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1 INTRODUCTION 
COOPERATIVE hunting aims to surround 

detected targets by autonomous underwater vehicles 
(AUVs) in a certain pattern. Cooperative hunting 
methods are similar to pattern formation using swarm 
AUVs, which is often concerned with the formation of 
a complex shape (Millan et al., 2014; Cai, 2013). 
Multi-AUV hunting has attracted much attention as a 
good verification of cooperation and coordination of a 
multi-AUV system. Some significant achievements 
have been obtained in the exploration field (Huang et 
al., 2016; Zhu et al., 2015; Huang et al., 2013; Zhang 
et al.,2016; Shen et al.,2017) For example, Huang et 
al. (2013) proposed a loose-preference rule for 
cooperative hunting by swarm robotic systems. Zhang 
et al. (2016) used a reinforcement learning method 
with animal behavior to conduct research on the 
hunting problem. For multiple robots, a Lyapunov-
based cooperative hunting method was proposed in 
Shen et al. (2017). The results of this paper showed 
that the robot group can effectively track and trap the 
target simultaneously. Robin et al. (2016) proposed a 
transverse synthesis, which solves the decision 
problem that target detection and tracking 
encompasses. 

However, all of the above articles concentrate on 
known environments for a cooperative robot hunting 
task. In reality, working environments for robots are 
often unknown. In order to deal with a multi-robot 
hunting task in unknown environments, Zhang et al. 
(2014) proposed a self-organizing method based on a 
simplified virtual-force model for nonholonomic 
mobile swarm robots hunting in an unknown dynamic 
environment. This robust approach can make the 
group of robots maintain a good hunting formation in 
unknown dynamic obstacle environments and attain 
good performance in obstacle avoidance and 
flexibility. Recently, research has focused on the 
hunting problem with multiple evaders. Ni and Yang 
(2011) presented a multi-robot collaborated hunting 
algorithm based on a bio-inspired neural network in 
real-time in unknown environments. In the proposed 
approach, the pursuit alliances can dynamically 
change, and the robot motion can be adjusted in real-
time to pursue the evader cooperatively to guarantee 
that all the evaders can be caught efficiently. The 
proposed approach can deal with various situations, 
e.g., when some robots break down, the environment
has different boundary shapes. The results show that 
this algorithm is feasible and effective. Ishiwatari et 
al. (2014) proposed a new method in which multiple 
robots cooperatively hunt for a target using mobile 
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agents. The mobile agents traverse mobile robots 
through migrations while collecting information about 
the target. Since each robot just needs to establish a 
connection with another robot for migration of a 
mobile agent, our method reduces the total 
communication cost of the system. However, the 
previous four papers did not consider map-building 
comprehensively, and obstacle avoidance was not 
usually considered in the literature (Avinesh et al., 
2016). 

Recently, researchers approached the hunting 
process with simple obstacles. Huang et al. (2016) 
proposed a multi-AUV cooperative hunting algorithm 
based on a bio-inspired neural network for 3-D 
underwater environments with obstacles. The 
simulation results demonstrate the effectiveness of the 
proposed algorithm. Pan et al. (2008) applied the 
improved reinforcement algorithm to the multi-robot 
hunting problem. However, in these studies, the 
hunting target was often static and not fully consistent 
with real environments. 

To tackle the shortcomings discussed above, 
Belkhouche et al. (2005) focused on the problem of 
hunting an unpredictably moving prey using a group 
of robots. In this paper, for obstacles and cooperative 
collision avoidance, a collision cone approach was 
used. Zhu et al. (2015) proposed an algorithm based 
on a bio-inspired neural network model applied in a 
hunting task. This algorithm can provide rapid and 
highly efficient path planning in unknown 
environments with obstacles and non-obstacles. In 
order to solve obstacle avoidance in multi-robot 
hunting, Uehara et al. (2017) proposed a new PSO 
(particle swarm optimization)-based approach, 
enabling particles’ search and capture of the target 
while getting around obstacles. In this approach, each 
robot records its moving trace in a fixed period. Once 
a robot is blocked by obstacles and cannot proceed, it 
creates a mobile software agent that migrates to other 
robots around it through Wi-Fi. In Sajjad et al (2017), 
a limit cycle-based algorithm using a neural oscillator 
with phase differences was proposed. Using the 
proposed algorithm, a group of robots is intended to 
move towards the target in such a way that the robots 
surround it. While moving to the target, self-collision 
between the robots is avoided. Moreover, collision 
avoidance with static obstacles, as well as dynamic 
targets, is realized. The robots reach the target at a 
desired distance, keeping uniformly distributed angles 
around the target. However, these algorithms do not 
consider task assignment of the multi-robot/multi-
AUVs; the limitations in terms of coordination, 
robustness and effectiveness of a robot team mean that 
these methods cannot be fully applicable for a multi-
AUV cooperative hunting problem in underwater 
circumstances. 

