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1 INTRODUCTION 
THE proportional-integral-derivative (PID) 

controllers have been wildly applied in various 
industrial fields due to its robustness, easy design, 
high accuracy, rapid system response, and high 
stability (Shahrokhi & Zomorrodi, 2003; Hussain et 
al., 2014). In a PID controller, there are three 
parameters Kp, Ki, and Kd, which must be tuned to 
obtain the satisfactory control performance. Then the 
tuning method of the PID parameters is very important 
in the design of the PID controller because the three 
parameters will affect the control performance in a 
control system. In general, PID tuning methods can be 
divided into two main classes: closed-loop and open-
loop methods, such as a Ziegler–Nichols closed-loop 
method and a Cohen–Coon open-loop method. In 
software-based PID tuning methods, genetic algorithm 
(GA), particle swarm optimization (PSO), and fuzzy 
logic approaches have been usually used in existing 
research topics for the PID tuning (Malleham and 
Rajani, 2006; Bagis, 2007; Solihin et al., 2011).  

As a subclass of a neutrosophic set (Smarandache, 
1998), a single-valued neutrosophic set (SVNS) 
introduced by Smarandache, (1998) and Wang et al. 
(2010) can describe truth, indeterminate, and falsity 
degrees independently by a truth-membership 
function, an indeterminacy-membership function, and 
a falsity-membership function, that lie within the real 
interval [0, 1]. Today, SVNSs have been applied 
mainly in decision making, fault diagnosis, medical 
diagnosis, robot control, and so on (Gal et al., 2016; 
Peng et al., 2014; Liu & Wang, 2014; Ye, 2014, 2015, 
2017; Mondal and Pramanik., 2015; Biswas et al., 
2016; Sahin and Liu, 2016; Pramanik et al., 2017). In 
a control system, the unit step response characteristics 
of the control system corresponding to setting the PID 
parameters can result in “good” or “bad” or 
“uncertain/indeterminate” (“neither good nor bad”) 
outcome, where “good”, “medium”, and ‘bad’’ can be 
considered as the truth value (T), the indeterminate 
value (I), and the falsity value (F), respectively, in the 
concept of SVNS. Therefore, from this view of point, 
SVNSs can describe the control performance of a 
system. Recently, a PID tuning method based on the 
single-valued neutrosophic similarity measures like 
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the set-theoretic, Hamming, Euclidean, Jaccard, Dice 
measures was proposed for adjusting PID parameters 
by an increasing step algorithm (Can & Ozguven, 
2017), where it did not consider the performance 
indexes such as the integral of the absolute value of 
the error (IAE) and of the square value of the error 
(ISE), the integral of the time weighted absolute value 
of the error (ITAE), and the integral of the time 
weighted square of the error (ITSE) (Shahrokhi & 
Zomorrodi, 2003) and instead used the time-domain 
step response characteristics like rising time, settling 
time, overshoot ratio, undershoot ratio, peak time, and 
steady-state error. In this method, firstly it is necessary 
to know rough ranges of Kp, Ki, and Kd values based 
on a Ziegler–Nichols tuning method. Then in the 
search algorithm, the Kp, Ki, and Kd values were 
increased one by one from a given lower value to an 
upper value, which is called a increasing step 
algorithm. At the end of each step, the step response 
characteristic values of the control system were 
conversed into a SVNS by the three neutrosophic 
membership functions (Neutrosophication). Finally, 
the values of appropriate PID parameters can be 
determined according to the maximum similarity 
measure value between an actual (real) SVNS and the 
previously determined ideal SVNS, which was found 
from the measure value array obtained in all 
operational steps. However, this PID tuning method 
shows its complexity and inconvenience in the 
increasing step algorithm and lacks an investigation of 
the cosine similarity measure of SVNSs. To overcome 
these drawbacks, this paper proposes an improved PID 
tuning method by using the cosine similarity measure 
of SVNSs and GA as the improvement and 
complement of the existing method. This improved 
PID tuning method can directly tune the three 
parameters of a PID controller and obtain satisfactory 
control requirements. 

The rest of this paper is constructed as follows. 
Section 2 briefly describes some concepts of SVNSs 
and a cosine similarity measure of SVNSs. Section 3 
presents a PID tuning method based on the cosine 
measure of SVNSs and GA. Two illustrative examples 
and a comparative analysis are provided in Section 4. 
Section 5 contains conclusions and future research. 

