
CONTACT Minkyu Park minkyup@kku.ac.kr
© 2019 TSI® Press

Protecting Android applications with multiple DEX files against Static
Reverse Engineering Attacks

Kyeonghwan Lim1, Nak Young Kim1, Younsik Jeong1, Seong-je Cho1,
Sangchul Han2, and Minkyu Park2
1Dankook University, Yongin-si, Gyeonggi-do 16890 Korea
{limkh120, iuasdofil, jeongyousik, sjcho}@dankook.ac.kr
2Konkuk University, Chungju-si, Chungbuk-do 27478 Korea
{schan, minkyup}@kku.ac.kr

KEY WORDS: Reverse engineering, Android, Multidex, Packing, Dynamic code loading

1 INTRODUCTION
AS the use of mobile devices such as smart phones

and smart watches increases, the number of Android
applications is also growing. As of 2016, the number
of Android applications exceeded 2 million
(AppBrain, 2016). Most Android applications are
being developed using the Java language. Java source
codes are compiled into bytecodes and executed on a
virtual machine. Unfortunately, by reverse engineering
these bytecodes, one can easily get Java codes and
Android applications are exposed to code theft.
Developing methods to prevent unauthorized use of
code is an important research topic.

Many developers apply obfuscation techniques to
prevent exposure of application codes. Obfuscation
techniques include identifier mangling, string
obfuscation, and dead or irrelevant code insertion.
However, these obfuscation techniques do not
completely protect the source code. Their goal is to

transform the source code into a form that is very
complicated and difficult to understand.

Meanwhile, some tools such as ijiami, liapp and
alibaba protect Android applications using code
encryption and dynamic code loading (Yang et al.,
2015; Yu, 2014). These tools encrypt a DEX (Dalvik
Executable) file, move the encrypted DEX file to
another directory, and place a stub DEX file in the
APK root directory. When the application is executed,
the stub DEX decrypts the encrypted DEX and
dynamically loads it. However, we found the fact that
these tools have a weakness: these tools do not protect
multidex applications, which have multiple DEX files
in its APK. Since one DEX file cannot have more than
65,536 methods, large applications should be
implemented in a multidex form. The above tools do
not work properly for multidex applications and
encrypts only a single DEX file.

We propose a dynamic code loading method for
protecting Android applications against static reverse
engineering. This proposed method is based on the

ABSTRACT
The Android application package (APK) uses the DEX format as an executable
file format. Since DEX files are in Java bytecode format, you can easily get Java
source code using static reverse engineering tools. This feature makes it easy
to steal Android applications. Tools such as ijiami, liapp, alibaba, etc. can be
used to protect applications from static reverse engineering attacks. These tools
typically save encrypted classes.dex in the APK file, and then decrypt and load
dynamically when the application starts. However, these tools do not protect
multidex Android applications. A multidex Android application is an APK that
contains multiple DEX files, mostly used in a large-scale application. We
propose a method to protect multidex Android applications from static reverse
engineering attacks. The proposed method encrypts multiple DEX files and
stores them in an APK file. When an APK is launched, encrypted DEX files are
decrypted and loaded dynamically. Experiment results show that the proposed
method can effectively protect multidex APKs.

Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 1, 143 –153

mailto:minkyup@kku.ac.kr
mailto:minkyup%7d@kku.ac.kr

2 LIM, KIM, ET. Al.

Multidex library. The Multidex library is a library
developed by Google to load more than one DEX files
in Dalvik Virtual Machine (DVM). The proposed
method encrypts / decrypts and dynamically loads
multiple DEX files. Since the encrypted DEX files are
decrypted only when the application is executed, it is
difficult to statically reverse-engineer the DEX files.
Experimental results show that the proposed method
can effectively protect multidex APKs.

We have recently proposed a protection scheme for
multidexing-based Android applications (Kim, Shim,
Cho, Park, & Han, 2016). In (Kim, Shim, Cho, Park,
& Han, 2016), the stub DEX is a weak point. Since the
stub DEX was implemented in Java language, it is
vulnerable to reverse engineering attacks. If an
attacker reverse-engineers and tampers the stub DEX,
he/she can obtain the decrypted original DEX files. In
this paper, we extend the previous version as follows.
First, we propose stub DEX integrity verification as a
native library. This library is called by a stub DEX,
and checks if the stub DEX is tampered. If so, the
library terminates the application immediately in order
to prevent further dynamic reverse engineer attacks.
Second, we support multiple architectures. Since the
decryption and integrity verification are implemented
as a native library, the library is implemented for 7
types of architectures including armeabi-v7a and
armeabi.

The remainder of this paper is organized as
follows. Section 2 discusses background knowledge
and related studies. In Section 3, we propose a
multidex-library based dynamic code loading scheme.
Section 4 shows the experimental and analytical
results. Finally, we concluded in Section 5.

