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1 INTRODUCTION 
AS the use of mobile devices such as smart phones 

and smart watches increases, the number of Android 
applications is also growing. As of 2016, the number 
of Android applications exceeded 2 million 
(AppBrain, 2016). Most Android applications are 
being developed using the Java language. Java source 
codes are compiled into bytecodes and executed on a 
virtual machine. Unfortunately, by reverse engineering 
these bytecodes, one can easily get Java codes and 
Android applications are exposed to code theft. 
Developing methods to prevent unauthorized use of 
code is an important research topic. 

Many developers apply obfuscation techniques to 
prevent exposure of application codes. Obfuscation 
techniques include identifier mangling, string 
obfuscation, and dead or irrelevant code insertion. 
However, these obfuscation techniques do not 
completely protect the source code. Their goal is to 

transform the source code into a form that is very 
complicated and difficult to understand.  

Meanwhile, some tools such as ijiami, liapp and 
alibaba protect Android applications using code 
encryption and dynamic code loading (Yang et al., 
2015; Yu, 2014). These tools encrypt a DEX (Dalvik 
Executable) file, move the encrypted DEX file to 
another directory, and place a stub DEX file in the 
APK root directory. When the application is executed, 
the stub DEX decrypts the encrypted DEX and 
dynamically loads it. However, we found the fact that 
these tools have a weakness: these tools do not protect 
multidex applications, which have multiple DEX files 
in its APK. Since one DEX file cannot have more than 
65,536 methods, large applications should be 
implemented in a multidex form. The above tools do 
not work properly for multidex applications and 
encrypts only a single DEX file.  

We propose a dynamic code loading method for 
protecting Android applications against static reverse 
engineering. This proposed method is based on the 
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Multidex library. The Multidex library is a library 
developed by Google to load more than one DEX files 
in Dalvik Virtual Machine (DVM). The proposed 
method encrypts / decrypts and dynamically loads 
multiple DEX files. Since the encrypted DEX files are 
decrypted only when the application is executed, it is 
difficult to statically reverse-engineer the DEX files. 
Experimental results show that the proposed method 
can effectively protect multidex APKs.  

We have recently proposed a protection scheme for 
multidexing-based Android applications (Kim, Shim, 
Cho, Park, & Han, 2016). In (Kim, Shim, Cho, Park, 
& Han, 2016), the stub DEX is a weak point. Since the 
stub DEX was implemented in Java language, it is 
vulnerable to reverse engineering attacks. If an 
attacker reverse-engineers and tampers the stub DEX, 
he/she can obtain the decrypted original DEX files. In 
this paper, we extend the previous version as follows. 
First, we propose stub DEX integrity verification as a 
native library. This library is called by a stub DEX, 
and checks if the stub DEX is tampered. If so, the 
library terminates the application immediately in order 
to prevent further dynamic reverse engineer attacks. 
Second, we support multiple architectures. Since the 
decryption and integrity verification are implemented 
as a native library, the library is implemented for 7 
types of architectures including armeabi-v7a and 
armeabi. 

The remainder of this paper is organized as 
follows. Section 2 discusses background knowledge 
and related studies. In Section 3, we propose a 
multidex-library based dynamic code loading scheme. 
Section 4 shows the experimental and analytical 
results. Finally, we concluded in Section 5. 

2 BACKGROUND AND RELATED WORKS 

2.1 Anti-Reverse Engineering Techniques 
REVERSE engineering is a process of analyzing a 

program to identify and represent its components, 
structure and/or behavior. Reverse engineering can be 
used to understand how a program works and design a 
new program by improving the technology of the 
existing program. Meanwhile, reserve engineering also 
can be used to hack or tamper a program for illegal 
benefits. Especially Android applications are exposed 
to such software theft, because most Android 
applications are written in Java programming language 
and their Java source codes can be easily obtained 
using reverse engineering.  

There are many studies on protecting Android 
applications against reverse engineering attacks. Pro-
Guard (Android, 2016e) can shrink, optimize, 
obfuscate, and pre-verify Java class files. The 
ProGuard reduces APK file size by removing unused 
classes, fields, methods, and attributes. It optimizes the 
bytecode of the methods. The obfuscation step uses 
short meaningless names to change the names of the 

remaining classes, fields, and methods. Each of these 
steps is optional. For instance, ProGuard can be used 
to obfuscate the APK file only. 

