the
component on the platform. Then, perform the add
route operation. Add an "XOR" route to this tour
instance. A logical expression is used to determine if
there is rain on the day. If there is rain, a taxi search
service will be used. If there is no rain, the bus service
will be used. In the travel example, according to the
weather field in the weather query service output data,
it is determined whether the weather is rainy on the
day of the trip to determine whether to use the taxi
calling service or the bus inquiring service. As shown
in Figure 5, set the specific event attributes. The
variable types can be value types, string types, and
event types. String types can use the equal(),
notEqual(), and contains() functions. Time and value
types can use the ">," "<," "=," and "!=" operators.

Next, add a filter. When the train inquiry service
and the ticket inquiry service are used, the returned
data include a plurality of train ranking lists and a
plurality of flight departure lists. To select the portion
of the data that is most suitable for combination

INTELLIGENT AUTOMATION AND SOFT COMPUTING 581

Figure 5. Event settings

Figure 6. Set filter property instance

display, a filter is required. To make the combined
services logically coherent, it is necessary to
concatenate the services in chronological order. Thus,
we first need to add a filter between the public
transportation inquiry service and the train ticket
inquiry service and then configure the attributes of the
filter. The specific data type that needs to be set is
used for comparison. The data type is consistent with
the data type of the event condition judgment. Finally,

set the data to be filtered, such as the
queryLeftNewDTO field, which indicates the list of
all trains. The data type of the data to be filtered
previously set is generally an array type. This type
generally includes the field used for comparison,
which is represented by the variable y, such as the
start time information of the driving time in the output
result of the train inquiry service; the previous service
filter value is represented by the variable x, such as
arrival time in the output of the public transit query
service arrive_time.

To filter the data with the properties of this
attribute, you need to set the relationship between
these two variables x, y in the condition. The specific
settings are shown in Figure 6 (a). Similarly, set the
filter between the taxi search service and ticket search
service. The specific filter property settings are shown
in Figure 6(b).

Finally, to achieve the setting of the event
attributes between services, we mainly focus on the
setting of the parameter transfer. Figure 7 presents the
final rendering of the service portfolio for tourism
examples. The dashed line represents the filter, and
the straight line represents the event.

Generate the corresponding service combination
code through the "File" -> "Save" option. After the
code is generated, the assembled API is uploaded to
the API Manager platform, and API call testing can be
performed using the API Console in the API Store
component.

5 CONCLUSION
THE service composition system is mainly

composed of two parts: a service management
platform and service composition editor. The system
can bring the following benefits to the developer
management API:

(1) Accelerated API usage: The API's call speed
can be increased, which relies on the API management
platform to provide a set of web interfaces that can
display API documents and test experiences.

Figure 7. Routing service portfolio final rendering

582 HUI ET AL.

(2) Improve the discoverability and utility of APIs:
currently, many organizations hold hundreds of APIs,
but sometimes, the greater the number of APIs, the
lower the team's work efficiency because of improper
management of the API, such as useless
documentation, fragmented experience, and limited
discoverability. Therefore, it is necessary to establish
an API management platform with a consistent
appearance to improve team work efficiency.

(3) API service aggregation and combination:
Through integration of API functions via technical
means, the API functions formed after aggregation
and combination are more powerful or meet different
needs through different methods of aggregation and
combination.

(4) Protection API: The API is protected by
methods such as authentication and throttling.

There are some advantages and disadvantages.
Although this article proposes a service management
platform that can provide service combinations, the
service combination module and service management
platform are still two relatively independent systems.
The service composition module needs to actively
travel to the service management platform to acquire
the API; the module and platform are not perfectly
combined. In addition, the service aggregation and
combination module can only obtain structured
services on the service management platform each
time the service is acquired. The versatility of the
system is limited to a certain degree such that the
aggregation and combination functions of the service
are restricted and cannot obtain a maximized value.
We will improve the above defects one by one in
future research work.

6 ACKNOWLEDGMENTS
THIS research was supported by the National Key

Research and Development Program of China under
grant No.2017YFB1401202 and Zhejiang Province
medical and health science and technology platform
project No.2017KY497.

7 REFERENCES
C.Y. Chang, (2015). A REST-based Open API

architecture for cloud computing. Advanced
Science and Industry Research Center.