2 BACKGROUND AND RELATED WORKS

2.1 Anti-Reverse Engineering Techniques
REVERSE engineering is a process of analyzing a

program to identify and represent its components,
structure and/or behavior. Reverse engineering can be
used to understand how a program works and design a
new program by improving the technology of the
existing program. Meanwhile, reserve engineering also
can be used to hack or tamper a program for illegal
benefits. Especially Android applications are exposed
to such software theft, because most Android
applications are written in Java programming language
and their Java source codes can be easily obtained
using reverse engineering.

There are many studies on protecting Android
applications against reverse engineering attacks. Pro-
Guard (Android, 2016e) can shrink, optimize,
obfuscate, and pre-verify Java class files. The
ProGuard reduces APK file size by removing unused
classes, fields, methods, and attributes. It optimizes the
bytecode of the methods. The obfuscation step uses
short meaningless names to change the names of the

remaining classes, fields, and methods. Each of these
steps is optional. For instance, ProGuard can be used
to obfuscate the APK file only.

In (Schulz, 2012), the authors proposed several
obfuscation techniques and dynamic code loading
technique. In the dynamic code loading technique
there are two components: an encrypted DEX file and
a decryption stub (stub DEX). The original DEX file is
encrypted and stored at somewhere in the APK. When
the application is launched, the decryption stub
decrypts the encrypted DEX file and loads it into
Dalvik Virtual Machine (DVM) to execute.

In (Ghosh, Tandan, & Lahre, 2013), the authors
added few more logic on Android source code to make
it more complex to understand. They exploit try-catch
blocks to change the control flow at runtime. They
exchanged the role of try-catch blocks. They put
business logic into catch block and dummy code,
meaningless loop, and senseless if-else condition into
try block. Also, they put one line of code that always
cause exception at runtime. Reverse engineers try to
understand the try block but it has meaningless code.
This makes understanding code more complex.

In (Xu, Zhang, Sun, Lin, & Mao, 2015), the
authors presented a technique that can detect debug
state and debug environment by detecting debugging-
related processes and emulator specific features. On
the basis of the results, they proposed some solutions
to prevent Android applications being decompiled and
cracked. Taking advantage of these methods, they
mostly eliminate the feasibility of the secondary
packaging for Android software.

In (Sun, Cuadros, & Beznosov, 2015), the authors
evaluate rooting detection techniques. They found
many techniques used by apps to detect rooted
devices, but all rooting detection methods studied can
be evaded. They concluded that Android OS can only
provide a reliable rooting detection method. OS also
implements rooting detection logic in the trusted
components, such as integrity-protected kernels or
external trusted execution environments.

Lim et al. (Lim et al., 2016) proposed an anti-
dynamic reverse engineering scheme for Android
applications on real smart phones, where its stub DEX
tries to detect dynamic reverse engineering attacks.
Especially they focus on call stack-based evasion
attack (API hooking) detection. If the stub DEX does
not detect any dynamic reverse engineering attack it
loads the original DEX file dynamically.

Kim et al. (Kim, Shim, Cho, Park, & Han, 2016)
proposed a technique for protecting multiple DEX
Android applications. The technique is similar to
Schulz’s one in the sense that the original DEX files
are encrypted and the stub DEX decrypts/loads them
dynamically. However, Kim’s technique supports
multiple DEX Android applications.

In (Na, Lim, Kim & Yi 2016), the authors
summarized the difference of attacks to DEX files and

INTELLIGENT AUTOMATION AND SOFT COMPUTING 3

OAT files. DEX is for Dalvik Virtual Machine and
OAT for ART environment. The authors explored
static and dynamic analysis technique for DEX and
OAT files on Android 4.0 (KitKat). Note that, in our
work, we tried to prevent static attacks for DEX files,
but not for OAT files.

2.2 Multidex APK
Most Android application package (APK) is the file

format for packages for distribution and installation of
applications on Android platform. An APK file
contains manifest files, architecture-dependent native
codes, resources, DEX files, etc. In most APKs, there
is one DEX file, classes.dex, which is loaded and
executed on DVM. Android application developers
usually write Java source programs and compile them
all together with third-party libraries into a DEX file.

One problem in the build process is that the
number of referred methods in a single DEX file is
limited to 65,536 (= 216), including user-defined
methods, third-party library methods and framework
methods (Android, 2016b). This is because invoke-*
Dalvik instruction takes a 16-bit argument which
represents the reference index of the target method.
Thus, if the number of methods in classes.dex exceeds
65,536, the build process fails. To remedy this
problem, developers shrink codes using tools such as
ProGuard and/or adopt lightweight libraries (Reznik,
2014). A tool that counts the referred methods is also
used (Parparita, 2014).