In (Schulz, 2012), the authors proposed several 
obfuscation techniques and dynamic code loading 
technique. In the dynamic code loading technique 
there are two components: an encrypted DEX file and 
a decryption stub (stub DEX). The original DEX file is 
encrypted and stored at somewhere in the APK. When 
the application is launched, the decryption stub 
decrypts the encrypted DEX file and loads it into 
Dalvik Virtual Machine (DVM) to execute. 

In (Ghosh, Tandan, & Lahre, 2013), the authors 
added few more logic on Android source code to make 
it more complex to understand. They exploit try-catch 
blocks to change the control flow at runtime. They 
exchanged the role of try-catch blocks. They put 
business logic into catch block and dummy code, 
meaningless loop, and senseless if-else condition into 
try block. Also, they put one line of code that always 
cause exception at runtime. Reverse engineers try to 
understand the try block but it has meaningless code. 
This makes understanding code more complex. 

In (Xu, Zhang, Sun, Lin, & Mao, 2015), the 
authors presented a technique that can detect debug 
state and debug environment by detecting debugging-
related processes and emulator specific features. On 
the basis of the results, they proposed some solutions 
to prevent Android applications being decompiled and 
cracked. Taking advantage of these methods, they 
mostly eliminate the feasibility of the secondary 
packaging for Android software. 

In (Sun, Cuadros, & Beznosov, 2015), the authors 
evaluate rooting detection techniques. They found 
many techniques used by apps to detect rooted 
devices, but all rooting detection methods studied can 
be evaded. They concluded that Android OS can only 
provide a reliable rooting detection method. OS also 
implements rooting detection logic in the trusted 
components, such as integrity-protected kernels or 
external trusted execution environments. 

Lim et al. (Lim et al., 2016) proposed an anti-
dynamic reverse engineering scheme for Android 
applications on real smart phones, where its stub DEX 
tries to detect dynamic reverse engineering attacks. 
Especially they focus on call stack-based evasion 
attack (API hooking) detection. If the stub DEX does 
not detect any dynamic reverse engineering attack it 
loads the original DEX file dynamically.  

Kim et al. (Kim, Shim, Cho, Park, & Han, 2016) 
proposed a technique for protecting multiple DEX 
Android applications. The technique is similar to 
Schulz’s one in the sense that the original DEX files 
are encrypted and the stub DEX decrypts/loads them 
dynamically. However, Kim’s technique supports 
multiple DEX Android applications. 

In (Na, Lim, Kim & Yi 2016), the authors 
summarized the difference of attacks to DEX files and 
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OAT files. DEX is for Dalvik Virtual Machine and 
OAT for ART environment. The authors explored 
static and dynamic analysis technique for DEX and 
OAT files on Android 4.0 (KitKat). Note that, in our 
work, we tried to prevent static attacks for DEX files, 
but not for OAT files. 

2.2 Multidex APK 
Most Android application package (APK) is the file 

format for packages for distribution and installation of 
applications on Android platform. An APK file 
contains manifest files, architecture-dependent native 
codes, resources, DEX files, etc. In most APKs, there 
is one DEX file, classes.dex, which is loaded and 
executed on DVM. Android application developers 
usually write Java source programs and compile them 
all together with third-party libraries into a DEX file.  

One problem in the build process is that the 
number of referred methods in a single DEX file is 
limited to 65,536 (= 216), including user-defined 
methods, third-party library methods and framework 
methods (Android, 2016b). This is because invoke-* 
Dalvik instruction takes a 16-bit argument which 
represents the reference index of the target method. 
Thus, if the number of methods in classes.dex exceeds 
65,536, the build process fails. To remedy this 
problem, developers shrink codes using tools such as 
ProGuard and/or adopt lightweight libraries (Reznik, 
2014). A tool that counts the referred methods is also 
used (Parparita, 2014).  

To get around this limitation, Android provides 
multidex library. With this library an APK file can 
contain multiple DEX files without changing the DEX 
file format. The multidex library is available in build 
tools 21.1.1 or later (Android, 2016f). When 
developers build an APK, they switch on the multidex 
support option in Android Studio or Eclipse. In 
multidex APKs, the names of DEX files are 
classes.dex, classes2.dex, and so forth. If classes.dex 
in a multidex APK is decompiled using dex2jar and 
jd-gui (Java Decompiler, 2008), 
android.support.multidex package is found. We 
collected and decompiled popular 40 Android 
applications from Google Play. We found out that 22 
(55 %) APKs among them are multidex APKs. The 
Table 1 lists 19 apps among them, which the proposed 
method is successfully applied to. 
 