In this paper, we study an algorithm for 
cooperative hunting of multi-AUVs in underwater 
environments. To improve cooperation efficiency and 

reduce energy consumption, an integrated strategy is 
proposed by combining a self-organizing map (SOM) 
neural network and Glasius Bio-Inspired Neural 
Network (GBNN) for hunting targets in underwater 
environments. As for the general design, because of 
similar characteristics between the multi-AUV system 
and a SOM neural network, the SOM algorithm can be 
used in multi-AUV task assignments. In cases of no 
prior knowledge about the dynamic environments, and 
without any learning procedures, GBNN is developed 
to plan AUVs’ hunt paths. By combining the two 
algorithms, it is expected to avoid the conflict between 
AUVs and reduce energy consumption of the whole 
work system. 

The advantages of this approach can be 
summarized as follows. 1) This approach is a 
combination of two methods and thus gives full play 
to the merits of both for cooperative hunting. 2) When 
the GBNN algorithm deals with different situations, it 
does not need a large number of function evaluations 
and parameter (A, B, D, µ and R) adjustments. To 
work for real-time cooperative searching and tracking, 
the proposed approach can be extended to real-world 
applications easily. 3) While the SOM-based approach 
has been applied for a multi-AUV system to deal with 
task assignments, it could be developed to perform 
collision avoidance. 

The rest of the paper is organized as follows. In 
Section II, the problem statement is given. Section III 
presents the SOM- and GBNN-based integrated 
approach. The simulation experiments for various 
situations are given in Section IV. Finally, Section V 
presents the conclusion. 

2 PROBLEM STATEMENT 
IN this paper, a cooperative hunting task of multi-

AUVs in underwater environments is studied. The 
multi-AUV system is unfamiliar with the underwater 
environments beforehand. Figure 1 shows the 
underwater environments randomly distributed with 
obstacles, AUVs and target. Its hunting process 
involves two phases, as shown in Figure 2. First, to 
reduce energy consumption and improve cooperation 
efficiency, only some of the AUV team members are 
assigned with hunting tasks. Second, the task 
performers should avoid obstacles while finding as 
short a path as possible. Figure 3 shows the conditions 
where the target is successfully surrounded by hunting 
AUVs. All targets, once surrounded, are regarded as 
being hunted, and the hunting task ends. 

3 PROPOSED ALGORITHM 
IN order to achieve the cooperative hunting task in 

unknown environments by multi-AUVs, two key 
problems need to be solved. The first is how to do the 
allocated tasks dynamically. The other is how to do 
cooperative hunting efficiently. Other problems that 
need solutions include how to realize collision 
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avoidance. In this paper, an integrated approach based 
on a SOM neural network and GBNN is proposed. 
The  
 

 

Figure 1. Underwater hunting environments 

 

Figure 2. Flowchart of multi-AUV target hunting 

 

Figure 3. Target is hunted by AUVs in three conditions: (a) 
Hunted state in corner (b) Hunted state with help of obstacles 
(c) Hunted state by four hunting AUVs 

SOM neural network is used to solve the task 
assignment problems while the pursuing target 
strategy for the hunting task is achieved by a GBNN.  