To get around this limitation, Android provides
multidex library. With this library an APK file can
contain multiple DEX files without changing the DEX
file format. The multidex library is available in build
tools 21.1.1 or later (Android, 2016f). When
developers build an APK, they switch on the multidex
support option in Android Studio or Eclipse. In
multidex APKs, the names of DEX files are
classes.dex, classes2.dex, and so forth. If classes.dex
in a multidex APK is decompiled using dex2jar and
jd-gui (Java Decompiler, 2008),
android.support.multidex package is found. We
collected and decompiled popular 40 Android
applications from Google Play. We found out that 22
(55 %) APKs among them are multidex APKs. The
Table 1 lists 19 apps among them, which the proposed
method is successfully applied to.

Table 1. 19 Multidex APK

APK name
com.snapchat.android-1.apk
com.infraware.office.link-1.apk
com.toxic.apps.chrome-1.apk
com.myfitnesspal.android-1.apk
com.twitter.android-1.apk
com.zhiliaoapp.musically-1.apk
jp.naver.line.android-1.apk
com.skype.raider-1.apk
mobi.byss.instaweather.watchface-1.apk
com.undertap.watchlivetv-1.apk
com.talkatone.android-1.apk
com.estrongs.android.pop-1.apk
net.zedge.android-1.apk
air.com.officemax.magicmirror.ElfYourSelf-1.apk
com.mcentric.mcclient.FCBWorld-1.apk
com.viber.voip-1.apk
kik.android-1.apk
com.fitbit.FitbitMobile-1.apk
com.pinterest-1.apk

2.3 Analysis of Android Packers
An Android packer is a tool that protects Android

applications by encrypting, decrypting and
dynamically loading classes.dex (Yang et al., 2015;
Yu, 2014). In this section, we analyze three Android
packer services, ijiami, liapp, and alibaba, to explore
whether they can protect multidex APKs. All these
packers deploy Application class for dynamic code
loading. “Application class is a base class for
maintaining global application state” (Android,
2016a). When an APK is packed, Application class (or
its subclass) is replaced with each packer’s custom
class to control the execution flow. Thereby, the name
attribute of <application> element in
AndroidManifest.xml is modified to their custom
class’ name. When a packed application is launched,
its custom class is executed first. It decrypts the
encrypted DEX file, and then loads the decrypted
DEX file dynamically using DexClassLoader class.

We investigate whether each packer can protect
multiple DEX files from static reverse engineering.
First we pack com.twitter.android-1.apk using the
three packers. We unzip the original APK and the
packed APK, respectively, to obtain classes.dex. Then
we decompile each classes.dex using dex2jar (Pan, B)
and gd-gui (Java decompiler) to obtain Java source
codes, and examine their code trees. As shown in
Figure 1, the code trees are different from each other.
We can find the name of the custom class for each
packer. Figure 1 implies that the three packers can
protect classes.dex from static reverse engineering.

4 LIM, KIM, ET. Al.

Now we examine the code trees of the decompiled
classes2.dex. As shown in Figure 2, the code trees of
the packed APKs are identical to the original APK.
Furthermore, some decompiled codes are the same as
the original ones. Figure 2 implies that the three
Android packers do not protect classes2.dex at all
from static reverse engineering.

Figure 1. Code tree of decompiled classes.dex.

Figure 2. Code tree of decompiled classes2.dex.

There are commercial packers such as
DexProtector and DexGuard. Since these tools do not
provide a free or trial version, we could not examine
whether they can protect multidex APKs. According
to DexProtector’s documentations, DexProtector
supports multidex APKs. However, they do not

describe how DexProtector protects multiple DEX
files. Meanwhile, DexGurard’s documentations do not
mention multidex support.

2.4 Overview of Multidex Library
Dalvik loads classes.dex using the constructor of

the DexFile class. The DexFile constructor loads only
classes.dex in APK file (Android, 2016c). Google
does not modify the Dalvik to provide the
functionality to load multiple DEX files from an APK
file. This is because the Android users may not update
the OS or the vendors may not support these
modifications. Instead, Google offers a Multidex
library (Android, 2016g) that enable Android to load
multiple DEX files from your APK. The Multidex
library is built into classes.dex and executed to load
the rest of the DEX files when the application runs.
The name attribute of the <application> element in
AndroidManifest.xml must be set to
MultiDexApplication class or a user-defined subclass
of MultiDexApplication.

Figure 3 shows the execution flow of the Multidex
library. The MultiDex.install method calls the
MultiDexExtractgor.load method which extracts DEX
files (classes*.dex) from the APK’s root directory,
compresses and saves them as classes*.dex.zip in the
/data/data/package/code_cache/secondary-dexes
directory, and returns an array containing the full
paths of classes*.dex.zip. Then MultiDex.install
passes the array to the installSecondaryDexes method
which invokes a build-platform-specific install
method. The install method invokes in turn the
makeDexElements method of the DexPathList class
using API reflection (Android, 2016d). The
makeDexElement method allows additional DEX files
such as classes2.dex, classes3.dex, etc. to be loaded.
Finally, more than one DEX files are loaded and the
application runs normally.