Table 1. 19 Multidex APK 

APK name 
com.snapchat.android-1.apk 
com.infraware.office.link-1.apk 
com.toxic.apps.chrome-1.apk 
com.myfitnesspal.android-1.apk 
com.twitter.android-1.apk 
com.zhiliaoapp.musically-1.apk 
jp.naver.line.android-1.apk 
com.skype.raider-1.apk 
mobi.byss.instaweather.watchface-1.apk 
com.undertap.watchlivetv-1.apk 
com.talkatone.android-1.apk 
com.estrongs.android.pop-1.apk 
net.zedge.android-1.apk 
air.com.officemax.magicmirror.ElfYourSelf-1.apk 
com.mcentric.mcclient.FCBWorld-1.apk 
com.viber.voip-1.apk 
kik.android-1.apk 
com.fitbit.FitbitMobile-1.apk 
com.pinterest-1.apk 

 

2.3 Analysis of Android Packers 
An Android packer is a tool that protects Android 

applications by encrypting, decrypting and 
dynamically loading classes.dex (Yang et al., 2015; 
Yu, 2014). In this section, we analyze three Android 
packer services, ijiami, liapp, and alibaba, to explore 
whether they can protect multidex APKs. All these 
packers deploy Application class for dynamic code 
loading. “Application class is a base class for 
maintaining global application state” (Android, 
2016a). When an APK is packed, Application class (or 
its subclass) is replaced with each packer’s custom 
class to control the execution flow. Thereby, the name 
attribute of <application> element in 
AndroidManifest.xml is modified to their custom 
class’ name. When a packed application is launched, 
its custom class is executed first. It decrypts the 
encrypted DEX file, and then loads the decrypted 
DEX file dynamically using DexClassLoader class. 

We investigate whether each packer can protect 
multiple DEX files from static reverse engineering. 
First we pack com.twitter.android-1.apk using the 
three packers. We unzip the original APK and the 
packed APK, respectively, to obtain classes.dex. Then 
we decompile each classes.dex using dex2jar (Pan, B) 
and gd-gui (Java decompiler) to obtain Java source 
codes, and examine their code trees. As shown in 
Figure 1, the code trees are different from each other. 
We can find the name of the custom class for each 
packer. Figure 1 implies that the three packers can 
protect classes.dex from static reverse engineering. 
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Now we examine the code trees of the decompiled 
classes2.dex. As shown in Figure 2, the code trees of 
the packed APKs are identical to the original APK. 
Furthermore, some decompiled codes are the same as 
the original ones. Figure 2 implies that the three 
Android packers do not protect classes2.dex at all 
from static reverse engineering. 

 

Figure 1.  Code tree of decompiled classes.dex. 

 

Figure 2. Code tree of decompiled classes2.dex. 

There are commercial packers such as 
DexProtector and DexGuard. Since these tools do not 
provide a free or trial version, we could not examine 
whether they can protect multidex APKs. According 
to DexProtector’s documentations, DexProtector 
supports multidex APKs. However, they do not 

describe how DexProtector protects multiple DEX 
files. Meanwhile, DexGurard’s documentations do not 
mention multidex support. 

2.4 Overview of Multidex Library 
Dalvik loads classes.dex using the constructor of 

the DexFile class. The DexFile constructor loads only 
classes.dex in APK file (Android, 2016c). Google 
does not modify the Dalvik to provide the 
functionality to load multiple DEX files from an APK 
file. This is because the Android users may not update 
the OS or the vendors may not support these 
modifications. Instead, Google offers a Multidex 
library (Android, 2016g) that enable Android to load 
multiple DEX files from your APK. The Multidex 
library is built into classes.dex and executed to load 
the rest of the DEX files when the application runs. 
The name attribute of the <application> element in 
AndroidManifest.xml must be set to 
MultiDexApplication class or a user-defined subclass 
of MultiDexApplication. 