2 SVNS AND ITS COSINE MEASURE 
SVNSs introduced in the real standard interval [0, 

1] are usually used for real applications of science and 
engineering fields as a subclass of neutrosophic sets 
(Smarandache, 1998; Wang et al., 2010), which can 
describe uncertain/indeterminate and inconsistent 
information that fuzzy sets and intuitionistic fuzzy sets 
cannot express. Then, SVNS can be defined below. 

Definition 1 (Smarandache, 1998; Wang et al., 
2010). A SVNS S in a universe of discourse U can be 

expressed as { }UuuFuIuTuS SSS ∈= |)(),(),(, , 
which is characterized by a truth-membership function 

TS(u), an indeterminacy-membership function IN(u) 
and a falsity-membership function FS(u) 
independently and the sum of TS(u), IS(u), FS(u) ∈ 
[0, 1] is 0 ≤ TS(u) + IS(u) + FS(u) ≤ 3 for each u in U. 

For convenience, a basic element 
)(),(),(, uFuIuTu SSS  in S is denoted by u = (T, I, 

F) for short, which is called a single valued 
neutrosophic value (SVNV).  

Assume that u1 = (T1, I1, F1) and u2 = (T2, I2, F2) 
are two SVNVs. Then, the basic relations for SVNVs 
u1 and u2 are defined as follows (Wang et al., 2010): 

(1) Inclusion: u1 ⊆ u2 if and only if T1 ≤ T2, I1 
≥I2, F1 ≥ F2; 

(2) Equality: u1 = u2 if and only if u1 ⊆ u2 and u2 
⊆ u1; 

(3) Complement: ),1,( 1111 TIFuc −= ; 
(4) Union: u1∪u2 = (T1 ∨ T2, I1 ∧ I2, F1 ∧ F2); 
(5) Intersection: u1∩u2 = (T1 ∧ T2, I1 ∨ I2, F1 ∨ 

F2). 
Based on the cosine function, Ye (2015) proposed 

the cosine measure of SVNSs and gave the following 
definition: 

Definition 2 (Ye, 2015). Let S1 = {u11, u12, …, 
u1n} and S2 = {u21, u22, …, u2n} be two SVNSs, 
where u1i = (T1i, I1i, F1i) and u2i = (T2i, I2i, F2i) (i 
= 1, 2, …, n) are the i-th SVNVs of S1 and S2, 
respectively. Then, the cosine similarity measure 
between S1 and S2 is defined as 

∑
=





 −+−+−=

n

i
iiiiii FFIITT

n
SSCs

1
21212121 )(

6
cos1),( π

.  (1) 

Then, the cosine measure contains the following 
properties (Ye, 2015): 

(S1) 0 ≤ Cs(S1, S2) ≤ 1; 
(S2) Cs(S1, S2) = 1 if and only if S1 = S2, i.e., u1i 

= u2i for i = 1, 2, …, n; 
(S3) Cs(S1, S2) = Cs(S2, S1); 
(S4) If S1 ⊆ S2 ⊆ S3 for the SVNS S3, then 

Cs(S1, S3) ≤ Cs(S1, S2) and Cs(S1, S3) ≤Cs(S2, S3). 

3 PID TUNING METHOD WITH THE COSINE 
MEASURE AND GENETIC ALGORITHM 

THIS section proposes an improve PID tuning 
method, where the cosine similarity measure of 
SVNSs and GA are used to determine PID parameters, 
as the improvement and complement of existing PID 
tuning method (Can & Ozguven, 2017). 

3.1 PID controller 
PID control is a feedback controller, which is 

usually applied to industrial control systems. A typical 
block diagram of the PID control system is shown in 
Figure 1. 
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Figure 1. PID control system 

Then, the output of the PID controller in the time 
domain is expressed as 

 ∫ ++=
t

dip dttdeKdtteKteKtu
0
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  (2) 

where e(t) = r(t) – c(t) is a control error, Kp, Ki, and Kd 
are three basic parameters, which are called 
proportional, integral, derivative parameters, 
respectively.  