Figure 3. Execution Flow of Multidex APK.

3 PROPOSED METHOD
OUR anti-static reverse engineering method for

multidex Android applications is embedded in
applications. Figure 4 shows the overview of the
proposed method. Our method consists of several
techniques. In Java layer, DEX file substitution,
dynamic code loading for multidex APK and entry
point change are implemented. In native C layer, DEX

INTELLIGENT AUTOMATION AND SOFT COMPUTING 5

file decryption and stub DEX integrity verification are
implemented. When a packed APK is launched in a
user device, these techniques are performed in the
following order: (1) stub DEX integrity verification,
(2) DEX file decryption, (3) dynamic code loading for
multidex APK, (4) entry point change, (5) the original
DEX execution.

Figure 4. Overview of Proposed Method.

Figure 5 shows the structure of an APK
before/after packing using our method. In Figure 5(b),
gray boxes represent modified files. The original DEX
files are encrypted during packing and stored as
encrypted_classes.dex, encrypted_classes2.dex, and so
on. Instead of the original classes.dex, a stub DEX file,
named as classes.dex, is added to the packed APK.
The stub DEX implements the Java layer; it calls
native codes, loads the decrypted DEX and changes
the entry point to the DEX. The name attribute of
<application> element in AndroidManifest.xml is
changed to the package name of the stub DEX so that
the stub DEX can be executed first. The native C layer
is implemented as libStub.so file, which is loaded on
memory at the start of execution. By invoking
functions in libStub.so, the stub DEX verifies the
integrity of itself and decrypts encrypted_classes*.dex
file.

Figure 5. Structure of APK files before/after Packing.

3.1 Verifying Integrity of Stub DEX
In our proposed method, since stub DEX must be

executed first in the application, we need to set the
value of the name attribute of the <application>
element in the AndroidManifest.xml file to the
package name of stub DEX.

To begin with, the stub DEX must verify its own
integrity. Because stub DEX is implemented in Java
language, it is vulnerable to reverse engineering attack
compared with C implementation of Android native
library layer. Unless the integrity of stub DEX is
verified, the following problems may occur. Attackers
can prevent normal execution of applications by
modifying the decryption codes of the stub DEX. The
stub DEX calls an Android native function to decrypt
the encrypted original executable code. If the codes
that call the functions of this native layer are deleted,
the original app code will not be decrypted and the
app will not run normally.

To make matters worse, if you modulates codes
that decrypt the original DEX file and load it into
memory, attackers may get the original code. He can
also tamper with this part to load and run malware.
Therefore, it is necessary to verify the integrity of the
stub DEX itself. Upon passing the verification
process, multidex decryption and dynamic loading are
performed.

Integrity verification is performed as follows.
When a server applies the proposed scheme, it obtains
the SHA1 hash value for a stub DEX file, encodes the
obtained SHA1 hash value into Base64 string, and
stores it in libstub.so. Then, when the developer signs
the application, the server stores the Base64 string of
SHA1 of the stub DEX in the signature-related file
MANIFEST.MF and distributes afterwards. The
MANIFEST.MF file exists in the META-INF
directory and stores information on all files in the
APK package except the files in META-INF
directory. Information include the file path and the
Base64 encoded string of SHA1 hash value of each
file. When the application is executed, libstub.so is
loaded and Base64 string of stub DEX stored in
libstub.so is compared with the Base64 string stored in
MANIFEST.MF.

3.2 Multidex Library based Dynamic Code
Loading

This section proposes a dynamic code loading
technique based on multidex library. As explained in
Section 2.4, multidex library is executed first when an
application starts. In our technique, all DEX files in
the root directory in an APK file are encrypted using
AES (Advanced Encryption Standard) and moved to
asset directory. When the application is executed, a
stub DEX file (named as classes.dex) located in the
root directory is executed first. It decrypts the
encrypted DEX files and dynamically loads them. The
AES decryption is implemented as JNI codes and the

6 LIM, KIM, ET. Al.

codes are stored as libStub.so in directory lib. Figure 5
shows the structure of APK files that are repackaged
using our method.

We implement the stub DEX by modifying
multidex library. We name the modified library as
com.dynamic.loading. If we use the original name
android.support.multidex in the stub DEX, we
encounter a pre-verification error because Dalvik tries
to verify and load android.support.multidex twice; in
the stub DEX and the original classes.dex. We can
find it out using logcat.

Our library extracts and decrypts the encrypted
DEX files (named as encrypted_classes.dex,
encrypted_classes2.dex, ...) from directory assets
instead of simply extracting classes*.dex. The process
is as follows.