3.1 Multi-AUV dynamic task assignment 
The SOM neural network model with two layers is 

present in Figure 4. When the SOM neural network is 
used in a multi-AUV task assignment, the first layer is 
the input layer, including Q neurons which represent 
the Cartesian coordinates of the target; parameters (xi, 
yi) form one input neuron. The second layer is the 
output layer that involves AUV’s coordinates. Each 
neuron of the output layer connects to the neurons in 
the input layer. The strength of each output neuron is 
given by a 2-D weight vector, which is initialized as 
the initial AUV’s coordinate. Subspaces are input to 
the network one by one until the last target is input. 
The iterations end until all targets have been 
assignment AUV (Zhu et al., 2013). 

  

Figure 4. Structure of the SOM neural network 

We divide the overall problem into some sub-
problems including the rule to select, for the winner, 
the definition of the neighborhood function and the 
rule to update weights. First, the SOM algorithm is 
applied to determine which AUVs are the winners for 
targets. Then, the neighborhood function determines 
which AUVs are the neighbors of the corresponding 
winners, meanwhile, figures out the moving speed for 
winners as well as neighbors (Cao and Zhu, 2017; 
Kohonen, 1982). 

A. Winner selection rules 
The winner is determined by the following 

expression (Zhu and Yang, 2006): 

  , (1) 

where [Pj] denotes that the j-th neuron f is the selected 
winner to the i-th input neuron. Dij is a value related to 
Euclid distance between the correlated two neurons. 
Selecting the winner depends on how to define and 
calculate Dij during iterations. First, an equation is 
given to interpret the Euclidean distance between two 
neurons (Hendzel, 2005): 

  . (2) 

Ti = (xi, yi) is the coordinate of the i-th input neuron in 
the 2-D coordinate system, which also donates the 
location of the subspaces. Rj = (wjx, wjy) is the 
coordinate of the output neurons, representing the 
location of a certain AUV at a certain time. 
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B. Neighborhood updating rules 
After the winner is selected, the next step is to 

design the neighborhood function and compute 
weights of winner and neighbors. The neighborhood is 
designed to a sphere with radius λ where the center is 
the winner node. The neighborhood function 
determines the attractive strength of the input data on 
the winner as well as its neighbors. The influence on 
selected neurons is diminishing as the distances 
between the neighbor neuron and the winner increase. 
The neighbors of the winner are determined according 
to the following equation (Reeve and Hallam, 2005; 
James and Erion, 2017): 

  . (3) 

dm = |Nm − Nj | is the distance between the m-th output 
neuron and the winner. λ is set to a constant value 
denoting neighborhood range. The function 

 is nonlinear, where t represents the 
number of iterations. ∂ is the update rate determining 
the calculation time, and ∂ < 1 is constant. The 
computation time is diminishing as the parameter ∂ 
increases. 

As shown in Figure 5, there are seven AUVs and 
one target ready for task assignment in underwater 
environments. According to the principle of SOM, the 
target should be taken as input neuron of the SOM 
neural network and AUVs’ positions as the output 
neuron. As per Section 2, rounding up a target requires 
four AUVs. In other words, each input should 
correspond to four outputs, i.e., each target should be 
allocated with four AUVs. By the competition rules in 
formula (1), (2) and (3), R1, R3, R5 and R6 are 
allocated respectively to T1 in the initial stage (Figure 
5 (a)). Within the hunting process, the target may 
change the AUV that it is pursuing if another AUV is 
found near than the first AUV. The result in Figure 
5(b) shows that SOM dynamically allocated tasks in 
the hunting process. At the initial stage, an alliance 
(R1, R3, R5 and R6) cooperate to pursue the target T1. 
After a period of time, R7 is closer to the target T1 
than R1. At this time to reallocate tasks, R3, R5, R6 
and R7 are allocated to T1. 

 

(a) 

 

(b) 

Figure 5 Process of multi-AUV task assignment (a) initial state 
(b) dynamic task assignment state 

3.2 Pursuing strategy based on GBNN 
The search target is determined by the GBNN in 

underwater environments. The GBNN algorithm in 
this paper is a kind of discrete Hopfield-type neural 
network. Firstly, the GBNN is built according to 
underwater environments (Figure 6). In this model, 
each individual neuron is connected with adjacent 
ones to form a network for their transmission of 
activity. 