By the Laplace transform of Eq. (2), the output of 
the PID controller in the time domain is transformed 
into the output of the PID controller in the s domain: 

 ))(()( sK
s

KKsEsU d
i

p ++= , (3) 

In a PID control system, the setting of the three 
basic parameters Kp, Ki, and Kd is very important in 
the PID controller design, which is called PID tuning, 
since these basic parameters can affect the 
performance of the control system. Hence, it is 
necessary how to find a group of optimal parameters 
for the optimal control. As mentioned above, since the 
existing PID tuning method based on neutrosophic 
similarity measures and an increasing step algorithm 
shows its complex algorithm and inconvenience of 
tuning parameters and lacks an investigation of the 
cosine similarity measure, we need to propose a PID 
tuning method combined with a single-valued 
neutrosophic cosine measure and GA as the 
improvement and complement of the existing PID 
tuning method in (Can & Ozguven, 2017). 

3.2 Netrosophication and similarity measure of 
control performance indices 

In a netrosophication process (Can & Ozguven, 
2017), we select rise time, settling time, percentage 
overshoot ratio, percentage undershoot ratio, peak 
time, and steady-state error values as transient state 
characteristics of the control system because these 
characteristic values can indicate the step response 
performance indexes of the control system. Therefore, 
the target unit step values are compared with the 
required control characteristic values to determine the 
suitable PID parameters. Then, similarity measures 
can be evaluated as the closeness between the six 
transient state features of the system (rise time, 

settling time, percentage overshoot rate, percentage 
undershoot rate, peak time, and steady-state error) and 
the desired (ideal) transient state features. The unit 
step response characteristics of the control system can 
be obtained by using MATLAB’s “stepinfo” function, 
and then the membership functions of the control 
system response characteristics are directly 
transformed into the values of the truth, indeterminacy 
and falsity membership degrees.  

In some case, triangle and trapezoid membership 
functions are used for the netrosophication process 
(Can & Ozguven, 2017). Thus, we consider the six 
transient state features: (1) C1: rising time (s), (2) C2: 
settling time (s), C3: overshoot ratio (%), (4) C4: 
undershoot ratio (%), (5) C5: peak time (s), and (6) C6: 
steady-state error, as a characteristic set C = {C1, C2, 
C3, C4, C5, C6}. The types of membership functions 
and their range of Ti, Ii, and Fi (i = 1, 2, …, 6) values 
in a SVNS S may be determined from actual 
applications. By the membership functions in Fig. 2, 
the SVNS S is obtained as follows:  

S = {<C1, T1, I1, F1>, <C2, T2, I2, F2>, <C3, T3, I3, F3>, 
<C4, T4, I4, F4>, <C5, T5, I5, F5>, <C6, T6, I6, F6>}. 

Then the ideal SVNS S* (desired characteristic 
values) can be determined as follows: 

S* = {<C1, 1, 0, 0>, <C2, 1, 0, 0>, <C3, 1, 0, 0>, <C4, 
1, 0, 0>, <C5, 1, 0, 0>, <C6, 1, 0, 0>}. 

Therefore, the cosine measure between S and S* 
can be defined as 

 ∑
=



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 ++−=
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Obviously, the larger the value of Cs(S, S*), the 
better the control performance. 

3.3 Genetic algorithm 
GA can be used to solve a wide range of 

optimization problems (Goldberg, 1989). A series of 
typical routines are included in this optimization 
process. To obtain the optimal control performances 
for the PID control system, as an optimization 
problem of the minimum function value, we can 
establish the following fitness function: 

− 
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Figure 2. The membership functions of six transient state characteristics.  C1: rising time (s), C2: settling time (s), C3: overshoot 
ratio (%), C4: undershoot ratio (%), C5: peak time (s), and C6: steady-state error. 

 ),(1 *SSCsf −= . (5) 

Then, we use real values coding for the three 
parameters Kp. Ki, Kd in the PID controller. In general, 
GA is included in the following typical process: 
Initial population: random sets of N solutions are 
generated as initial sets of Kp, Ki and Kd values.  
Evaluation: the entire population of real values 
coding will be evaluated by their fitness values 
calculated from an objective function.  
Selection: the high fitness value of an individual will 
be generated in successive generations, where the best 
individual is kept and only replaced in successive 
generations when a better individual is found. The 

partial population of individuals is chosen to use new 
population of individuals for the next generation.  
Crossover: the exchange of the information between 
two or more individuals is provided as crossover 
according to the crossover probability Pc.  
Mutation: the compositions of a few randomly 
chosen real values coding are changed with a small 
probable mutation corresponding to the mutation 
probability Pm.  
Terminal condition: the search process of GA 
terminates as the final Kp, Ki and Kd values when the 
convergence or desired requirement is reached.  