1. A user launches an application.
2. Stub DEX (classes.dex) is loaded and executed on

Dalvik.
3. It verifies the integrity of itself by invoking

libStub.so through JNI.
4. It extracts encrypted_classes*.dex (AES-encrypted
DEX files) in assets into
/data/data/package/code_cache/secondary-dexes
directory.

5. It decrypts the encrypted_classes*.dex files by
invoking libStub.so through JNI.

6. It compresses the decrypted files in the ZIP format.
7. It loads the compressed files on Dalvik.
8. It deletes the compressed files

Figure 6. Execution Flow of Multidex Library based Dynamic
Code Loading.

3.3 Changing Entry Point & Executing the
original DEX

In order that the application may execute normally,
the stub DEX needs to configure the execution
environments as if the original DEX were executing
(Lim, Jeong, Lim, et al., 2016). The last task of the
stub DEX is to change the entry point to a proper
method of the loaded DEX. The process is as follows.
(1) The original DEX files are already loaded on
Dalvik. (2) Fill the fields of loadedapk object with the
information of the original application. The loadedapk
object maintains the information of the current

application such as ClassLoader, ActivityThread and
ApplicationInfo. The original DEX can execute
normally by using this object. (3) Invoke
makeApplication() which in turn invokes onCreate()
of the initial activity of the application.

3.4 Multiple Architecture Support
Google provides a number of Application Binary

Interfaces (ABIs) that allow Android handsets to be
manufactured using a variety of CPUs (Wikipedia,
2016). ABI is a low-level binary interface used
between the application and the operating system or
application and its library, or finally the components
of the application.

The ABI is distinguished from the API
(Application Programming Interface). The API is used
at the source code level, and the ABI is used at the
binary code level. These ABIs can be cross-compiled
using NDK, and currently there are seven kinds of
ABIs supported. A detailed description of each ABI
can be found on the Google developer site (Google,
2016).

Since the proposed method adds a native library
that is responsible for integrity verification of the stub
DEX file itself and decryption of the original DEX
files, it must support various architectures as
mentioned above. Therefore, the proposed method
inserts the corresponding native library for each
architecture supported. Among them the most
commonly used ABIs are armeabi-v7a and armeabi.

4 EXPERIMENTAL RESULTS
IN this section, we verify that the proposed method

can protect multidex applications against reverse
engineering and measure performance overhead of the
method by carrying out experiments. Our experiments
are conducted on Google Nexus 7 using the multidex
applications listed in Table 1. The specifications of
Google Nexus 7 are shown in Table 2.

Table 2. Specification of Google Nexus 7

Operating System Android 4.3(Jelly Bean)
Kernel Version 3.4.0-g6537a16
CPU 1.51 GHz quad-core Krait 300
Memory 2GB DDR3L RAM
Storage 16 GB

4.1 Static Reverse Engineering Attack Test
For the experiment, we pack a sample original

application using our proposed method and create its
packed version, that is, the packed application. We
then reverse engineer the packed version using
baksmali and dex2jar tools (Tumbleson & Wisniewski,
2010; Freke, 2009; Pan, 2014). We can analyze
classes.dex of the packed version. It contains only the
classes of the stub DEX file introduced by our
proposed method and does not contain the classes of in
the original application. Next, we examine the

INTELLIGENT AUTOMATION AND SOFT COMPUTING 7

encrypted_classes*.dex files (shortly named as Enc*)
in the packed version. Their contents are shown in
Figure 7. It is impossible to identify any original DEX
file from the encrypted_classes*.dex files because
none of them has DEX file header “dex\n035\0”
(Freke, 2009). Therefore, we verify that our proposed
method can protect Android applications against static
reverse engineering attacks.

Figure 7. Contents of Enc* files of the packed application,
com.twitter.android-1.apk.

4.2 Dynamic Code Loading Overhead
AT the beginning of an application execution, the

procedure for the dynamic code loading technique is
described in Section 3.2. In case of the packed
application with our proposed method, the dynamic
code loading is performed after verifying the integrity
of the stub DEX. During the dynamic code loading,
our method decrypts the encrypted_classes*.dex files
and compresses the decrypted files one by one to the
ZIP format. Then, the compressed files are
dynamically loaded on Dalvik using DexPathList
shown in Figure 3. Therefore, we measure the
performance overhead of our method as follows.

First, we calculate the processing time for
dynamically loading code of an original application
and its packed version with our proposed method,
respectively. By repeating the calculation ten times,
we measure the average processing time. Figure 8
shows the average processing times side by side which
are spent for dynamically loading the codes of the
original applications and their packet versions. The
system.currentTimeMillis () method, which returns the
current time, is used to measure the total time taken
for dynamic loading, integrity verification, decryption
time, compression time, DexOpt, and changing entry
point time. To measure the processing time of each
element, the time difference was calculated by placing
the method at the start and end. For dynamic code
loading, the packed applications with our method
takes more time than their original ones ranging from
minimally 1.46 times to maximally 5.9 times.