 

Figure 6. GBNN model 

In the proposed model, the excitatory input results 
from the target and lateral neural connections, while 
the inhibitory input results from the obstacles only. 
Each neuron has local lateral connections to its 
neighboring neurons. The neuron responds only to the 
stimulus within its receptive field (Cao et al., 2016). In 
the proposed model, the collision-free AUV motion is 
planned in real-time based on the dynamic activity 
landscape of the neural network. The dynamics of this 
discrete time neural network is described as the 
following equations (Luo et al., 2014; Oliveira and 
Fernandes, 2016). 
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where klω  are symmetric connection weights between 
the k-th neuron and the l-th neuron; | |k l−  is the 
Euclidian distance from the k-th neuron to the l-th 
neuron;  ( )g ⋅  is the transfer function; γ  and 0γ >   
are constants; The external input kI  to the k -th 

neuron is defined as kI E=  , if it is a target; kI E= −  

, if it is an obstacle position; 0kI = , otherwise, where 
1E >>   is a positive constant. 
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Transfer function ( )g ⋅   may be any monotonically 
increasing function (Glasius et al., 1995; Glasius et al., 
1996). A piecewise linear function is selected as the 
transfer function as follows. 
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where  0β >  is a positive constant. 
The proposed network characterized by equation 

(4) guarantees that the positive neural activity is able 
to be propagated to all the state space, but the negative 
activity only stays locally. Therefore, the target 
globally attracts the AUV, while the obstacles only 
locally avoid the collision. The activity landscape of 
the neural network dynamically changes due to the 
varying external inputs from the targets and obstacles 
and the internal activity propagation among neurons. 
The optimal AUV path is planned from the dynamic 
activity landscape and the previous AUV location. 
The AUV will move to the neuron with maximal 
neural activity. After the current location reaches its 
next location, the next location becomes a new current 
location. The current AUV location adaptively 
changes according to the varying environments. The 
activity landscape of the neural network dynamically 
changes due to the varying external inputs from the 
target and obstacles and the internal activity 
propagation among neurons. For energy and time 
efficiency, the AUV should travel the shortest path 
and make the least turns in moving directions. For a 
given current robot location, denoted by , the next 
robot location is obtained by Lc  (Luo et al., 2014) 

  ,
arg max( ( , )) { | ( , )}s

m n
Ln x m n N m n= ∈

, (8) 

where s  is the number of neighboring neurons of the  
Lc -th neuron ( s =8), i.e., all the possible next 
locations of the current location  Lc . Variable 

( , )x m n   is the neural activity of the l-th neuron. 
In the hunting task, the neural activity landscape 

will never reach a steady state as in the underwater 
environments. The AUV keeps moving toward the 
neuron location with the maximum activity in the 
AUV detection region. In the proposed model, due to 
the very large external input constant E, the target and 
obstacles keep staying at the peak and valley of the 
activity landscape of the neural network, respectively. 
Thus, the AUV should be able to hunt the target 
efficiently with obstacle avoidance until the hunting 
task ends. In this manner, the AUVs can realize 
cooperative hunting efficiently and naturally. It is a 
main difference between the proposed algorithm and 
other algorithms for cooperative hunting. 

4 SIMULATION STUDIES 
TO demonstrate the effectiveness of the proposed 

algorithm, several different cases, including hunting 
for single and multiple targets, were implemented on 
the software platform of MATLAB R2011a. 
Simulations were carried out with different models of 
underwater environments, with targets randomly 
distributed. The assumptions are as follows. 1) All the 
AUVs and targets are assumed as points without any 
shapes. 2) The AUV velocity is set at a value more 
than the target velocity. Because the target has the 
same intelligence of AUVs except cooperation, it will 
be difficult to catch the target if the target is faster 
than the AUV’s velocity. 3) AUV members are not 
informed in advance of their working environments 
other than the total number of targets and boundaries 
of the underwater work areas. 