Figure 3 shows the execution flow of the Multidex 
library. The MultiDex.install method calls the 
MultiDexExtractgor.load method which extracts DEX 
files (classes*.dex) from the APK’s root directory, 
compresses and saves them as classes*.dex.zip in the 
/data/data/package/code_cache/secondary-dexes 
directory, and returns an array containing the full 
paths of classes*.dex.zip. Then MultiDex.install 
passes the array to the installSecondaryDexes method 
which invokes a build-platform-specific install 
method. The install method invokes in turn the 
makeDexElements method of the DexPathList class 
using API reflection (Android, 2016d). The 
makeDexElement method allows additional DEX files 
such as classes2.dex, classes3.dex, etc. to be loaded. 
Finally, more than one DEX files are loaded and the 
application runs normally.  

 

Figure 3. Execution Flow of Multidex APK. 

3 PROPOSED METHOD 
OUR anti-static reverse engineering method for 

multidex Android applications is embedded in 
applications. Figure 4 shows the overview of the 
proposed method. Our method consists of several 
techniques. In Java layer, DEX file substitution, 
dynamic code loading for multidex APK and entry 
point change are implemented. In native C layer, DEX 
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file decryption and stub DEX integrity verification are 
implemented. When a packed APK is launched in a 
user device, these techniques are performed in the 
following order: (1) stub DEX integrity verification, 
(2) DEX file decryption, (3) dynamic code loading for 
multidex APK, (4) entry point change, (5) the original 
DEX execution.  

 

Figure 4. Overview of Proposed Method. 

Figure 5 shows the structure of an APK 
before/after packing using our method. In Figure 5(b), 
gray boxes represent modified files. The original DEX 
files are encrypted during packing and stored as 
encrypted_classes.dex, encrypted_classes2.dex, and so 
on. Instead of the original classes.dex, a stub DEX file, 
named as classes.dex, is added to the packed APK. 
The stub DEX implements the Java layer; it calls 
native codes, loads the decrypted DEX and changes 
the entry point to the DEX. The name attribute of 
<application> element in AndroidManifest.xml is 
changed to the package name of the stub DEX so that 
the stub DEX can be executed first. The native C layer 
is implemented as libStub.so file, which is loaded on 
memory at the start of execution. By invoking 
functions in libStub.so, the stub DEX verifies the 
integrity of itself and decrypts encrypted_classes*.dex 
file. 

 

Figure 5. Structure of APK files before/after Packing. 

3.1 Verifying Integrity of Stub DEX 
In our proposed method, since stub DEX must be 

executed first in the application, we need to set the 
value of the name attribute of the <application> 
element in the AndroidManifest.xml file to the 
package name of stub DEX.  

To begin with, the stub DEX must verify its own 
integrity. Because stub DEX is implemented in Java 
language, it is vulnerable to reverse engineering attack 
compared with C implementation of Android native 
library layer. Unless the integrity of stub DEX is 
verified, the following problems may occur. Attackers 
can prevent normal execution of applications by 
modifying the decryption codes of the stub DEX. The 
stub DEX calls an Android native function to decrypt 
the encrypted original executable code. If the codes 
that call the functions of this native layer are deleted, 
the original app code will not be decrypted and the 
app will not run normally.  

To make matters worse, if you modulates codes 
that decrypt the original DEX file and load it into 
memory, attackers may get the original code. He can 
also tamper with this part to load and run malware. 
Therefore, it is necessary to verify the integrity of the 
stub DEX itself. Upon passing the verification 
process, multidex decryption and dynamic loading are 
performed. 

Integrity verification is performed as follows. 
When a server applies the proposed scheme, it obtains 
the SHA1 hash value for a stub DEX file, encodes the 
obtained SHA1 hash value into Base64 string, and 
stores it in libstub.so. Then, when the developer signs 
the application, the server stores the Base64 string of 
SHA1 of the stub DEX in the signature-related file 
MANIFEST.MF and distributes afterwards. The 
MANIFEST.MF file exists in the META-INF 
directory and stores information on all files in the 
APK package except the files in META-INF 
directory. Information include the file path and the 
Base64 encoded string of SHA1 hash value of each 
file. When the application is executed, libstub.so is 
loaded and Base64 string of stub DEX stored in 
libstub.so is compared with the Base64 string stored in 
MANIFEST.MF. 