The processing time for dynamically loading the
codes of the packed applications can be broken into

five major components: integrity verification time,
decryption time, compression time, the execution time
of the DexOpt program and changing entry point time.
We analyze the major components of the processing
time in detail and show the results in Figure 8. And
Table 3 lists the number and size of the
encrypted_classes*.dex files contained in each packed
application. DexOpt is a system-internal program that
is used to produce optimized DEX files. DexOpt
loads, verifies and optimizes DEX files. It performs
these tasks in favor of Dalvik VM to avoid allocating
some resources to Dalvik. Instead, those resources are
allocated to DexOpt and it frees the resources on
completion of the tasks. The app with the proposed
scheme will run stub DEX first. The original
classes*.dex files are then executed through a
changing entry point technique. The Android system
will perform bytecode optimization to run the original
DEX file. The time it takes to optimize is DexOpt time.
DexOpt is usually invoked once when the original
applications as well as their packed versions are
executed at the first time. The run time of the DexOpt
is short in case of the execution of the original
application because the corresponding symbol
information can be obtained directly, while the run
time of the DexOpt is very long in case of the
execution of the packed version because the
corresponding symbol information cannot be obtained
directly. From the message of the logcat tool, our
guess is that APK repackaging of our method have
caused the mapping information of the symbols to be
broken. As the result of the repackaging, the symbol
information and method overriding should be
recovered during the unpacking and dynamic loading
the codes of the packed application.

In Figure 8, we can see that the time for verifying
stub DEX integrity is almost steady. However, the
time for decryption and compression is increased in
proportion to the size and number of
encrypted_classes*.dex files. During the execution of
the packed applications, the DexOpt program is
invoked. The invocation to the DexOpt is an
additional overhead incurred by the proposed method.
Among the sample applications used in our
experiments, the com.infraware.office.link-1.apk
includes four encrypted_classes*.dex files and
requires the largest time, 19.66 seconds, for integrity
verification, decryption, compression and the
invocation of the DexOpt. On the one hand, the
mobi.byss.instaweather.watchface-1.apk includes two
encrypted_classes*.dex files and requires the smallest
time, 6.80 seconds, for integrity verification,
decryption, compression and the invocation of the
DexOpt.

8 LIM, KIM, ET. Al.

Table 3. The number of the encrypted DEX files and their size

APK name
(its extension is .apk)

of Encrypted
DEX files

Encrypted Dex
file size(MB)

com.snapchat.android-1 4 23.00

com.infraware.office.link
-1

4 29.60

com.toxic.apps.chrome-1 3 15.03

com.myfitnesspal.androi
d-1

3 20.70

com.twitter.android-1 3 18.10

com.zhiliaoapp.musicall
y-1

3 17.70

jp.naver.line.android-1 3 22.80

com.skype.raider-1 2 11.80

mobi.byss.instaweather.
watchface-1

2 9.04

com.undertap.watchlivet
v-1

2 11.60

com.talkatone.android-1 2 10.90

com.estrongs.android.po
p-1

2 15.20

net.zedge.android-1 2 11.80

air.com.officemax.magic
mirror.ElfYourSelf-1

2 11.50

com.mcentric.mcclient.F
CBWorld-1

2 16.00

com.viber.voip-1 2 14.10

kik.android-1 2 14.60

com.fitbit.FitbitMobile-1 2 15.20

com.pinterest-1 2 12.60

4.3 Discussion
LIAPP, ijiami, alibaba, etc. are representative tools

for preventing static reverse engineering attacks.
These tools usually encrypt and save classes.dex in the
Android app in a similar way to the proposed
technique. The encrypted classes.dex file is decrypted
and loaded when the app launches. However, these
tools only support apps with a single DEX file, and we
showed that you cannot defend all classes.dex files if
more than one classes.dex file exists in Section 2.3.

Table 4. Comparison of app protection tools with respect to
functionality

 Liapp
packer

ijiami
packer

Alibaba
packer

The
proposed
method

What it
can

prevent

static
reverse

engineerin
g attacks

static
reverse

engineerin
g attacks

static
reverse

engineerin
g attacks

static
reverse

engineerin
g attacks

and
tempering

Support
multide

x
X X X O

We collected 22 multidex apps from the Google
Play. The proposed method is successfully applied to
19 of them. Table 3 shows these 19 applications with
their number of DEX and size. We cannot apply the
proposed method to three apps because of verifying
self-integrity and repacking. If an app verifies its
integrity itself, our modification to the app cannot pass
this integrity verification. Such cases are
com.supo.security-1.apk and com.qihoo.security-1.apk.
In case of com.tencent.mm-1.apk, we cannot repack
the app because the version of apktool is incompatible
with the app.