4.1 Hunt single target 
In order to test the basic performance of the 

proposed approach, the first simulation is conducted. 
In this simulation, there is just one target, six AUVs, 
and some obstacles. The areas of the environments are 
30 30´ . In this case, obstacles and static targets are 
randomly distributed in the work area (shown as in 
Figure 7(a)). The initial coordinates of the target is 
(12,14), and the initial coordinates of the 6 AUVs are 
(1,20), (21,3), (18,22), (2,2), (17,29) and (28,18). 
According to the proposed algorithm, a target should 
require four AUVs to hunt. Through calculation from 
formula (1)-(3) by SOM, winners R1, R3, R5 and R6 
are assigned to target T1. Since R2 and R4 fail in the 
competition, they will not join in the pursuing task but 
keep still. After completion of the task assignment, 
GBNN automatically plans a collision-free pursuing 
path for each hunter according to formula (5)-(9). As 
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shown in Figure 7 (b), target T1 which moves at 
random in the whole work area is hunted by AUV R1, 
R3, R5 and R6. From Figure 7, we find that 4 AUVs 
have been assigned with pursuing tasks while the 
other two AUVs remain stationary. This proves that 
the proposed algorithm not only works with high 
efficiency but also saves energy for the whole work 
team. 

R1

R2

R3

R4

T1

R5
R6

 

(a) 

R1

R2

R3

R4

T1

The target 
hunted

R5
R6

 

(b) 

Figure 7 Hunting process of the first simulation: (a) initial 
locations, (b) final trajectories 

In addition, dynamic task assignment in the hunting 
process is considered in the experiment. This 
simulation involves one target, four AUVs, and 
several obstacles. Figure 8(a) shows the initial 
distribution of them. At the beginning of the hunting 
task, winners R1, R3, R5 and R6 are assigned to target 
T1 through calculation from formula (1)-(3) by SOM. 
R2 and R4, the failures in the competition, are 
excluded from the pursuing task and keep still (Figure 
8 (b)). As the target moves southeast, after a period of 
time, the distances between it and each AUV will 
change. According to the principle of dynamic task 

assignment, each AUV will be re-allocated with tasks. 
By formula (1)-(3) by SOM, R3, R4, R5 and R6 gain 
their pursuing task while R1 and R2 keep still (Figure 
8(c)). Then, the target impact the entire work area 
through neural transmission, the activity of each 
neuron can be derived from the shunting equation (4). 
When a winner AUV makes a selection of its path, it 
compares the activity value of the neuron of its current 
location with its neighbors and chooses the one with 
the highest value as the next step. With the GBNN, the 
targets and obstacles are excitation and inhibitory of 
the neural network, respectively. By repeating this 
performance, AUVs keep moving towards their targets 
by rounding obstacles to avoid collision. As shown in 
Figure 8(d), target T1 is hunted by AUV R3, R4, R5 
and R6. This shows that the proposed algorithm 
realizes hunting for a single target. 

R1

R2

R3

R4

T1

R5 R6

 

(a) 

R1

R2

R3

R4

T1

R5 R6

 

(b) 
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R1
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R3

R4

T1

The target 
hunted

R5 R6

 

(d) 

Figure 8. Hunting process of the second simulation: (a) initial 
locations, (b) at the 3rd step, (c) at the 4th step, (d) final 
trajectories 

4.2 Hunt multiple targets 
The second simulation is conducted to test the 

dynamic cooperation when multiple targets are needed 
to be caught. For easy analysis, it is assumed that there 
are two targets and eight AUVs, both of which are 
randomly distributed in the work area. The initial 
locations of T1 and T2 are (13, 8), and (19, 23), 
respectively, as shown in Figure 9(a). Through the 
task assignment, R1, R2, R3 and R4 are assigned to 
target T1, and the other four AUVs (R5, R6, R7 and 
R8) cooperate to pursue target T2. All the AUVs are 
guided by the activity of the neural network for their 
own pursuing targets. Eventually, both the targets are 
hunted. Figure 9(b) shows the final trajectories of this 
hunting. Similarly, the simulation result shows 
effective cooperative hunting for multiple dynamic 
targets.  