The flow chart of the above GA process is shown 
in Figure 3. 
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Figure 3. The flow chart of GA 

4 ILLUSTRATIVE EXAMPLES AND 
COMPARATIVE ANALYSIS 

4.1 Illustrative example 1 
TO demonstrate the effectiveness of the proposed 

method, the simulation experiment is tested by the 
following open-loop transfer function: 

 
)54)(14.0(

20)(1 ++
=

ss
sG . (6) 

In the simulation experiment, we use real values 
coding for the three parameters Kp, Ki and Kd in the 
search process of GA, where the GA parameters 

applied for the simulation are considered as 1 ≤ Kp ≤ 
30, 0 ≤ Ki ≤ 30, and 0 ≤ Kd ≤ 30, the population size N 
= 20, the crossover probability Pc =0.9, the mutation 
probability Pm =0.1, and the terminal condition f = 
0.017. The step response curve is drawn in Fig. 4 for 
the final Kp, Ki, and Kd values at the terminal step of 
GA. In the meantime, the maximum measure value 
obtained from Cs(S, S*) and corresponding values of 
the PID parameters are shown in Table 1, and then 
step response characteristics for G1(s) corresponding 
to the obtained Kp, Ki, Kd values are indicated in Table 
2.  
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Table 1 The maximum cosine measure value and tuning values of the PID parameters for G1(s) 

Measure method Measure value Step Kp Ki Kd 
Cosine measure 0.9833 42 1.9122 1.0635 0.9517 

 
Table 2 Step response characteristics for G1(s) based on the cosine measure and GA  

Step response characteristics Step response characteristic values  
Rising time (s) 0.2182 

Settling time (s) 2.0902 
Overshoot rate (%) 2.0724 
Undershoot rate (%) 0 

Peak time (s) 1.8055 
Steady-state error 0 

 

Figure 4. Step response for G1(s) based on the cosine measure and GA 

In Table 1, the maximum cosine similarity measure 
value is 0.9833 at the 42-th step in the GA operation 
corresponding to Kp = 1.9122, Ki = 1.0635, and Kd = 
0.9517, and then Table 2 and Fig. 4 shows the 
corresponding step response values and curve, 
respectively, with the desired control performances. 
These results demonstrate the effectiveness and 
rationality of the proposed method since the cosine 
similarity measure value is very close to 1. Therefore, 
this PID tuning method can realize multiple criteria 
control requirements (desired step response 
characteristics), which is its advantage; while the 
conventional PID tuning methods (Shahrokhi & 

Zomorrodi, 2003; Malleham & Rajani, 2006; Bagis, 
2007; Solihin et al., 2011; Hussain et al., 2014) may 
not reach these control requirements. 

4.2 Illustrative example 2 
For convenient comparison, an illustrative example 

is adapted from the literature (Can & Ozguven, 2017) 
to demonstrate the effectiveness and advantage of the 
proposed method. 

The proposed method is tested in the following 
quadratic open-loop transfer function (Can & 
Ozguven, 2017): 
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Fig. 5 Step response for G2(s) using the proposed method and the existing method (Can & Ozguven, 2017). 
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By using the same parameters and the same 
membership functions as in the first example, the step 
response curve is drawn in Fig. 5 according to the 
final Kp, Ki, and Kd values at the terminal condition f = 
0.007 in the GA operation. Then, all the results 
obtained by the proposed PID tuning method are 
shown in Table 3 and Table 4. 

For comparative convenience, all the results 
obtained by the PID tuning method in the literature 
(Can & Ozguven, 2017) are also shown in Table 3, 
Table 4, and Fig. 5, where the PID tuning method in 
(Can & Ozguven, 2017) used the set-theoretic, 
Hamming, Euclidean, Jaccard, Dice measures by the 
search algorithm increased one by one (called 
increasing step algorithm) around the Kp, Ki, and Kd 
Ziegler–Nichols values from given lower values to 
upper values. 

Curve 1 is the PID tuning method based on the set-
theoretic, Hamming, Euclidean, Jaccard, Dice 
measures and increasing step algorithm (Can & 

Ozguven, 2017) and Curve 2 is the PID tuning method 
based on the cosine measure and GA. 