We assume that AES keys are managed properly
and safely, and that AES is secure. Since our
technique encrypts/decrypts the DEX files using AES,
its application protection capability against static
reverse engineering depends on the security of AES,
which is beyond the scope of this paper. Our technique
can protect applications against all static reverse
engineering attacks as long as the assumption holds.

5 CONCLUSION AND FUTURE WORK
WE propose a method to protect multidex Android

applications against static reverse engineering. The
proposed method encrypts the DEX files of APK
using the AES encryption and adds a stub DEX
instead of the original classes*.dex file. When the
application starts, Verify the integrity of the Stub Dex
and stub DEX decrypts and dynamically loads the
encrypted DEX file. We modified Google’s multidex
library to implement stub DEX. Experiments also
show that applications implemented using the
proposed technique are difficult to reverse-engineer
using well-known tools such as dex2jar and baksmali.
Compared to other existing packers, the proposed
method is more effective for multi DEX files.

A disadvantage of the proposed method is time
overhead. According to the experimental result, when
the applications packed by the proposed method are
executed, it takes more time from minimally 1.46
times to maximally 5.9 times than the execution time
of their original Android applications. The additional
overhead is mainly caused by the slow execution of
the DexOpt program during decryption and dynamic
loading the codes of the packed applications.

5.1 Acknowledgment
THIS work was supported by the MSIP, Korea,

under the ITRC support program (IITP-2016-R0992-
16-1012) supervised by the IITP. This research was
also supported by Basic Science Research Program
through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and
Future Planning (No. 2015R1A2A1A15053738)

INTELLIGENT AUTOMATION AND SOFT COMPUTING 9

Fi
gu

re
 8

. T
he

 m
aj

or
 c

om
po

ne
nt

s o
f t

he
 p

ro
ce

ss
in

g
tim

e
fo

r d
yn

am
ic

 c
od

e
lo

ad
in

g
in

 c
as

e
of

 p
ac

ke
d

ap
pl

ic
at

io
n

w
ith

 th
e

pr
op

os
ed

 m
et

ho
d.

10 LIM, KIM, ET. Al.

6 REFERENCES
Android. (2016a). Application.

http://developer.android.com/reference/android/a
pp/Application.html.

Android. (2016b). Configure apps with over 64k
methods. http://developer.android.com/
studio/build/multidex.html.

Android. (2016c). Dexfile.
http://developer.android.com/reference/dalvik/sys
tem/ DexFile.html.

Android. (2016d). Package java.lang.reflect.
http://developer.android.com/reference/java/
lang/reflect/package-summary.html.

Android. (2016e). ProGuard.
http://developer.android.com/tools/help/proguard
.html.

Android. (2016f). SDK build tools release notes.
http://developer.android.com/tools/revisions/buil
d-tools.html.

Android. (2016g). Support library features.
http://developer.android.com/tools/support-
library/features.html.

AppBrain. (2016). Number of android applications.
http://www.appbrain.com/stats/number-of-
android-apps.

J. Freke, (2009). baksmali.
https://github.com/JesusFreke/smali.

S. Ghosh, S. R. Tandan, and K. Lahre, (2013, June).
Shielding android application against reverse
engineering, International Journal of Engineering
Research and Technology, 2(6), 2635–2643.

Google Inc. (2016). Abi,
https://developer.android.com/ndk/guides/abis.ht
ml?hl=en

Java decompiler. (2008). http://jd.benow.ca/.
N. Y. Kim, J. Shim, S. Cho, M. Park, and S. Han,

(2016). Android application protection against
static reverse engineering based on multidexing,
The 2016 International Symposium on Mobile
Internet Security (MobiSec 2016), July 2016,
Taichung, Taiwan, Journal of Internet Services
and Information Security (JISIS), 6(4), 54–64.

K. Lim, Y. Jeong, S. Cho, M. Park, and S. Han,
(2016). An android application protec¬tion
scheme against dynamic reverse engineering
attacks, Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable
Applications (JoWUA), 7(3), 40–52.

K. Lim, Y. Jeong, J. Lim, S. Cho, H. Shim, and S.
Cho, (2016). Encrypting executable codes and
changing entry point of them for preventing
android apps against reverse engineering, Proc. of
the 26th joint conference on communications and
information (jcci’16), sokcho, korea. 26, 0244–
0245.

B. Pan, (2014). dex2jar,
https://sourceforge.net/projects/dex2jar/.

M. Parparita, (2014). dex-method-counts,
https://github.com/mihaip/dex-method-counts.

T. Reznik, (2014). Android and the dex 64k methods
limit-contentful, https://www.contentful
.com/blog/2014/10/30/android-and-the-dex-64k-
methods-limit/.