E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, (2003). Web services description
language (WSDL). Encyclopedia of Social
Network Analysis and Mining. Springer New
York.146–159.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N.
Mukhi, and S. Weerawarana, (2002). Unraveling
the web services web: an introduction to soap,
WSDL, and UDDI. Internet Computing IEEE.
6(2), 86-93.

T. Erl, (2010). Service-Oriented Architecture: A field
guide to integrating XML and Web services.
Prentice Hall PTR.

D. Fensel, F. M. Facca, E. Simperl, and I. Toma,
(2005). Web service modeling ontology. Applied
Ontology. 1(1), 77-106.

R. T. Fielding, (2000). Architectural styles and the
design of network-based software architectures.
University of California, Irvine.

R. P. Lopes, and J. L. Oliveira, (2002). A uniform
resource identifier scheme for SNMP. IP
Operations and Management, 2002 IEEE
Workshop on. IEEE. 85-90.

M. Maleshkova, C. Pedrinaci, and J. Domingue,
(2010). Investigating web APIs on the world wide
web. Eighth IEEE European Conference on Web
Services. IEEE Computer Society. 107-114.

C. Peltz, (2003). Web services orchestration and
choreography. Computer, 36(10), 46-52.

A. Ryman, (2000). Simple object access protocol
(SOAP) 1.2. International Conference on Software
Engineering. IEEE Computer Society.

M. Sneps-Sneppe, and D. Namiot, (2012). M2M
applications and Open API: what could be next?.
Internet of Things, Smart Spaces, and Next
Generation Networking. Springer Berlin
Heidelberg. 429-439.

L. M. Surhone, M. T. Tennoe, and S. F. Henssonow,
(2013). Uniform resource identifier. Betascript
Publishing. 84 - 87.

B. Totty, D. Gourley, M. Sayer, A. Aggarwal, and S.
Reddy, (2002). HTTP: the definitive guide. Oreilly
Media, 215(11), 403-410.

X. B. Yang, (2012). Research on formalization model
for web service compilation. Computer
Engineering, 38(7), 276-278.

F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-
Mcqueen, and E. Maler, (1998). Extensible
markup language (xml) 1.0. World Wide Web-
internet & Web Information Systems. 39(4), 620–
622.

8 NOTES ON CONTRIBUTORS

Wang Hui received a bachelor’s
degree and a master’s degree in
computer science from Inner
Mongolia University of Technology
in 2002 and 2010, respectively. He
is currently the director and senior
engineer of computer network
management center of affiliated

hospital of Inner Mongolia Medical University. His
research interests included computer big data, medical
information and medical Internet of things.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 583

Sun Guang-Yu received the MS
degree in Geotechnical
Engineering from Zhejiang
University of Technology in 2012.
He is working at Zhejiang
University, engaged in
transformation of scientific and
technological achievements. His

research interests include service computing,
computer big data and business process management.

Zhang Qin-Yan received the B.S.
degrees in computer science from
Zhejiang University, China, in
2005. She is currently a teacher
with the school of continuing
education, Zhejiang University.
Her research interests include
service computing and business
process management.

Liu Kai-Min is a master student in
software engineering at Zhejiang
University, China. He received the
M.S. in software engineering from
Zhejiang University in 2018. His
research interests include service
computing, business process
management and compiler.

Xi Meng is a Ph.D. student in
Computer Science at Zhejiang
University, China. He received his
B.S. degree in Computer Science
from Zhejiang University in 2017.
His research interests include service
computing, data mining and machine

learning.

Zhang Yuan-Yuan received the
MS degree in Computer Science
from Hangzhou Dianzi University
in 2007. She is an associate
professor of College of Information
Technology of Zhejiang Chinese
Medical University. Her research
interests include Medical

Information System and SOA-based medical software.

	Word Bookmarks
	OLE_LINK46
	OLE_LINK5
	OLE_LINK7
	OLE_LINK12
	OLE_LINK13
	OLE_LINK14
	OLE_LINK17
	OLE_LINK18
	OLE_LINK19
	OLE_LINK23
	OLE_LINK21
	OLE_LINK28
	OLE_LINK27
	OLE_LINK26
	OLE_LINK31
	OLE_LINK32
	OLE_LINK33
	OLE_LINK34
	OLE_LINK35
	OLE_LINK42

	Blank Page