3.2 Multidex Library based Dynamic Code 
Loading 

This section proposes a dynamic code loading 
technique based on multidex library.  As explained in 
Section 2.4, multidex library is executed first when an 
application starts. In our technique, all DEX files in 
the root directory in an APK file are encrypted using 
AES (Advanced Encryption Standard) and moved to 
asset directory.  When the application is executed, a 
stub DEX file (named as classes.dex) located in the 
root directory is executed first. It decrypts the 
encrypted DEX files and dynamically loads them. The 
AES decryption is implemented as JNI codes and the 
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codes are stored as libStub.so in directory lib. Figure 5 
shows the structure of APK files that are repackaged 
using our method. 

We implement the stub DEX by modifying 
multidex library. We name the modified library as 
com.dynamic.loading. If we use the original name 
android.support.multidex in the stub DEX, we 
encounter a pre-verification error because Dalvik tries 
to verify and load android.support.multidex twice; in 
the stub DEX and the original classes.dex. We can 
find it out using logcat.  

Our library extracts and decrypts the encrypted 
DEX files (named as encrypted_classes.dex, 
encrypted_classes2.dex, ...) from directory assets 
instead of simply extracting classes*.dex. The process 
is as follows. 
 
1. A user launches an application. 
2. Stub DEX (classes.dex) is loaded and executed on 

Dalvik. 
3. It verifies the integrity of itself by invoking 

libStub.so through JNI. 
4. It extracts encrypted_classes*.dex (AES-encrypted 
DEX files) in assets into 
/data/data/package/code_cache/secondary-dexes 
directory. 

5. It decrypts the encrypted_classes*.dex files by 
invoking libStub.so through JNI. 

6. It compresses the decrypted files in the ZIP format. 
7. It loads the compressed files on Dalvik. 
8. It deletes the compressed files 
 

 

Figure 6. Execution Flow of Multidex Library based Dynamic 
Code Loading. 

3.3 Changing Entry Point & Executing the 
original DEX 

In order that the application may execute normally, 
the stub DEX needs to configure the execution 
environments as if the original DEX were executing 
(Lim, Jeong, Lim, et al., 2016). The last task of the 
stub DEX is to change the entry point to a proper 
method of the loaded DEX. The process is as follows. 
(1) The original DEX files are already loaded on 
Dalvik. (2) Fill the fields of loadedapk object with the 
information of the original application. The loadedapk 
object maintains the information of the current 

application such as ClassLoader, ActivityThread and 
ApplicationInfo. The original DEX can execute 
normally by using this object. (3) Invoke 
makeApplication() which in turn invokes onCreate() 
of the initial activity of the application. 

3.4 Multiple Architecture Support 
Google provides a number of Application Binary 

Interfaces (ABIs) that allow Android handsets to be 
manufactured using a variety of CPUs (Wikipedia, 
2016). ABI is a low-level binary interface used 
between the application and the operating system or 
application and its library, or finally the components 
of the application. 

The ABI is distinguished from the API 
(Application Programming Interface). The API is used 
at the source code level, and the ABI is used at the 
binary code level. These ABIs can be cross-compiled 
using NDK, and currently there are seven kinds of 
ABIs supported. A detailed description of each ABI 
can be found on the Google developer site (Google, 
2016).  

Since the proposed method adds a native library 
that is responsible for integrity verification of the stub 
DEX file itself and decryption of the original DEX 
files, it must support various architectures as 
mentioned above. Therefore, the proposed method 
inserts the corresponding native library for each 
architecture supported. Among them the most 
commonly used ABIs are armeabi-v7a and armeabi. 

4 EXPERIMENTAL RESULTS 
IN this section, we verify that the proposed method 

can protect multidex applications against reverse 
engineering and measure performance overhead of the 
method by carrying out experiments. Our experiments 
are conducted on Google Nexus 7 using the multidex 
applications listed in Table 1. The specifications of 
Google Nexus 7 are shown in Table 2.  