P. Schulz, (2012). Code protection in Android, Tech.
Rep. No. 110. Rheinische Friedrich-Wilhelms-
Universitat Bonn.

S. T. Sun, A. Cuadros and K. Beznosov, (2015).
Android rooting: Methods, detection, and
evasion, Proceedings of the 5th annual acm ccs
workshop on security and privacy in smartphones
and mobile devices, 3–14.

C. Tumbleson, and R. Wisniewski, (2010). Apktool,
http://ibotpeaches.github.io/Apktool/.

Wikipedia. (2016). Abi,
https://en.wikipedia.org/wiki/Application binary
interface.

J. Xu, L, Zhang, Y. Sun, D. Lin, and Y. Mao, (2015).
Toward a secure android software protection
system, Proc. of 2015 IEEE international
conference on Computer and information
technology; ubiquitous computing and
communications; dependable, autonomic and
secure computing; pervasive intelligence and
computing, 2068–2074.

W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and
D. Gu, (2015). Appspear: Bytecode decrypting
and dex reassembling for packed android
malware, Proc. of the 18th international
symposium on research in attacks, intrusions and
defenses (raid’15), kyoto, japan, 9404, 359–381.

R. Yu, (2014). Android packers: facing the challenges,
building solutions, Proc. of the 24th virus bulletin
international conference (vb’14), Seattle,
Washington, USA, 266–275

G. Na, J. Lim, K. Kim, and J. Yi, (2016). Comparative
Analysis of Mobile App Reverse Engineering
Methods on Dalvik and ART, 2016 Journal of
Internet Services and Information Security
(JISIS), 6(3), 54–64.

7 NOTES ON CONTRIBUTORS
K. Lim received the B.E. degree
in Dept. of Software Science from
Dankook University, Korea, in
2015 and the M.E. degree in
computer science and engineering
from Dankook University, Korea,
in 2016. He is currently a Ph.D.
student in Computer Science and

Engineering at Dankook University, Korea. His
research interests include computer system security,
mobile security.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 11

N. Y. Kim received the B.E.
degree in Dept. of Software from
Dankook University in 2015 and
the M.E. degree in computer
science and engineering from
Dankook University, Korea, in
2016. He is currently a researcher
in Inetcop laboratory, Korea. His

research interests include computer system security,
mobile security, and software protection.

Y. Jeong received the B.E. degree
in computer engineering from
Dankook University, Korea, in
2012 and the M.E. degree in
computer science and engineering
from t-he Dankook University,
Korea, in 2013. He is a Ph.D.
student in Computer science and
engineering at the Dankook

University. His current research interests include
computer security and mobile security.

S. Cho received the B.E., the
M.E. and the Ph.D. in Computer
Engineering from Seoul National
University in 1989, 1991 and
1996 respectively. He joined the
faculty of Dankook University,
Korea in 1997. He was a visiting
scholar at Department of EECS,
University of California, Irvine,

USA in 2001, and at Department of Electrical and
Computer Engineering, University of Cincinnati, USA
in 2009 respectively. He is a Professor in Department
of Computer Science and Engineering (Graduate
school) and Department of Software Science
(Undergraduate school), Dankook University, Korea.
His current research interests include computer
security, smartphone security, operating systems, and
software protection.

S. Han received his B.S. degree
in Computer Science from
Yonsei University in 1998. He
received his M.E. and Ph.D.
degrees in Computer Engineering
from Seoul National University
in 2000 and 2007, respectively.
He is now an associate professor
in the Department of Computer

Engineering at Konkuk University. His research
interests include real-time scheduling, software
protection, and computer security.

M. Park received the B.E., M.E.,
and Ph.D. degree in Computer
Engineering from Seoul National
University in 1991, 1993, and
2005, respectively. He is now a
professor in Konkuk University,
Rep. of Korea. His research
interests include operating
systems, real-time scheduling,

embedded software, computer system security, and
HCI. He has authored and co-authored several journals
and conference papers.

	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORKS
	2.1 Anti-Reverse Engineering Techniques
	2.2 Multidex APK
	2.3 Analysis of Android Packers
	2.4 Overview of Multidex Library

	3 PROPOSED METHOD
	3.1 Verifying Integrity of Stub DEX
	3.2 Multidex Library based Dynamic Code Loading
	3.3 Changing Entry Point & Executing the original DEX
	3.4 Multiple Architecture Support

	4 EXPERIMENTAL RESULTS
	4.1 Static Reverse Engineering Attack Test
	4.2 Dynamic Code Loading Overhead
	4.3 Discussion

	5 CONCLUSION AND FUTURE WORK
	5.1 Acknowledgment

	6 REFERENCES
	7 NOTES ON CONTRIBUTORS
	Word Bookmarks
	Notes_on_Contributors