R1
R2

R3

R4

T1

R5
R6

T2

R7
R8

 

(a) 

R1
R2

R3

R4

T1
The target 

hunted

R5
R6

T2

R7
R8 The target 

hunted

 

(b) 

Figure 9. Hunting process of the multiple targets: (a) initial 
locations, (b) final trajectories 

4.3 Comparison of different algorithms 
The proposed algorithm is expected to improve 

efficiency for multi-AUV cooperative hunting in 
underwater environments compared with other 
commonly used algorithms, such as the bio-inspired 
neural network algorithm (Zhu et al., 2014; Ni and 
Yang, 2011). According to the principle of the bio-
inspired neural network algorithm, the AUV’s 
movement is determined by the dynamic activity 
landscape of the topologically organized neural 
network and the AUV’s speed. In the hunting task, the 
neural activity landscape will never reach a steady 
state as in static environments. The AUV keeps 
moving toward the neuron location with the maximum 
activity in the AUV detection region. Figure 9 shows 
the hunting process with these two different 
algorithms. 

This comparative simulation includes one target, 
five AUVs and several obstacles in work areas of 
30 30´  . The initial locations of the targets are (15, 
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18). AUVs are randomly distributed with their 
coordinate points (3, 10), (25, 26), (17, 7), (5, 27) and 
(1, 1). Figure 10 (a)-(b) shows the hunting process 
with two different algorithms. According to the result 
of Figure 10, the proposed algorithm takes a shorter 
hunting path no matter whether for each AUV 
member or the whole multi-AUV team compared with 
the bio-inspired neural network algorithm. To analyze 
why this is so, the proposed algorithm can make a 
dynamic task assignment that chooses the fittest 
performers from the multi-AUV team according to 
SOM neural network, while always keeping the 
chosen ones stalking the target according to GBNN. In 
contrast, as the bio-inspired neural network algorithm 
lacks the function of task allocation, repetitive 
searches and longer pursuing paths are inevitable. The 
simulation results show that the proposed algorithm 
works with higher efficiency and adaptability 
compared with a bio-inspired neural network 
algorithm. 

R1
R2

R3

R4

T1

R5

The target 
hunted

 

(a) 

R1
R2

R3

R4

T1

R5

The target 
hunted

 

(b) 

Figure 10. Hunting process with different algorithms: (a) the 
proposed algorithm, (b) the bio-inspired neural network 
algorithm 

In order to further prove the effectiveness of the 
proposed algorithm, the mobile distance of the two 
algorithms for each AUV in the hunting process has 
been compared. In these conditions, two algorithms 
respectively complete 50 times simulations of five 
AUVs for one target. In each simulation, the target, 
AUVs and obstacles are randomly deployed. To make 
a clear distinction between the two algorithms, Figure 
11 shows the mean and standard deviation statistics of 
mobile distance for each AUV in the hunting process. 
The result shows that the total mobile distance of the 
proposed algorithm is reduced by 35%, and the 
standard deviation statistics of the proposed algorithm 
is smaller. Therefore, the method proposed in this 
paper applied to the hunting process is much more 
efficient. For the power consumption problem, since 
this work is based on the design of path planning, the 
power consumption can simply be in linear correlation 
with the hunting path length. From this point of view, 
it is easy to conclude that the proposed algorithm is 
superior to bio-inspired neural network algorithm. 

 

Figure 11. Comparison of hunting efficiency between the two 
algorithms 

5 CONCLUSION 
IN this paper, an integrated algorithm of self-

organizing map neural network and Glasius Bio-
Inspired Neural Network is introduced to deal with 
cooperative hunting by a multi-AUV team. On the one 
hand, the SOM neural network can be used in multi-
AUV task assignments, which strengthens cooperation 
among multi-AUV team members. On the other hand, 
it makes full use of the advantages of GBNN without 
any preoccupied information about the workspace or 
any pre-learning as well as few parameter 
adjustments. Through the simulation experiments with 
targets of different states, it proves that the proposed 
algorithm is able to plan shorter search paths to 
enhance work efficiency and save energy. Despite 
these advantages, there are still practical problems to 
be addressed. These may include how AUVs should 
overcome the effects of ocean currents in underwater 
environments during their hunting process, and how to 
deal with 3-D environments when the target moves 
faster than its hunters under the proposed method. 
Further studies on how to solve these problems are 
needed. 
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