 
Table 2. Specification of Google Nexus 7 

Operating System Android 4.3(Jelly Bean) 
Kernel Version 3.4.0-g6537a16 
CPU 1.51 GHz quad-core Krait 300 
Memory 2GB DDR3L RAM 
Storage 16 GB 

4.1 Static Reverse Engineering Attack Test 
For the experiment, we pack a sample original 

application using our proposed method and create its 
packed version, that is, the packed application. We 
then reverse engineer the packed version using 
baksmali and dex2jar tools (Tumbleson & Wisniewski, 
2010; Freke, 2009; Pan, 2014). We can analyze 
classes.dex of the packed version. It contains only the 
classes of the stub DEX file introduced by our 
proposed method and does not contain the classes of in 
the original application. Next, we examine the 
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encrypted_classes*.dex files (shortly named as Enc*) 
in the packed version. Their contents are shown in 
Figure 7. It is impossible to identify any original DEX 
file from the encrypted_classes*.dex files because 
none of them has DEX file header “dex\n035\0” 
(Freke, 2009). Therefore, we verify that our proposed 
method can protect Android applications against static 
reverse engineering attacks. 

 

Figure 7. Contents of Enc* files of the packed application, 
com.twitter.android-1.apk. 

4.2 Dynamic Code Loading Overhead 
AT the beginning of an application execution, the 

procedure for the dynamic code loading technique is 
described in Section 3.2. In case of the packed 
application with our proposed method, the dynamic 
code loading is performed after verifying the integrity 
of the stub DEX. During the dynamic code loading, 
our method decrypts the encrypted_classes*.dex files 
and compresses the decrypted files one by one to the 
ZIP format. Then, the compressed files are 
dynamically loaded on Dalvik using DexPathList 
shown in Figure 3. Therefore, we measure the 
performance overhead of our method as follows.  

First, we calculate the processing time for 
dynamically loading code of an original application 
and its packed version with our proposed method, 
respectively. By repeating the calculation ten times, 
we measure the average processing time. Figure 8 
shows the average processing times side by side which 
are spent for dynamically loading the codes of the 
original applications and their packet versions. The 
system.currentTimeMillis () method, which returns the 
current time, is used to measure the total time taken 
for dynamic loading, integrity verification, decryption 
time, compression time, DexOpt, and changing entry 
point time. To measure the processing time of each 
element, the time difference was calculated by placing 
the method at the start and end. For dynamic code 
loading, the packed applications with our method 
takes more time than their original ones ranging from 
minimally 1.46 times to maximally 5.9 times. 

The processing time for dynamically loading the 
codes of the packed applications can be broken into 

five major components: integrity verification time, 
decryption time, compression time, the execution time 
of the DexOpt program and changing entry point time. 
We analyze the major components of the processing 
time in detail and show the results in Figure 8. And 
Table 3 lists the number and size of the 
encrypted_classes*.dex files contained in each packed 
application. DexOpt is a system-internal program that 
is used to produce optimized DEX files.  DexOpt 
loads, verifies and optimizes DEX files. It performs 
these tasks in favor of Dalvik VM to avoid allocating 
some resources to Dalvik. Instead, those resources are 
allocated to DexOpt and it frees the resources on 
completion of the tasks. The app with the proposed 
scheme will run stub DEX first. The original 
classes*.dex files are then executed through a 
changing entry point technique. The Android system 
will perform bytecode optimization to run the original 
DEX file. The time it takes to optimize is DexOpt time. 
DexOpt is usually invoked once when the original 
applications as well as their packed versions are 
executed at the first time. The run time of the DexOpt 
is short in case of the execution of the original 
application because the corresponding symbol 
information can be obtained directly, while the run 
time of the DexOpt is very long in case of the 
execution of the packed version because the 
corresponding symbol information cannot be obtained 
directly. From the message of the logcat tool, our 
guess is that APK repackaging of our method have 
caused the mapping information of the symbols to be 
broken. As the result of the repackaging, the symbol 
information and method overriding should be 
recovered during the unpacking and dynamic loading 
the codes of the packed application. 