In Tables 3 and 4, the proposed method obtains the 
maximum cosine measure value (0.9933) at the 34-th 
step in the GA operation and the corresponding three 
parameters Kp = 12.4693, Ki = 11.7133, and Kd = 
3.8330 and step response characteristic values for the 
transfer function G2(s). In the meanwhile, Curve 2 in 
Fig. 5 shows the step response curve drawn according 
to the obtained PID parameters at the 34-th step. Then, 
Curve 1 in Fig. 5 shows the step response curve drawn 
according to the parameters Kp = 8, Ki = 8, and Kd = 1 
obtained at the 12771-th step based on the set-
theoretic, Hamming, Euclidean, Jaccard, Dice 
measures and increasing step algorithm. 

4.3 Comparative analysis 
Let us compare the proposed method using the 

cosine measure and GA with the existing method 
using the set-theoretic, Hamming, Euclidean, Jaccard, 
Dice measures and increasing step algorithm (Can & 
Ozguven, 2017). In Table 3, the cosine measure value 
is maximal in all measure values, and then the 
operational steps in the proposed method are the 
smallest in all operations. However, the existing 
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Table 3. The maximum values obtained from various similarity measures and the corresponding tuning values of the PID 
parameters for G2(s) 

Measure method Measure value Step Kp Ki Kd 
Hamming 0.9183 12771 8 8 1 
Euclidean 0.8719 12771 8 8 1 

Set-theoretic 0.911 12771 8 8 1 
Jaccard 0.9729 12771 8 8 1 

Dice 0.9855 12771 8 8 1 
Cosine 0.9933 34 12.4693 11.7133 3.8330 

 
Table 4 Step response characteristics for G2(s) based on various measures  

Step response 
characteristics 

Set-theoretic, Hamming, Euclidean, Jaccard, Dice 
measures and increasing step algorithm (Can & 

Ozguven, 2017) 

Cosine measure and GA 

Rising time (s) 1.0027 0.9597 
Settling time (s) 2.3000 1.5095 
Over shoot (%) 2.0152 1.7056 
Undershoot (%) 0 0 

Peak time (s) 2.2295 2.5716 
Steady-state error 0 0 

 
method in (Can & Ozguven, 2017) needs to find out 
the maximum measure value at the 12771-th order 
from the measure value array in all calculation steps 
(about 40000 steps), while the improved method can 
directly find out the maximum measure value at the 
34-th step. The values in Table 4 and Curves 1 and 2 
in Fig. 5 demonstrate that the settling time and 
overshoot rate of the proposed method are obviously 
superior to those of the existing method (Can & 
Ozguven, 2017) in the unit step responses of the 
system. Because the improved PID tuning method use 
GA (heuristic search) instead of the increasing step 
algorithm (Can & Ozguven, 2017) to narrow down the 
search range for the appropriate PID coefficients as 
the improvement of the existing search method, the 
main advantages of the proposed method are simple 
and effective in the PID tuning process to search for 
the suitable Kp, Ki, and Kd values in the PID controller. 
The combination of the single-valued neutrosophic 
cosine similarity measure and GA can be used for the 
PID tuning. Obviously, the improved PID tuning 
method is more effective and convenient than the PID 
tuning method introduced in (Can & Ozguven, 2017). 

5 CONCLUSION 
DUE to the complexity and inconvenience of the 

existing method for searching for suitable PID 
parameters based on the neutrosophic similarity 
measures and increasing step algorithm, this paper 
introduced an improved PID tuning method based on 
the cosine measure of SVNSs and GA for searching 
for suitable PID parameters to overcome the 
drawbacks of the existing method in the PID tuning 
process. Then, the test results carried out on two 
illustrative examples demonstrated the effectiveness 

and convenience of the improved PID tuning method, 
and then the PID control performances are superior to 
the ones given in (Can & Ozguven, 2017). The main 
advantage of the improved method is that it does not 
require any complex calculations and can rapidly tune 
the PID parameters according to multiple criteria 
control requirements (desired step response 
characteristics). In future research, we shall further 
improve existing PID tuning method and extend it to 
real time control systems with neutrosophic 
information, and also shall investigate the refined 
SVN (Smarandache, 2013) cosine measure and 
genetic algorithm for PID tuning. 
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