In Figure 8, we can see that the time for verifying 
stub DEX integrity is almost steady. However, the 
time for decryption and compression is increased in 
proportion to the size and number of 
encrypted_classes*.dex files. During the execution of 
the packed applications, the DexOpt program is 
invoked. The invocation to the DexOpt is an 
additional overhead incurred by the proposed method. 
Among the sample applications used in our 
experiments, the com.infraware.office.link-1.apk 
includes four encrypted_classes*.dex files and 
requires the largest time, 19.66 seconds, for integrity 
verification, decryption, compression and the 
invocation of the DexOpt. On the one hand, the 
mobi.byss.instaweather.watchface-1.apk includes two 
encrypted_classes*.dex files and requires the smallest 
time, 6.80 seconds, for integrity verification, 
decryption, compression and the invocation of the 
DexOpt. 
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Table 3. The number of the encrypted DEX files and their size 

APK name 
(its extension is .apk) 

# of Encrypted 
DEX files 

Encrypted Dex 
file size(MB) 

com.snapchat.android-1 4 23.00 

com.infraware.office.link
-1 

4 29.60 

com.toxic.apps.chrome-1 3 15.03 

com.myfitnesspal.androi
d-1 

3 20.70 

com.twitter.android-1 3 18.10 

com.zhiliaoapp.musicall
y-1 

3 17.70 

jp.naver.line.android-1 3 22.80 

com.skype.raider-1 2 11.80 

mobi.byss.instaweather.
watchface-1 

2 9.04 

com.undertap.watchlivet
v-1 

2 11.60 

com.talkatone.android-1 2 10.90 

com.estrongs.android.po
p-1 

2 15.20 

net.zedge.android-1 2 11.80 

air.com.officemax.magic
mirror.ElfYourSelf-1 

2 11.50 

com.mcentric.mcclient.F
CBWorld-1 

2 16.00 

com.viber.voip-1 2 14.10 

kik.android-1 2 14.60 

com.fitbit.FitbitMobile-1 2 15.20 

com.pinterest-1 2 12.60 

 

4.3 Discussion 
LIAPP, ijiami, alibaba, etc. are representative tools 

for preventing static reverse engineering attacks. 
These tools usually encrypt and save classes.dex in the 
Android app in a similar way to the proposed 
technique. The encrypted classes.dex file is decrypted 
and loaded when the app launches. However, these 
tools only support apps with a single DEX file, and we 
showed that you cannot defend all classes.dex files if 
more than one classes.dex file exists in Section 2.3. 

 
Table 4. Comparison of app protection tools with respect to 
functionality 

 Liapp 
packer 

ijiami 
packer 

Alibaba 
packer 

The 
proposed 
method 

What it 
can 

prevent 

static 
reverse 

engineerin
g attacks 

static 
reverse 

engineerin
g attacks 

static 
reverse 

engineerin
g attacks 

static 
reverse 

engineerin
g attacks 

and 
tempering 

Support 
multide

x 
X X X O 

 

We collected 22 multidex apps from the Google 
Play. The proposed method is successfully applied to 
19 of them. Table 3 shows these 19 applications with 
their number of DEX and size. We cannot apply the 
proposed method to three apps because of verifying 
self-integrity and repacking. If an app verifies its 
integrity itself, our modification to the app cannot pass 
this integrity verification. Such cases are 
com.supo.security-1.apk and com.qihoo.security-1.apk. 
In case of com.tencent.mm-1.apk, we cannot repack 
the app because the version of apktool is incompatible 
with the app. 

We assume that AES keys are managed properly 
and safely, and that AES is secure. Since our 
technique encrypts/decrypts the DEX files using AES, 
its application protection capability against static 
reverse engineering depends on the security of AES, 
which is beyond the scope of this paper. Our technique 
can protect applications against all static reverse 
engineering attacks as long as the assumption holds. 

5 CONCLUSION AND FUTURE WORK 
WE propose a method to protect multidex Android 

applications against static reverse engineering. The 
proposed method encrypts the DEX files of APK 
using the AES encryption and adds a stub DEX 
instead of the original classes*.dex file. When the 
application starts, Verify the integrity of the Stub Dex 
and stub DEX decrypts and dynamically loads the 
encrypted DEX file. We modified Google’s multidex 
library to implement stub DEX. Experiments also 
show that applications implemented using the 
proposed technique are difficult to reverse-engineer 
using well-known tools such as dex2jar and baksmali. 
Compared to other existing packers, the proposed 
method is more effective for multi DEX files. 

A disadvantage of the proposed method is time 
overhead. According to the experimental result, when 
the applications packed by the proposed method are 
executed, it takes more time from minimally 1.46 
times to maximally 5.9 times than the execution time 
of their original Android applications. The additional 
overhead is mainly caused by the slow execution of 
the DexOpt program during decryption and dynamic 
loading the codes of the packed applications. 
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